Skip to main content
Top
Published in:

Open Access 01-03-2025 | Gene Therapy | REVIEW

Advancements in gene therapies targeting mutant KRAS in cancers

Authors: Yuhang Wang, Thuy Anh Bui, Xinpu Yang, Gyorgy Hutvagner, Wei Deng

Published in: Cancer and Metastasis Reviews | Issue 1/2025

Login to get access

Abstract

Mutations in the KRAS gene are well-known tumourigenic drivers of colorectal, pancreatic and lung cancers. Mechanistically, these mutations promote uncontrolled cell proliferation and alter the tumour microenvironment during early carcinoma stages. Given their critical carcinogenic functions, significant progress has been made in developing KRAS inhibitors for cancer treatment. However, clinical applications of these KRAS inhibitor compounds are limited to specific cancer types which carry the relevant KRAS mutations. Additionally, clinical findings have shown that these compounds can induce moderate to serious side effects. Therefore, new approaches have emerged focusing on the development of universal therapeutics capable of targeting a wider range of KRAS mutations, minimising toxicity and enhancing the therapeutic efficacy. This review aims to examine these therapeutic strategies in the context of cancer treatment. It firstly provides an overview of fundamental KRAS biology within the cell signalling landscape and how KRAS mutations are associated with cancer pathogenesis. Subsequently, it introduces the development of current KRAS inhibitors which target certain KRAS mutants in different types of cancer. It then explores the potential of gene therapy approaches, including siRNA, miRNA and CRISPR methodologies. Furthermore, it discusses the use of lipid-based nanocarriers to deliver gene cargos for targeting KRAS gene mutants. Finally, it provides the insights into the future prospects for combatting KRAS mutation-associated cancers.

Graphical Abstract

Literature
8.
go back to reference Iversen, L., Tu, H. L., Lin, W. C., Christensen, S. M., Abel, S. M., Iwig, J., & Wu, H. J. (2014). Gureasko, J.; Rhodes, C.; Petit, R. S.; et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science, 345 (6192), 50–54. https://doi.org/10.1126/science.1250373 From NLM Medline. Iversen, L., Tu, H. L., Lin, W. C., Christensen, S. M., Abel, S. M., Iwig, J., & Wu, H. J. (2014). Gureasko, J.; Rhodes, C.; Petit, R. S.; et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science, 345 (6192), 50–54. https://​doi.​org/​10.​1126/​science.​1250373 From NLM Medline.
24.
go back to reference Kimura, K., Nagasaka, T., Hoshizima, N., Sasamoto, H., Notohara, K., Takeda, M., Kominami, K., Iishii, T., Tanaka, N., & Matsubara, N. (2007). No duplicate KRAS mutation is identified on the same allele in gastric or colorectal cancer cells with multiple KRAS mutations. Journal of International Medical Research, 35(4), 450–457.CrossRefPubMed Kimura, K., Nagasaka, T., Hoshizima, N., Sasamoto, H., Notohara, K., Takeda, M., Kominami, K., Iishii, T., Tanaka, N., & Matsubara, N. (2007). No duplicate KRAS mutation is identified on the same allele in gastric or colorectal cancer cells with multiple KRAS mutations. Journal of International Medical Research, 35(4), 450–457.CrossRefPubMed
25.
go back to reference Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Jänne, P. A., Januario, T., & Johnson, D. H. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.CrossRefPubMed Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Jänne, P. A., Januario, T., & Johnson, D. H. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.CrossRefPubMed
27.
28.
go back to reference Dias Carvalho, P., Guimaraes, C. F., Cardoso, A. P., Mendonca, S., Costa, A. M., Oliveira, M. J., & Velho, S. (2018). KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer research, 78(1), 7–14.CrossRefPubMed Dias Carvalho, P., Guimaraes, C. F., Cardoso, A. P., Mendonca, S., Costa, A. M., Oliveira, M. J., & Velho, S. (2018). KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer research, 78(1), 7–14.CrossRefPubMed
29.
go back to reference Kitajima, S., Thummalapalli, R., & Barbie, D. A. (2016). Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. In: Seminars in cell & developmental biology, Elsevier: Vol. 58, pp 127–135. Kitajima, S., Thummalapalli, R., & Barbie, D. A. (2016). Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. In: Seminars in cell & developmental biology, Elsevier: Vol. 58, pp 127–135.
30.
go back to reference Golay, H. G., & Barbie, D. A. (2014). Targeting cytokine networks in KRAS-driven tumorigenesis. Taylor & Francis, 14, 869–871. Golay, H. G., & Barbie, D. A. (2014). Targeting cytokine networks in KRAS-driven tumorigenesis. Taylor & Francis, 14, 869–871.
31.
go back to reference Zhang, Y., Yan, W., Collins, M. A., Bednar, F., Rakshit, S., Zetter, B. R., Stanger, B. Z., Chung, I., Rhim, A. D., & Di Magliano, M. P. (2013). Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer research, 73(20), 6359–6374.CrossRefPubMed Zhang, Y., Yan, W., Collins, M. A., Bednar, F., Rakshit, S., Zetter, B. R., Stanger, B. Z., Chung, I., Rhim, A. D., & Di Magliano, M. P. (2013). Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer research, 73(20), 6359–6374.CrossRefPubMed
32.
go back to reference Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6(5), 447–458.CrossRefPubMed Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6(5), 447–458.CrossRefPubMed
33.
go back to reference Sunaga, N., Imai, H., Shimizu, K., Shames, D. S., Kakegawa, S., Girard, L., Sato, M., Kaira, K., Ishizuka, T., & Gazdar, A. F. (2012). Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. International Journal of Cancer, 130(8), 1733–1744.CrossRefPubMed Sunaga, N., Imai, H., Shimizu, K., Shames, D. S., Kakegawa, S., Girard, L., Sato, M., Kaira, K., Ishizuka, T., & Gazdar, A. F. (2012). Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. International Journal of Cancer, 130(8), 1733–1744.CrossRefPubMed
38.
go back to reference Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C. G., & Koppada, N. (2019). The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217–223.CrossRefPubMed Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C. G., & Koppada, N. (2019). The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217–223.CrossRefPubMed
39.
go back to reference Fakih, M., O'Neil, B., Price, T. J., Falchook, G. S., Desai, J., Kuo, J., Govindan, R., Rasmussen, E., Morrow, P. K. H., & Ngang, J. (2019). Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. American Society of Clinical Oncology. Fakih, M., O'Neil, B., Price, T. J., Falchook, G. S., Desai, J., Kuo, J., Govindan, R., Rasmussen, E., Morrow, P. K. H., & Ngang, J. (2019). Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. American Society of Clinical Oncology.
40.
go back to reference de Langen, A. J., Johnson, M. L., Mazieres, J., Dingemans, A.-M.C., Mountzios, G., Pless, M., Wolf, J., Schuler, M., Lena, H., & Skoulidis, F. (2023). Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. The Lancet, 401(10378), 733–746.CrossRef de Langen, A. J., Johnson, M. L., Mazieres, J., Dingemans, A.-M.C., Mountzios, G., Pless, M., Wolf, J., Schuler, M., Lena, H., & Skoulidis, F. (2023). Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. The Lancet, 401(10378), 733–746.CrossRef
41.
go back to reference Fell, J. B., Fischer, J. P., Baer, B. R., Blake, J. F., Bouhana, K., Briere, D. M., Brown, K. D., Burgess, L. E., Burns, A. C., & Burkard, M. R. (2020). Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. Journal of Medicinal Chemistry, 63(13), 6679–6693.CrossRefPubMed Fell, J. B., Fischer, J. P., Baer, B. R., Blake, J. F., Bouhana, K., Briere, D. M., Brown, K. D., Burgess, L. E., Burns, A. C., & Burkard, M. R. (2020). Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. Journal of Medicinal Chemistry, 63(13), 6679–6693.CrossRefPubMed
42.
go back to reference Jänne, P., Rybkin, I. I., Spira, A., Riely, G., Papadopoulos, K., Sabari, J., Johnson, M., Heist, R., Bazhenova, L., & Barve, M. (2020). KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in advanced/metastatic non–small-cell lung cancer (NSCLC) harboring KRAS G12C mutation. European Journal of Cancer, 138, S1–S2.CrossRef Jänne, P., Rybkin, I. I., Spira, A., Riely, G., Papadopoulos, K., Sabari, J., Johnson, M., Heist, R., Bazhenova, L., & Barve, M. (2020). KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in advanced/metastatic non–small-cell lung cancer (NSCLC) harboring KRAS G12C mutation. European Journal of Cancer, 138, S1–S2.CrossRef
43.
go back to reference Zhang, J., Leventakos, K., Leal, T., Pennell, N., Barve, M., Paulson, A., Bazhenova, L., Johnson, M., Chao, R., & Velastegui, K. (2022). 1133P Additional practice-informing adverse event patterns and management in the KRYSTAL-1 phase II study of adagrasib (MRTX849) in patients with KRASG12C-mutated NSCLC. Annals of Oncology, 33, S1068–S1069.CrossRef Zhang, J., Leventakos, K., Leal, T., Pennell, N., Barve, M., Paulson, A., Bazhenova, L., Johnson, M., Chao, R., & Velastegui, K. (2022). 1133P Additional practice-informing adverse event patterns and management in the KRYSTAL-1 phase II study of adagrasib (MRTX849) in patients with KRASG12C-mutated NSCLC. Annals of Oncology, 33, S1068–S1069.CrossRef
44.
go back to reference Zhang, J., Johnson, M., Barve, M., Bazhenova, L., McCarthy, M., Schwartz, R., Horvath-Walsh, E., Velastegui, K., Qian, C., & Spira, A. (2023). Practical guidance for the management of adverse events in patients with KRASG12C-mutated non-small cell lung cancer receiving adagrasib. The Oncologist, 28(4), 287–296.CrossRefPubMedPubMedCentral Zhang, J., Johnson, M., Barve, M., Bazhenova, L., McCarthy, M., Schwartz, R., Horvath-Walsh, E., Velastegui, K., Qian, C., & Spira, A. (2023). Practical guidance for the management of adverse events in patients with KRASG12C-mutated non-small cell lung cancer receiving adagrasib. The Oncologist, 28(4), 287–296.CrossRefPubMedPubMedCentral
45.
go back to reference Food, U. (2022). Administration, D. FDA grants accelerated approval to adagrasib for KRAS G12C-mutated NSCLC. Food, U. (2022). Administration, D. FDA grants accelerated approval to adagrasib for KRAS G12C-mutated NSCLC.
46.
go back to reference Kwan, A. K., Piazza, G. A., Keeton, A. B., & Leite, C. A. (2022). The path to the clinic: A comprehensive review on direct KRASG12C inhibitors. Journal of Experimental & Clinical Cancer Research, 41(1), 1–23.CrossRef Kwan, A. K., Piazza, G. A., Keeton, A. B., & Leite, C. A. (2022). The path to the clinic: A comprehensive review on direct KRASG12C inhibitors. Journal of Experimental & Clinical Cancer Research, 41(1), 1–23.CrossRef
47.
go back to reference Peng, S.-B., Si, C., Zhang, Y., Van Horn, R. D., Lin, X., Gong, X., Huber, L., Donoho, G., Curtis, C., & Strelow, J. M. (2021). Preclinical characterization of LY3537982, a novel, highly selective and potent KRAS-G12C inhibitor. Cancer Research, 81 (13_Supplement), 1259–1259. Peng, S.-B., Si, C., Zhang, Y., Van Horn, R. D., Lin, X., Gong, X., Huber, L., Donoho, G., Curtis, C., & Strelow, J. M. (2021). Preclinical characterization of LY3537982, a novel, highly selective and potent KRAS-G12C inhibitor. Cancer Research, 81 (13_Supplement), 1259–1259.
48.
go back to reference Murciano-Goroff, Y. R., Heist, R. S., Kuboki, Y., Koyama, T., Ammakkanavar, N. R., Hollebecque, A., Patnaik, A., Shimizu, T., Spira, A. I., & Nagasaka, M. (2023). Abstract CT028: A first-in-human phase 1 study of LY3537982, a highly selective and potent KRAS G12C inhibitor in patients with KRAS G12C-mutant advanced solid tumors. Cancer Research, 83 (8_Supplement), CT028-CT028. Murciano-Goroff, Y. R., Heist, R. S., Kuboki, Y., Koyama, T., Ammakkanavar, N. R., Hollebecque, A., Patnaik, A., Shimizu, T., Spira, A. I., & Nagasaka, M. (2023). Abstract CT028: A first-in-human phase 1 study of LY3537982, a highly selective and potent KRAS G12C inhibitor in patients with KRAS G12C-mutant advanced solid tumors. Cancer Research, 83 (8_Supplement), CT028-CT028.
49.
go back to reference Sacher, A., LoRusso, P., Patel, M. R., Miller, W. H., Jr., Garralda, E., Forster, M. D., Santoro, A., Falcon, A., Kim, T. W., & Paz-Ares, L. (2023). Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. New England Journal of Medicine, 389(8), 710–721.CrossRefPubMed Sacher, A., LoRusso, P., Patel, M. R., Miller, W. H., Jr., Garralda, E., Forster, M. D., Santoro, A., Falcon, A., Kim, T. W., & Paz-Ares, L. (2023). Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. New England Journal of Medicine, 389(8), 710–721.CrossRefPubMed
50.
go back to reference Shi, Z., Weng, J., Fan, X., Wang, E., Zhu, Q., Tao, L., Han, Z., Wang, Z., Niu, H., & Jiang, Y. (2021). Discovery of D-1553, a novel and selective KRas-G12C inhibitor with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models. Cancer Research, 81 (13_Supplement), 932–932. Shi, Z., Weng, J., Fan, X., Wang, E., Zhu, Q., Tao, L., Han, Z., Wang, Z., Niu, H., & Jiang, Y. (2021). Discovery of D-1553, a novel and selective KRas-G12C inhibitor with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models. Cancer Research, 81 (13_Supplement), 932–932.
51.
go back to reference Li, Z., Song, Z., Zhao, Y., Wang, P., Jiang, L., Gong, Y., Zhou, J., Jian, H., Dong, X., & Zhuang, W. (2023). D-1553 (Garsorasib), a potent and selective inhibitor of KRASG12C in patients with NSCLC: Phase 1 study results. Journal of Thoracic Oncology, 18(7), 940–951.CrossRefPubMed Li, Z., Song, Z., Zhao, Y., Wang, P., Jiang, L., Gong, Y., Zhou, J., Jian, H., Dong, X., & Zhuang, W. (2023). D-1553 (Garsorasib), a potent and selective inhibitor of KRASG12C in patients with NSCLC: Phase 1 study results. Journal of Thoracic Oncology, 18(7), 940–951.CrossRefPubMed
52.
go back to reference Sakamoto, K., Kamada, Y., Sameshima, T., Yaguchi, M., Niida, A., Sasaki, S., Miwa, M., Ohkubo, S., Sakamoto, J.-I., & Kamaura, M. (2017). K-Ras (G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochemical and Biophysical Research Communications, 484(3), 605–611.CrossRefPubMed Sakamoto, K., Kamada, Y., Sameshima, T., Yaguchi, M., Niida, A., Sasaki, S., Miwa, M., Ohkubo, S., Sakamoto, J.-I., & Kamaura, M. (2017). K-Ras (G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochemical and Biophysical Research Communications, 484(3), 605–611.CrossRefPubMed
53.
go back to reference Sogabe, S., Kamada, Y., Miwa, M., Niida, A., Sameshima, T., Kamaura, M., Yonemori, K., Sasaki, S., Sakamoto, J.-I., & Sakamoto, K. (2017). Crystal structure of a human K-Ras G12D mutant in complex with GDP and the cyclic inhibitory peptide KRpep-2d. ACS medicinal Chemistry Letters, 8(7), 732–736.CrossRefPubMedPubMedCentral Sogabe, S., Kamada, Y., Miwa, M., Niida, A., Sameshima, T., Kamaura, M., Yonemori, K., Sasaki, S., Sakamoto, J.-I., & Sakamoto, K. (2017). Crystal structure of a human K-Ras G12D mutant in complex with GDP and the cyclic inhibitory peptide KRpep-2d. ACS medicinal Chemistry Letters, 8(7), 732–736.CrossRefPubMedPubMedCentral
55.
go back to reference Hallin, J., Bowcut, V., Calinisan, A., Briere, D. M., Hargis, L., Engstrom, L. D., Laguer, J., Medwid, J., Vanderpool, D., & Lifset, E. (2022). Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nature Medicine, 28(10), 2171–2182.CrossRefPubMed Hallin, J., Bowcut, V., Calinisan, A., Briere, D. M., Hargis, L., Engstrom, L. D., Laguer, J., Medwid, J., Vanderpool, D., & Lifset, E. (2022). Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nature Medicine, 28(10), 2171–2182.CrossRefPubMed
56.
60.
go back to reference Karimi, M., Ghasemi, A., Zangabad, P. S., Rahighi, R., Basri, S. M. M., Mirshekari, H., Amiri, M., Pishabad, Z. S., Aslani, A., & Bozorgomid, M. (2016). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 45(5), 1457–1501.CrossRefPubMedPubMedCentral Karimi, M., Ghasemi, A., Zangabad, P. S., Rahighi, R., Basri, S. M. M., Mirshekari, H., Amiri, M., Pishabad, Z. S., Aslani, A., & Bozorgomid, M. (2016). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 45(5), 1457–1501.CrossRefPubMedPubMedCentral
65.
go back to reference Bangham, A. D., Standish, M. M., & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 13 (1), 238-IN227. Bangham, A. D., Standish, M. M., & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 13 (1), 238-IN227.
66.
go back to reference Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug discovery, 4(2), 145–160.CrossRefPubMed Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug discovery, 4(2), 145–160.CrossRefPubMed
68.
go back to reference Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297.PubMedPubMedCentral Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297.PubMedPubMedCentral
69.
go back to reference Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., Murphy-Benenato, K. E., Mihai, C., Almarsson, O. r., & Sahay, G. (2017). Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Letters, 17 (9), 5711–5718. Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., Murphy-Benenato, K. E., Mihai, C., Almarsson, O. r., & Sahay, G. (2017). Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Letters, 17 (9), 5711–5718.
70.
go back to reference Zhen, S., Qiang, R., Lu, J., Tuo, X., Yang, X., & Li, X. (2023). CRISPR/Cas9-HPV-liposome enhances antitumor immunity and treatment of HPV infection-associated cervical cancer. Journal of Medical Virology, 95(1), e28144.CrossRefPubMed Zhen, S., Qiang, R., Lu, J., Tuo, X., Yang, X., & Li, X. (2023). CRISPR/Cas9-HPV-liposome enhances antitumor immunity and treatment of HPV infection-associated cervical cancer. Journal of Medical Virology, 95(1), e28144.CrossRefPubMed
71.
go back to reference del Pozo-Rodriguez, A., Solinís, M. Á., & Rodríguez-Gascón, A. (2016). Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 109, 184–193.CrossRefPubMed del Pozo-Rodriguez, A., Solinís, M. Á., & Rodríguez-Gascón, A. (2016). Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 109, 184–193.CrossRefPubMed
72.
go back to reference Puri, A., Loomis, K., Smith, B., Lee, J.-H., Yavlovich, A., & Heldman, E. (2009). Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26 (6). Puri, A., Loomis, K., Smith, B., Lee, J.-H., Yavlovich, A., & Heldman, E. (2009). Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26 (6).
73.
go back to reference Duan, Y., Dhar, A., Patel, C., Khimani, M., Neogi, S., Sharma, P., Kumar, N. S., & Vekariya, R. L. (2020). A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 10(45), 26777–26791.CrossRefPubMedPubMedCentral Duan, Y., Dhar, A., Patel, C., Khimani, M., Neogi, S., Sharma, P., Kumar, N. S., & Vekariya, R. L. (2020). A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 10(45), 26777–26791.CrossRefPubMedPubMedCentral
74.
go back to reference Swathi, G., Prasanthi, N., Manikiran, S., & Ramarao, N. (2012). Solid lipid nanoparticles: colloidal carrier systems for drug delivery. ChemInform, 43 (2), no. Swathi, G., Prasanthi, N., Manikiran, S., & Ramarao, N. (2012). Solid lipid nanoparticles: colloidal carrier systems for drug delivery. ChemInform, 43 (2), no.
75.
go back to reference Oner, E., Kotmakci, M., Baird, A.-M., Gray, S. G., Debelec Butuner, B., Bozkurt, E., Kantarci, A. G., & Finn, S. P. (2021). Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. Journal of Nanobiotechnology, 19(1), 1–20.CrossRef Oner, E., Kotmakci, M., Baird, A.-M., Gray, S. G., Debelec Butuner, B., Bozkurt, E., Kantarci, A. G., & Finn, S. P. (2021). Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. Journal of Nanobiotechnology, 19(1), 1–20.CrossRef
76.
go back to reference Geszke-Moritz, M., & Moritz, M. (2016). Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering: C, 68, 982–994.CrossRefPubMed Geszke-Moritz, M., & Moritz, M. (2016). Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering: C, 68, 982–994.CrossRefPubMed
77.
go back to reference Araujo, V. H. S., Delello Di Filippo, L., Duarte, J. L., Sposito, L., Camargo, B. A. F. d., da Silva, P. B., & Chorilli, M. (2021). Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Critical reviews in Microbiology, 47 (1), 79–90. Araujo, V. H. S., Delello Di Filippo, L., Duarte, J. L., Sposito, L., Camargo, B. A. F. d., da Silva, P. B., & Chorilli, M. (2021). Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Critical reviews in Microbiology, 47 (1), 79–90.
78.
go back to reference Hao, J., Wang, F., Wang, X., Zhang, D., Bi, Y., Gao, Y., Zhao, X., & Zhang, Q. (2012). Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. European Journal of Pharmaceutical Sciences, 47(2), 497–505.CrossRefPubMed Hao, J., Wang, F., Wang, X., Zhang, D., Bi, Y., Gao, Y., Zhao, X., & Zhang, Q. (2012). Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. European Journal of Pharmaceutical Sciences, 47(2), 497–505.CrossRefPubMed
79.
go back to reference Zhang, L., Chan, J. M., Gu, F. X., Rhee, J.-W., Wang, A. Z., Radovic-Moreno, A. F., Alexis, F., Langer, R., & Farokhzad, O. C. (2008). Self-assembled lipid− polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano, 2(8), 1696–1702.CrossRefPubMedPubMedCentral Zhang, L., Chan, J. M., Gu, F. X., Rhee, J.-W., Wang, A. Z., Radovic-Moreno, A. F., Alexis, F., Langer, R., & Farokhzad, O. C. (2008). Self-assembled lipid− polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano, 2(8), 1696–1702.CrossRefPubMedPubMedCentral
80.
go back to reference Hadinoto, K., Sundaresan, A., & Cheow, W. S. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 427–443.CrossRefPubMed Hadinoto, K., Sundaresan, A., & Cheow, W. S. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 427–443.CrossRefPubMed
81.
go back to reference Colombo, S., Cun, D., Remaut, K., Bunker, M., Zhang, J., Martin-Bertelsen, B., Yaghmur, A., Braeckmans, K., Nielsen, H. M., & Foged, C. (2015). Mechanistic profiling of the siRNA delivery dynamics of lipid–polymer hybrid nanoparticles. Journal of Controlled Release, 201, 22–31.CrossRefPubMed Colombo, S., Cun, D., Remaut, K., Bunker, M., Zhang, J., Martin-Bertelsen, B., Yaghmur, A., Braeckmans, K., Nielsen, H. M., & Foged, C. (2015). Mechanistic profiling of the siRNA delivery dynamics of lipid–polymer hybrid nanoparticles. Journal of Controlled Release, 201, 22–31.CrossRefPubMed
82.
go back to reference Li, Z., Zhang, X. Q., Ho, W., Bai, X., Jaijyan, D. K., Li, F., Kumar, R., Kolloli, A., Subbian, S., & Zhu, H. (2022). Lipid-polymer hybrid “particle-in-particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Advanced Functional Materials, 32(40), 2204462.CrossRefPubMedPubMedCentral Li, Z., Zhang, X. Q., Ho, W., Bai, X., Jaijyan, D. K., Li, F., Kumar, R., Kolloli, A., Subbian, S., & Zhu, H. (2022). Lipid-polymer hybrid “particle-in-particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Advanced Functional Materials, 32(40), 2204462.CrossRefPubMedPubMedCentral
83.
go back to reference Zheng, X., Luo, J., Liu, W., Ashby Jr, C. R., Chen, Z.-S., & Lin, L. (2022). Sotorasib: A treatment for non-small cell lung cancer with the KRAS G12C mutation. Drugs of Today (Barcelona, Spain: 1998), 58 (4), 175–185. Zheng, X., Luo, J., Liu, W., Ashby Jr, C. R., Chen, Z.-S., & Lin, L. (2022). Sotorasib: A treatment for non-small cell lung cancer with the KRAS G12C mutation. Drugs of Today (Barcelona, Spain: 1998), 58 (4), 175–185.
93.
go back to reference Varghese, A. M., Ang, C., Dimaio, C. J., Javle, M. M., Gutierrez, M., Yarom, N., Stemmer, S. M., Golan, T., Geva, R., Semenisty, V., et al. (2020). A phase II study of siG12D-LODER in combination with chemotherapy in patients with locally advanced pancreatic cancer (PROTACT). Journal of Clinical Oncology, 38 (15_suppl), TPS4672-TPS4672. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS4672. Varghese, A. M., Ang, C., Dimaio, C. J., Javle, M. M., Gutierrez, M., Yarom, N., Stemmer, S. M., Golan, T., Geva, R., Semenisty, V., et al. (2020). A phase II study of siG12D-LODER in combination with chemotherapy in patients with locally advanced pancreatic cancer (PROTACT). Journal of Clinical Oncology, 38 (15_suppl), TPS4672-TPS4672. https://​doi.​org/​10.​1200/​JCO.​2020.​38.​15_​suppl.​TPS4672.
99.
go back to reference Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259–269.CrossRefPubMed Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259–269.CrossRefPubMed
100.
go back to reference Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., & Negrini, M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9), 2999–3004.CrossRef Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., & Negrini, M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9), 2999–3004.CrossRef
102.
go back to reference Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9), 2999–3004. https://doi.org/10.1073/pnas.0307323101FromNLMCrossRef Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9), 2999–3004. https://​doi.​org/​10.​1073/​pnas.​0307323101FromNL​MCrossRef
114.
go back to reference Rosenblum, D., Gutkin, A., Kedmi, R., Ramishetti, S., Veiga, N., Jacobi, A. M., Schubert, M. S., Friedmann-Morvinski, D., Cohen, Z. R., Behlke, M. A.. et al. (2020). CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 6 (47), eabc9450. https://doi.org/10.1126/sciadv.abc9450. Rosenblum, D., Gutkin, A., Kedmi, R., Ramishetti, S., Veiga, N., Jacobi, A. M., Schubert, M. S., Friedmann-Morvinski, D., Cohen, Z. R., Behlke, M. A.. et al. (2020). CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 6 (47), eabc9450. https://​doi.​org/​10.​1126/​sciadv.​abc9450.
116.
go back to reference Hong, D. S., Fakih, M. G., Strickler, J. H., Desai, J., Durm, G. A., Shapiro, G. I., Falchook, G. S., Price, T. J., Sacher, A., & Denlinger, C. S. (2020). KRASG12C inhibition with sotorasib in advanced solid tumors. New England Journal of Medicine, 383(13), 1207–1217.CrossRefPubMed Hong, D. S., Fakih, M. G., Strickler, J. H., Desai, J., Durm, G. A., Shapiro, G. I., Falchook, G. S., Price, T. J., Sacher, A., & Denlinger, C. S. (2020). KRASG12C inhibition with sotorasib in advanced solid tumors. New England Journal of Medicine, 383(13), 1207–1217.CrossRefPubMed
117.
go back to reference Skoulidis, F., Li, B. T., Dy, G. K., Price, T. J., Falchook, G. S., Wolf, J., Italiano, A., Schuler, M., Borghaei, H., & Barlesi, F. (2021). Sotorasib for lung cancers with KRAS p. G12C mutation. New England Journal of Medicine, 384 (25), 2371–2381. Skoulidis, F., Li, B. T., Dy, G. K., Price, T. J., Falchook, G. S., Wolf, J., Italiano, A., Schuler, M., Borghaei, H., & Barlesi, F. (2021). Sotorasib for lung cancers with KRAS p. G12C mutation. New England Journal of Medicine, 384 (25), 2371–2381.
118.
go back to reference Seviour, E. G., Sehgal, V., Mishra, D., Rupaimoole, R., Rodriguez-Aguayo, C., Lopez-Berestein, G., Lee, J. S., Sood, A. K., Kim, M. P., Mills, G. B., et al. (2017). Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis In vivo by clinically significant miR-193a-3p. Oncogene, 36(10), 1339–1350. https://doi.org/10.1038/onc.2016.308CrossRefPubMed Seviour, E. G., Sehgal, V., Mishra, D., Rupaimoole, R., Rodriguez-Aguayo, C., Lopez-Berestein, G., Lee, J. S., Sood, A. K., Kim, M. P., Mills, G. B., et al. (2017). Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis In vivo by clinically significant miR-193a-3p. Oncogene, 36(10), 1339–1350. https://​doi.​org/​10.​1038/​onc.​2016.​308CrossRefPubMed
124.
go back to reference Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844.CrossRefPubMed Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844.CrossRefPubMed
127.
go back to reference Geurts, M. H., de Poel, E., Pleguezuelos-Manzano, C., Oka, R., Carrillo, L. Andersson-Rolf, A., Boretto, M., Brunsveld, J. E., van Boxtel, R., Beekman, J. M., et al. (2021). Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance, 4 (10). https://doi.org/10.26508/lsa.202000940. Geurts, M. H., de Poel, E., Pleguezuelos-Manzano, C., Oka, R., Carrillo, L. Andersson-Rolf, A., Boretto, M., Brunsveld, J. E., van Boxtel, R., Beekman, J. M., et al. (2021). Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance, 4 (10). https://​doi.​org/​10.​26508/​lsa.​202000940.
Metadata
Title
Advancements in gene therapies targeting mutant KRAS in cancers
Authors
Yuhang Wang
Thuy Anh Bui
Xinpu Yang
Gyorgy Hutvagner
Wei Deng
Publication date
01-03-2025
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2025
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-025-10243-9

ASH 2024 Annual Meeting Coverage

inMIND supports tafasitamab addition in follicular lymphoma

Combining tafasitamab with lenalidomide and rituximab significantly improves progression-free survival for patients with relapsed or refractory follicular lymphoma.

Featuring the official presentation video

Read more
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now