Skip to main content
Top
Published in:

Open Access 01-12-2024 | Review

Ferroptosis and the tumor microenvironment

Authors: Kaisa Cui, Kang Wang, Zhaohui Huang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Literature
1.
go back to reference Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer. 2024;24(5):299–315.PubMedCrossRef Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer. 2024;24(5):299–315.PubMedCrossRef
2.
go back to reference Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22(1):58–73.PubMedCrossRef Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22(1):58–73.PubMedCrossRef
4.
6.
go back to reference Xie X, Chen C, Wang C, et al. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol. 2024;76:103350.PubMedPubMedCentralCrossRef Xie X, Chen C, Wang C, et al. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol. 2024;76:103350.PubMedPubMedCentralCrossRef
8.
go back to reference Yin Y, Liu B, Cao Y, et al. Colorectal Cancer-derived small extracellular vesicles promote Tumor Immune Evasion by upregulating PD-L1 expression in Tumor-Associated macrophages. Adv Sci (Weinh). 2022;9(9):2102620.PubMedCrossRef Yin Y, Liu B, Cao Y, et al. Colorectal Cancer-derived small extracellular vesicles promote Tumor Immune Evasion by upregulating PD-L1 expression in Tumor-Associated macrophages. Adv Sci (Weinh). 2022;9(9):2102620.PubMedCrossRef
9.
go back to reference Raposo G, Stahl PD. Extracellular vesicles - on the cusp of a new language in the biological sciences. Extracell Vesicles Circ Nucl Acids. 2023;4(2):240–54.PubMedPubMedCentralCrossRef Raposo G, Stahl PD. Extracellular vesicles - on the cusp of a new language in the biological sciences. Extracell Vesicles Circ Nucl Acids. 2023;4(2):240–54.PubMedPubMedCentralCrossRef
10.
go back to reference Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. Extracell Vesicles Circ Nucl Acids. 2023;4(3):461–85.PubMedPubMedCentralCrossRef Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. Extracell Vesicles Circ Nucl Acids. 2023;4(3):461–85.PubMedPubMedCentralCrossRef
11.
go back to reference Cao M. The extracellular RNA and drug resistance in cancer: a narrative review. Rev ExRNA. 2023;5(1):0003. Cao M. The extracellular RNA and drug resistance in cancer: a narrative review. Rev ExRNA. 2023;5(1):0003.
12.
go back to reference Fakih M, Ouyang C, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest. 2019;129(10):4464–76.PubMedPubMedCentralCrossRef Fakih M, Ouyang C, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest. 2019;129(10):4464–76.PubMedPubMedCentralCrossRef
13.
14.
go back to reference Cui K, Yao S, Zhang H, et al. Identification of an immune overdrive high-risk subpopulation with aberrant expression of FOXP3 and CTLA4 in colorectal cancer. Oncogene. 2021;40(11):2130–45.PubMedCrossRef Cui K, Yao S, Zhang H, et al. Identification of an immune overdrive high-risk subpopulation with aberrant expression of FOXP3 and CTLA4 in colorectal cancer. Oncogene. 2021;40(11):2130–45.PubMedCrossRef
15.
go back to reference Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentralCrossRef Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentralCrossRef
16.
go back to reference Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.PubMedCrossRef Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.PubMedCrossRef
17.
go back to reference Abe C, Miyazawa T, Miyazawa T. Current use of Fenton reaction in drugs and food. Molecules. 2022;27(17). Abe C, Miyazawa T, Miyazawa T. Current use of Fenton reaction in drugs and food. Molecules. 2022;27(17).
18.
19.
go back to reference Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 2023;33(12):1062–76.PubMedCrossRef Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 2023;33(12):1062–76.PubMedCrossRef
20.
go back to reference Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570–631.PubMedCrossRef Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570–631.PubMedCrossRef
22.
23.
go back to reference Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine meets Fenton Chemistry. Chem Rev. 2021;121(4):1981–2019.PubMedCrossRef Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine meets Fenton Chemistry. Chem Rev. 2021;121(4):1981–2019.PubMedCrossRef
24.
go back to reference Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef
25.
go back to reference Wang K, Zhang Z, Tsai HI, et al. Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ. 2021;28(4):1222–36.PubMedCrossRef Wang K, Zhang Z, Tsai HI, et al. Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ. 2021;28(4):1222–36.PubMedCrossRef
26.
go back to reference Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982;710(2):197–211.PubMedCrossRef Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982;710(2):197–211.PubMedCrossRef
28.
29.
go back to reference Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef
31.
go back to reference Yang C, Zhao Y, Wang L, et al. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 2023;25(6):836–47.PubMedCrossRef Yang C, Zhao Y, Wang L, et al. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 2023;25(6):836–47.PubMedCrossRef
32.
go back to reference Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023;41(3):404–20.PubMedCrossRef Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023;41(3):404–20.PubMedCrossRef
33.
go back to reference Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.PubMedCrossRef Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.PubMedCrossRef
34.
go back to reference Adamo A, Dal Collo G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871(1):192–8.PubMedCrossRef Adamo A, Dal Collo G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871(1):192–8.PubMedCrossRef
35.
go back to reference Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 2023;114(1):16–24.PubMedCrossRef Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 2023;114(1):16–24.PubMedCrossRef
37.
go back to reference Foster DS, Januszyk M, Delitto D, et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 2022;40(11):1392–406. e7.PubMedPubMedCentralCrossRef Foster DS, Januszyk M, Delitto D, et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 2022;40(11):1392–406. e7.PubMedPubMedCentralCrossRef
38.
go back to reference Liu F, Tang L, Liu H, et al. Cancer-associated fibroblasts secrete FGF5 to inhibit ferroptosis to decrease cisplatin sensitivity in nasopharyngeal carcinoma through binding to FGFR2. Cell Death Dis. 2024;15(4):279.PubMedPubMedCentralCrossRef Liu F, Tang L, Liu H, et al. Cancer-associated fibroblasts secrete FGF5 to inhibit ferroptosis to decrease cisplatin sensitivity in nasopharyngeal carcinoma through binding to FGFR2. Cell Death Dis. 2024;15(4):279.PubMedPubMedCentralCrossRef
39.
go back to reference Zhu Y, Fang S, Fan B, et al. Cancer-associated fibroblasts reprogram cysteine metabolism to increase tumor resistance to ferroptosis in pancreatic cancer. Theranostics. 2024;14(4):1683–700.PubMedPubMedCentralCrossRef Zhu Y, Fang S, Fan B, et al. Cancer-associated fibroblasts reprogram cysteine metabolism to increase tumor resistance to ferroptosis in pancreatic cancer. Theranostics. 2024;14(4):1683–700.PubMedPubMedCentralCrossRef
40.
go back to reference Jiang F, Jia K, Chen Y, et al. ANO1-Mediated inhibition of Cancer Ferroptosis confers immunotherapeutic resistance through recruiting Cancer-Associated fibroblasts. Adv Sci (Weinh). 2023;10(24):e2300881.PubMedCrossRef Jiang F, Jia K, Chen Y, et al. ANO1-Mediated inhibition of Cancer Ferroptosis confers immunotherapeutic resistance through recruiting Cancer-Associated fibroblasts. Adv Sci (Weinh). 2023;10(24):e2300881.PubMedCrossRef
41.
go back to reference van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
42.
go back to reference Ana Luísa Teixeira FD. Extracellular vesicles from cancer cells are key players of metastatic cell phenotype induction. ExRNA. 2023;2(2):0004. Ana Luísa Teixeira FD. Extracellular vesicles from cancer cells are key players of metastatic cell phenotype induction. ExRNA. 2023;2(2):0004.
43.
go back to reference Qi R, Bai Y, Li K, et al. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 2023;68:100960.PubMedCrossRef Qi R, Bai Y, Li K, et al. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 2023;68:100960.PubMedCrossRef
44.
go back to reference Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43.PubMedPubMedCentralCrossRef Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43.PubMedPubMedCentralCrossRef
45.
go back to reference Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted Mir-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 2024. Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted Mir-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 2024.
46.
go back to reference Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol. 2023;23(2):106–20.PubMedCrossRef Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol. 2023;23(2):106–20.PubMedCrossRef
49.
go back to reference Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19(6):402–21.PubMedCrossRef Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19(6):402–21.PubMedCrossRef
50.
go back to reference Wang H, An P, Xie E, et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 2017;66(2):449–65.PubMedCrossRef Wang H, An P, Xie E, et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 2017;66(2):449–65.PubMedCrossRef
51.
go back to reference Luo X, Gong HB, Gao HY, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef Luo X, Gong HB, Gao HY, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef
52.
go back to reference Luo X, Gong HB, Li ZC, et al. Phospholipid peroxidation in macrophage confers tumor resistance by suppressing phagocytic capability towards ferroptotic cells. Cell Death Differ. 2024;31(9):1184–201.PubMedCrossRef Luo X, Gong HB, Li ZC, et al. Phospholipid peroxidation in macrophage confers tumor resistance by suppressing phagocytic capability towards ferroptotic cells. Cell Death Differ. 2024;31(9):1184–201.PubMedCrossRef
53.
go back to reference Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–83.PubMedCrossRef Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–83.PubMedCrossRef
54.
go back to reference Wan C, Sun Y, Tian Y, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13):eaay9789.PubMedPubMedCentralCrossRef Wan C, Sun Y, Tian Y, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13):eaay9789.PubMedPubMedCentralCrossRef
55.
go back to reference Chen P, Wang D, Xiao T, et al. ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol. 2023;122:110629.PubMedCrossRef Chen P, Wang D, Xiao T, et al. ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol. 2023;122:110629.PubMedCrossRef
56.
go back to reference Xiong H, Zhai Y, Meng Y, et al. Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization. Cancer Lett. 2024;587:216732.PubMedCrossRef Xiong H, Zhai Y, Meng Y, et al. Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization. Cancer Lett. 2024;587:216732.PubMedCrossRef
57.
go back to reference Hao X, Zheng Z, Liu H, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 2022;56:102463.PubMedPubMedCentralCrossRef Hao X, Zheng Z, Liu H, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 2022;56:102463.PubMedPubMedCentralCrossRef
58.
go back to reference Li LG, Peng XC, Yu TT, et al. Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Front Pharmacol. 2022;13:949835.PubMedPubMedCentralCrossRef Li LG, Peng XC, Yu TT, et al. Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Front Pharmacol. 2022;13:949835.PubMedPubMedCentralCrossRef
59.
go back to reference Tang B, Wang Y, Xu W, et al. Macrophage xCT deficiency drives immune activation and boosts responses to immune checkpoint blockade in lung cancer. Cancer Lett. 2023;554:216021.PubMedCrossRef Tang B, Wang Y, Xu W, et al. Macrophage xCT deficiency drives immune activation and boosts responses to immune checkpoint blockade in lung cancer. Cancer Lett. 2023;554:216021.PubMedCrossRef
60.
go back to reference Tang B, Zhu J, Wang Y, et al. Targeted xCT-mediated ferroptosis and Protumoral polarization of Macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci (Weinh). 2023;10(2):e2203973.PubMedCrossRef Tang B, Zhu J, Wang Y, et al. Targeted xCT-mediated ferroptosis and Protumoral polarization of Macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci (Weinh). 2023;10(2):e2203973.PubMedCrossRef
61.
go back to reference Mu M, Huang CX, Qu C, et al. Targeting Ferroptosis-Elicited Inflammation Suppresses Hepatocellular Carcinoma Metastasis and enhances Sorafenib Efficacy. Cancer Res. 2024;84(6):841–54.PubMedCrossRef Mu M, Huang CX, Qu C, et al. Targeting Ferroptosis-Elicited Inflammation Suppresses Hepatocellular Carcinoma Metastasis and enhances Sorafenib Efficacy. Cancer Res. 2024;84(6):841–54.PubMedCrossRef
62.
go back to reference Su W, Gao W, Zhang R, et al. TAK1 deficiency promotes liver injury and tumorigenesis via ferroptosis and macrophage cGAS-STING signalling. JHEP Rep. 2023;5(5):100695.PubMedPubMedCentralCrossRef Su W, Gao W, Zhang R, et al. TAK1 deficiency promotes liver injury and tumorigenesis via ferroptosis and macrophage cGAS-STING signalling. JHEP Rep. 2023;5(5):100695.PubMedPubMedCentralCrossRef
63.
go back to reference Li H, Yang C, Wei Y, et al. Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics. 2023;13(11):3794–813.PubMedPubMedCentralCrossRef Li H, Yang C, Wei Y, et al. Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics. 2023;13(11):3794–813.PubMedPubMedCentralCrossRef
64.
go back to reference Cang W, Wu A, Gu L, et al. Erastin enhances metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization through STAT3/IL-8 axis. Int Immunopharmacol. 2022;113(Pt B):109422.PubMedCrossRef Cang W, Wu A, Gu L, et al. Erastin enhances metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization through STAT3/IL-8 axis. Int Immunopharmacol. 2022;113(Pt B):109422.PubMedCrossRef
65.
go back to reference Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15(1):2.PubMedPubMedCentralCrossRef Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15(1):2.PubMedPubMedCentralCrossRef
66.
go back to reference Ma L, Chen C, Zhao C, et al. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct Target Ther. 2024;9(1):64.PubMedPubMedCentralCrossRef Ma L, Chen C, Zhao C, et al. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct Target Ther. 2024;9(1):64.PubMedPubMedCentralCrossRef
67.
go back to reference Schwantes A, Wickert A, Becker S, et al. Tumor associated macrophages transfer ceruloplasmin mRNA to fibrosarcoma cells and protect them from ferroptosis. Redox Biol. 2024;71:103093.PubMedPubMedCentralCrossRef Schwantes A, Wickert A, Becker S, et al. Tumor associated macrophages transfer ceruloplasmin mRNA to fibrosarcoma cells and protect them from ferroptosis. Redox Biol. 2024;71:103093.PubMedPubMedCentralCrossRef
68.
go back to reference Luo Y, Chen Y, Jin H, et al. The suppression of cervical cancer ferroptosis by macrophages: the attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharm Sin B. 2023;13(6):2645–62.PubMedPubMedCentralCrossRef Luo Y, Chen Y, Jin H, et al. The suppression of cervical cancer ferroptosis by macrophages: the attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharm Sin B. 2023;13(6):2645–62.PubMedPubMedCentralCrossRef
69.
go back to reference Xu L, Li W, Liu D, et al. ANXA3-Rich Exosomes Derived from Tumor-Associated macrophages regulate ferroptosis and lymphatic metastasis of laryngeal squamous cell carcinoma. Cancer Immunol Res. 2024;12(5):614–30.PubMedCrossRef Xu L, Li W, Liu D, et al. ANXA3-Rich Exosomes Derived from Tumor-Associated macrophages regulate ferroptosis and lymphatic metastasis of laryngeal squamous cell carcinoma. Cancer Immunol Res. 2024;12(5):614–30.PubMedCrossRef
70.
go back to reference Yi C, Wu S, Duan Q, et al. Ferroptosis-dependent breast cancer cell-derived exosomes inhibit migration and invasion of breast cancer cells by suppressing M2 macrophage polarization. PeerJ. 2023;11:e15060.PubMedPubMedCentralCrossRef Yi C, Wu S, Duan Q, et al. Ferroptosis-dependent breast cancer cell-derived exosomes inhibit migration and invasion of breast cancer cells by suppressing M2 macrophage polarization. PeerJ. 2023;11:e15060.PubMedPubMedCentralCrossRef
71.
go back to reference Dai E, Han L, Liu J, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16(11):2069–83.PubMedPubMedCentralCrossRef Dai E, Han L, Liu J, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16(11):2069–83.PubMedPubMedCentralCrossRef
72.
go back to reference Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2022;22(3):173–87.PubMedCrossRef Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2022;22(3):173–87.PubMedCrossRef
73.
go back to reference Knaapen AM, Seiler F, Schilderman PA, et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med. 1999;27(1–2):234–40.PubMedCrossRef Knaapen AM, Seiler F, Schilderman PA, et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med. 1999;27(1–2):234–40.PubMedCrossRef
74.
go back to reference Lu Z, Wang X, Feng J, et al. Intratumoral CXCR4(hi) neutrophils display ferroptotic and immunosuppressive signatures in hepatoblastoma. Front Immunol. 2024;15:1363454.PubMedPubMedCentralCrossRef Lu Z, Wang X, Feng J, et al. Intratumoral CXCR4(hi) neutrophils display ferroptotic and immunosuppressive signatures in hepatoblastoma. Front Immunol. 2024;15:1363454.PubMedPubMedCentralCrossRef
75.
go back to reference Zhao Y, Liu Z, Liu G, et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 2023;35(10):1688–703. e10.PubMedPubMedCentralCrossRef Zhao Y, Liu Z, Liu G, et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 2023;35(10):1688–703. e10.PubMedPubMedCentralCrossRef
76.
go back to reference Wang D, Li X, Jiao D, et al. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol. 2023;16(1):30.PubMedPubMedCentralCrossRef Wang D, Li X, Jiao D, et al. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol. 2023;16(1):30.PubMedPubMedCentralCrossRef
77.
78.
79.
go back to reference Conche C, Finkelmeier F, Pesic M, et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. 2023;72(9):1774–82.PubMedCrossRef Conche C, Finkelmeier F, Pesic M, et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. 2023;72(9):1774–82.PubMedCrossRef
81.
go back to reference van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.PubMedPubMedCentralCrossRef van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.PubMedPubMedCentralCrossRef
82.
go back to reference Xiao L, Ma X, Ye L et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J Clin Invest. 2022;132(7). Xiao L, Ma X, Ye L et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J Clin Invest. 2022;132(7).
83.
go back to reference Ivashkiv LB. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–58.PubMedPubMedCentralCrossRef Ivashkiv LB. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–58.PubMedPubMedCentralCrossRef
84.
go back to reference Li C, Phoon YP, Karlinsey K et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J Exp Med. 2022;219(1). Li C, Phoon YP, Karlinsey K et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J Exp Med. 2022;219(1).
85.
go back to reference Gao Y, Shi H, Zhao H, et al. Single-cell transcriptomics identify TNFRSF1B as a novel T-cell exhaustion marker for ovarian cancer. Clin Transl Med. 2023;13(9):e1416.PubMedPubMedCentralCrossRef Gao Y, Shi H, Zhao H, et al. Single-cell transcriptomics identify TNFRSF1B as a novel T-cell exhaustion marker for ovarian cancer. Clin Transl Med. 2023;13(9):e1416.PubMedPubMedCentralCrossRef
86.
go back to reference Lee YH, Chuah S, Nguyen PHD, et al. IFNgamma(-)IL-17(+) CD8 T cells contribute to immunosuppression and tumor progression in human hepatocellular carcinoma. Cancer Lett. 2023;552:215977.PubMedCrossRef Lee YH, Chuah S, Nguyen PHD, et al. IFNgamma(-)IL-17(+) CD8 T cells contribute to immunosuppression and tumor progression in human hepatocellular carcinoma. Cancer Lett. 2023;552:215977.PubMedCrossRef
88.
go back to reference Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001–e10125.PubMedPubMedCentralCrossRef Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001–e10125.PubMedPubMedCentralCrossRef
89.
go back to reference St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in Antitumor Immunity. Trends Cell Biol. 2020;30(9):695–704.PubMedCrossRef St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in Antitumor Immunity. Trends Cell Biol. 2020;30(9):695–704.PubMedCrossRef
90.
go back to reference Lu Y, Hong B, Li H, et al. Tumor-specific IL-9-producing CD8 + Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A. 2014;111(6):2265–70.PubMedPubMedCentralCrossRef Lu Y, Hong B, Li H, et al. Tumor-specific IL-9-producing CD8 + Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A. 2014;111(6):2265–70.PubMedPubMedCentralCrossRef
91.
go back to reference Ma X, Bi E, Huang C, et al. Cholesterol negatively regulates IL-9-producing CD8(+) T cell differentiation and antitumor activity. J Exp Med. 2018;215(6):1555–69.PubMedPubMedCentralCrossRef Ma X, Bi E, Huang C, et al. Cholesterol negatively regulates IL-9-producing CD8(+) T cell differentiation and antitumor activity. J Exp Med. 2018;215(6):1555–69.PubMedPubMedCentralCrossRef
92.
go back to reference Li S, Ouyang X, Sun H, et al. DEPDC5 protects CD8(+) T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Cell Discov. 2024;10(1):53.PubMedPubMedCentralCrossRef Li S, Ouyang X, Sun H, et al. DEPDC5 protects CD8(+) T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Cell Discov. 2024;10(1):53.PubMedPubMedCentralCrossRef
93.
go back to reference Morotti M, Grimm AJ, Hope HC, et al. PGE(2) inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature. 2024;629(8011):426–34.PubMedPubMedCentralCrossRef Morotti M, Grimm AJ, Hope HC, et al. PGE(2) inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature. 2024;629(8011):426–34.PubMedPubMedCentralCrossRef
94.
go back to reference Han C, Ge M, Xing P, et al. Cystine deprivation triggers CD36-mediated ferroptosis and dysfunction of tumor infiltrating CD8(+) T cells. Cell Death Dis. 2024;15(2):145.PubMedPubMedCentralCrossRef Han C, Ge M, Xing P, et al. Cystine deprivation triggers CD36-mediated ferroptosis and dysfunction of tumor infiltrating CD8(+) T cells. Cell Death Dis. 2024;15(2):145.PubMedPubMedCentralCrossRef
96.
go back to reference Lang X, Green MD, Wang W, et al. Radiotherapy and Immunotherapy Promote Tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef Lang X, Green MD, Wang W, et al. Radiotherapy and Immunotherapy Promote Tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef
97.
go back to reference Liao P, Wang W, Wang W, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–78. e6.PubMedPubMedCentralCrossRef Liao P, Wang W, Wang W, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–78. e6.PubMedPubMedCentralCrossRef
98.
go back to reference Li Y, Hu G, Huang F, et al. MAT1A suppression by the CTBP1/HDAC1/HDAC2 Transcriptional Complex Induces Immune Escape and reduces ferroptosis in Hepatocellular Carcinoma. Lab Invest. 2023;103(8):100180.PubMedCrossRef Li Y, Hu G, Huang F, et al. MAT1A suppression by the CTBP1/HDAC1/HDAC2 Transcriptional Complex Induces Immune Escape and reduces ferroptosis in Hepatocellular Carcinoma. Lab Invest. 2023;103(8):100180.PubMedCrossRef
99.
go back to reference Raffin C, Vo LT, Bluestone JA. T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20(3):158–72.PubMedCrossRef Raffin C, Vo LT, Bluestone JA. T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20(3):158–72.PubMedCrossRef
100.
go back to reference Xu C, Sun S, Johnson T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35(11):109235.PubMedCrossRef Xu C, Sun S, Johnson T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35(11):109235.PubMedCrossRef
101.
go back to reference Jin D, Hui Y, Liu D, et al. LINC00942 inhibits ferroptosis and induces the immunosuppression of regulatory T cells by recruiting IGF2BP3/SLC7A11 in hepatocellular carcinoma. Funct Integr Genomics. 2024;24(1):29.PubMedPubMedCentralCrossRef Jin D, Hui Y, Liu D, et al. LINC00942 inhibits ferroptosis and induces the immunosuppression of regulatory T cells by recruiting IGF2BP3/SLC7A11 in hepatocellular carcinoma. Funct Integr Genomics. 2024;24(1):29.PubMedPubMedCentralCrossRef
102.
103.
go back to reference Gong L, Li Y, Cui K, et al. Nanobody-Engineered Natural Killer Cell conjugates for Solid Tumor Adoptive Immunotherapy. Small. 2021;17(45):e2103463.PubMedCrossRef Gong L, Li Y, Cui K, et al. Nanobody-Engineered Natural Killer Cell conjugates for Solid Tumor Adoptive Immunotherapy. Small. 2021;17(45):e2103463.PubMedCrossRef
104.
go back to reference Cui JX, Xu XH, He T, et al. L-kynurenine induces NK cell loss in gastric cancer microenvironment via promoting ferroptosis. J Exp Clin Cancer Res. 2023;42(1):52.PubMedPubMedCentralCrossRef Cui JX, Xu XH, He T, et al. L-kynurenine induces NK cell loss in gastric cancer microenvironment via promoting ferroptosis. J Exp Clin Cancer Res. 2023;42(1):52.PubMedPubMedCentralCrossRef
105.
go back to reference Yao L, Hou J, Wu X, et al. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 2023;67:102923.PubMedPubMedCentralCrossRef Yao L, Hou J, Wu X, et al. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 2023;67:102923.PubMedPubMedCentralCrossRef
106.
go back to reference Cui K, Gong L, Wang K, et al. Ferroptosis-Associated Molecular features to Aid Patient Clinical Prognosis and Therapy Across Human cancers. Front Immunol. 2022;13:888757.PubMedPubMedCentralCrossRef Cui K, Gong L, Wang K, et al. Ferroptosis-Associated Molecular features to Aid Patient Clinical Prognosis and Therapy Across Human cancers. Front Immunol. 2022;13:888757.PubMedPubMedCentralCrossRef
107.
go back to reference Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford). 2020;2020. Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford). 2020;2020.
108.
go back to reference Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023;51(D1):D571–82.PubMedCrossRef Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023;51(D1):D571–82.PubMedCrossRef
109.
go back to reference He Y, Dong Y, Chen Y, et al. Multi-omics characterization and therapeutic liability of ferroptosis in melanoma. Signal Transduct Target Ther. 2022;7(1):268.PubMedPubMedCentralCrossRef He Y, Dong Y, Chen Y, et al. Multi-omics characterization and therapeutic liability of ferroptosis in melanoma. Signal Transduct Target Ther. 2022;7(1):268.PubMedPubMedCentralCrossRef
110.
go back to reference Meng Y, Sun HY, He Y, et al. BET inhibitors potentiate melanoma ferroptosis and immunotherapy through AKR1C2 inhibition. Mil Med Res. 2023;10(1):61.PubMedPubMedCentral Meng Y, Sun HY, He Y, et al. BET inhibitors potentiate melanoma ferroptosis and immunotherapy through AKR1C2 inhibition. Mil Med Res. 2023;10(1):61.PubMedPubMedCentral
111.
go back to reference Tang B, Yan R, Zhu J, et al. Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types. Int J Biol Sci. 2022;18(1):180–98.PubMedPubMedCentralCrossRef Tang B, Yan R, Zhu J, et al. Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types. Int J Biol Sci. 2022;18(1):180–98.PubMedPubMedCentralCrossRef
112.
go back to reference Han L, Zhou J, Li L, et al. SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis. 2022;13(12):1071.PubMedPubMedCentralCrossRef Han L, Zhou J, Li L, et al. SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis. 2022;13(12):1071.PubMedPubMedCentralCrossRef
113.
go back to reference Chung CH, Lin CY, Chen CY, et al. Ferroptosis Signature Shapes the Immune profiles to enhance the response to Immune checkpoint inhibitors in Head and Neck Cancer. Adv Sci (Weinh). 2023;10(15):e2204514.PubMedCrossRef Chung CH, Lin CY, Chen CY, et al. Ferroptosis Signature Shapes the Immune profiles to enhance the response to Immune checkpoint inhibitors in Head and Neck Cancer. Adv Sci (Weinh). 2023;10(15):e2204514.PubMedCrossRef
114.
go back to reference Kciuk M, Gielecinska A, Kaluzinska-Kolat Z, Yahya EB, Kontek R. Ferroptosis and cuproptosis: metal-dependent cell death pathways activated in response to classical chemotherapy - significance for cancer treatment? Biochim Biophys Acta Rev Cancer. 2024;1879(4):189124.PubMedCrossRef Kciuk M, Gielecinska A, Kaluzinska-Kolat Z, Yahya EB, Kontek R. Ferroptosis and cuproptosis: metal-dependent cell death pathways activated in response to classical chemotherapy - significance for cancer treatment? Biochim Biophys Acta Rev Cancer. 2024;1879(4):189124.PubMedCrossRef
115.
go back to reference Zhang Y, Shen G, Meng T, et al. Eicosapentaenoic acid enhances the sensitivity of osteosarcoma to cisplatin by inducing ferroptosis through the DNA-PKcs/AKT/NRF2 pathway and reducing PD-L1 expression to attenuate immune evasion. Int Immunopharmacol. 2023;125Pt B:111181.CrossRef Zhang Y, Shen G, Meng T, et al. Eicosapentaenoic acid enhances the sensitivity of osteosarcoma to cisplatin by inducing ferroptosis through the DNA-PKcs/AKT/NRF2 pathway and reducing PD-L1 expression to attenuate immune evasion. Int Immunopharmacol. 2023;125Pt B:111181.CrossRef
116.
go back to reference Zhou Z, Zhao Y, Chen S, et al. Cisplatin promotes the efficacy of Immune checkpoint inhibitor therapy by inducing ferroptosis and activating neutrophils. Front Pharmacol. 2022;13:870178.PubMedPubMedCentralCrossRef Zhou Z, Zhao Y, Chen S, et al. Cisplatin promotes the efficacy of Immune checkpoint inhibitor therapy by inducing ferroptosis and activating neutrophils. Front Pharmacol. 2022;13:870178.PubMedPubMedCentralCrossRef
117.
go back to reference Zheng Y, Wang Y, Lu Z, et al. PGAM1 inhibition promotes HCC Ferroptosis and synergizes with Anti-PD-1 Immunotherapy. Adv Sci (Weinh). 2023;10(29):e2301928.PubMedCrossRef Zheng Y, Wang Y, Lu Z, et al. PGAM1 inhibition promotes HCC Ferroptosis and synergizes with Anti-PD-1 Immunotherapy. Adv Sci (Weinh). 2023;10(29):e2301928.PubMedCrossRef
118.
go back to reference Wang Z, Li R, Hou N et al. PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis. J Immunother Cancer. 2023;11(6). Wang Z, Li R, Hou N et al. PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis. J Immunother Cancer. 2023;11(6).
119.
go back to reference Hsieh MS, Ling HH, Setiawan SA, et al. Therapeutic targeting of thioredoxin reductase 1 causes ferroptosis while potentiating anti-PD-1 efficacy in head and neck cancer. Chem Biol Interact. 2024;395:111004.PubMedCrossRef Hsieh MS, Ling HH, Setiawan SA, et al. Therapeutic targeting of thioredoxin reductase 1 causes ferroptosis while potentiating anti-PD-1 efficacy in head and neck cancer. Chem Biol Interact. 2024;395:111004.PubMedCrossRef
120.
go back to reference Viswanadhapalli S, Luo Y, Sareddy GR, et al. EC359: a first-in-class small-molecule inhibitor for Targeting Oncogenic LIFR Signaling in Triple-negative breast Cancer. Mol Cancer Ther. 2019;18(8):1341–54.PubMedCrossRef Viswanadhapalli S, Luo Y, Sareddy GR, et al. EC359: a first-in-class small-molecule inhibitor for Targeting Oncogenic LIFR Signaling in Triple-negative breast Cancer. Mol Cancer Ther. 2019;18(8):1341–54.PubMedCrossRef
121.
go back to reference Ebrahimi B, Viswanadhapalli S, Pratap UP, et al. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol. 2024;8(1):118.PubMedPubMedCentralCrossRef Ebrahimi B, Viswanadhapalli S, Pratap UP, et al. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol. 2024;8(1):118.PubMedPubMedCentralCrossRef
122.
go back to reference Cheu JW, Lee D, Li Q, et al. Ferroptosis Suppressor Protein 1 inhibition promotes Tumor Ferroptosis and Anti-tumor Immune responses in Liver Cancer. Cell Mol Gastroenterol Hepatol. 2023;16(1):133–59.PubMedPubMedCentralCrossRef Cheu JW, Lee D, Li Q, et al. Ferroptosis Suppressor Protein 1 inhibition promotes Tumor Ferroptosis and Anti-tumor Immune responses in Liver Cancer. Cell Mol Gastroenterol Hepatol. 2023;16(1):133–59.PubMedPubMedCentralCrossRef
123.
go back to reference Wang H, Zhang H, Chen Y et al. Targeting Wnt/beta-Catenin signaling exacerbates ferroptosis and increases the efficacy of Melanoma Immunotherapy via the regulation of MITF. Cells. 2022;11(22). Wang H, Zhang H, Chen Y et al. Targeting Wnt/beta-Catenin signaling exacerbates ferroptosis and increases the efficacy of Melanoma Immunotherapy via the regulation of MITF. Cells. 2022;11(22).
124.
go back to reference Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res. 2021;81(24):6233–45.PubMedCrossRef Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res. 2021;81(24):6233–45.PubMedCrossRef
125.
go back to reference Li J, Liu J, Zhou Z, et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med. 2023;15(720):eadg3049.PubMedCrossRef Li J, Liu J, Zhou Z, et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med. 2023;15(720):eadg3049.PubMedCrossRef
126.
go back to reference Fan R, Deng A, Lin R, et al. A platinum(IV)-artesunate complex triggers ferroptosis by boosting cytoplasmic and mitochondrial lipid peroxidation to enhance tumor immunotherapy. MedComm (2020). 2024;5(6):e570.PubMedCrossRef Fan R, Deng A, Lin R, et al. A platinum(IV)-artesunate complex triggers ferroptosis by boosting cytoplasmic and mitochondrial lipid peroxidation to enhance tumor immunotherapy. MedComm (2020). 2024;5(6):e570.PubMedCrossRef
128.
go back to reference Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020;30(2):146–62.PubMedPubMedCentralCrossRef Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020;30(2):146–62.PubMedPubMedCentralCrossRef
129.
go back to reference Baidoo KE, Yong K, Brechbiel MW. Molecular pathways: targeted alpha-particle radiation therapy. Clin Cancer Res. 2013;19(3):530–7.PubMedCrossRef Baidoo KE, Yong K, Brechbiel MW. Molecular pathways: targeted alpha-particle radiation therapy. Clin Cancer Res. 2013;19(3):530–7.PubMedCrossRef
130.
go back to reference Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.PubMedCrossRef Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.PubMedCrossRef
131.
go back to reference Ding X, Cheng J, Pang Q, et al. BIBR1532, a selective telomerase inhibitor, enhances radiosensitivity of Non-small Cell Lung Cancer through increasing Telomere Dysfunction and ATM/CHK1 inhibition. Int J Radiat Oncol Biol Phys. 2019;105(4):861–74.PubMedCrossRef Ding X, Cheng J, Pang Q, et al. BIBR1532, a selective telomerase inhibitor, enhances radiosensitivity of Non-small Cell Lung Cancer through increasing Telomere Dysfunction and ATM/CHK1 inhibition. Int J Radiat Oncol Biol Phys. 2019;105(4):861–74.PubMedCrossRef
132.
go back to reference Bao Y, Pan Z, Zhao L, et al. BIBR1532 combined with radiotherapy induces ferroptosis in NSCLC cells and activates cGAS-STING pathway to promote anti-tumor immunity. J Transl Med. 2024;22(1):519.PubMedPubMedCentralCrossRef Bao Y, Pan Z, Zhao L, et al. BIBR1532 combined with radiotherapy induces ferroptosis in NSCLC cells and activates cGAS-STING pathway to promote anti-tumor immunity. J Transl Med. 2024;22(1):519.PubMedPubMedCentralCrossRef
133.
go back to reference Deng Z, Li B, Yang M, et al. Irradiated microparticles suppress prostate cancer by tumor microenvironment reprogramming and ferroptosis. J Nanobiotechnol. 2024;22(1):225.CrossRef Deng Z, Li B, Yang M, et al. Irradiated microparticles suppress prostate cancer by tumor microenvironment reprogramming and ferroptosis. J Nanobiotechnol. 2024;22(1):225.CrossRef
134.
go back to reference Huang X, He T, Liang X, et al. Advances and applications of nanoparticles in cancer therapy. MedComm – Oncol. 2024;3(1):e67.CrossRef Huang X, He T, Liang X, et al. Advances and applications of nanoparticles in cancer therapy. MedComm – Oncol. 2024;3(1):e67.CrossRef
135.
go back to reference Chen Y, Gong L, Cao Y, et al. Reprogramming tumor-associated macrophages by a dually targeted milk exosome system as a potent monotherapy for cancer. J Control Release. 2024;366:395–409.PubMedCrossRef Chen Y, Gong L, Cao Y, et al. Reprogramming tumor-associated macrophages by a dually targeted milk exosome system as a potent monotherapy for cancer. J Control Release. 2024;366:395–409.PubMedCrossRef
136.
go back to reference Gong L, Tian L, Cui K, et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J Control Release. 2023;364:672–86.PubMedCrossRef Gong L, Tian L, Cui K, et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J Control Release. 2023;364:672–86.PubMedCrossRef
137.
go back to reference Li D, Gong L, Lin H, et al. Hyaluronic acid-coated bovine milk exosomes for achieving tumor-specific intracellular delivery of miRNA-204. Cells. 2022;11:19. Li D, Gong L, Lin H, et al. Hyaluronic acid-coated bovine milk exosomes for achieving tumor-specific intracellular delivery of miRNA-204. Cells. 2022;11:19.
138.
go back to reference Liu Y, Lu R, Li M, et al. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy. Mater Horiz. 2024;11(10):2406–19.PubMedCrossRef Liu Y, Lu R, Li M, et al. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy. Mater Horiz. 2024;11(10):2406–19.PubMedCrossRef
139.
go back to reference Wang S, Guo Q, Xu R, Lin P, Deng G, Xia X. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J Nanobiotechnol. 2023;21(1):383.CrossRef Wang S, Guo Q, Xu R, Lin P, Deng G, Xia X. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J Nanobiotechnol. 2023;21(1):383.CrossRef
140.
go back to reference Ruan Y, Zhuang H, Zeng X, et al. Engineered Microbial nanohybrids for Tumor-mediated NIR II Photothermal enhanced Ferroptosis/Cuproptosis and immunotherapy. Adv Healthc Mater. 2024;13(4):e2302537.PubMedCrossRef Ruan Y, Zhuang H, Zeng X, et al. Engineered Microbial nanohybrids for Tumor-mediated NIR II Photothermal enhanced Ferroptosis/Cuproptosis and immunotherapy. Adv Healthc Mater. 2024;13(4):e2302537.PubMedCrossRef
141.
go back to reference Lei H, Li Q, Pei Z, Liu L, Yang N, Cheng L. Nonferrous Ferroptosis Inducer Manganese Molybdate nanoparticles to enhance Tumor Immunotherapy. Small. 2023;19(45):e2303438.PubMedCrossRef Lei H, Li Q, Pei Z, Liu L, Yang N, Cheng L. Nonferrous Ferroptosis Inducer Manganese Molybdate nanoparticles to enhance Tumor Immunotherapy. Small. 2023;19(45):e2303438.PubMedCrossRef
142.
go back to reference Deng X, Liu T, Zhu Y, et al. Ca & mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact Mater. 2024;33:483–96.PubMed Deng X, Liu T, Zhu Y, et al. Ca & mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact Mater. 2024;33:483–96.PubMed
143.
go back to reference Song H, Sun H, He N, et al. Glutathione Depletion-Induced Versatile Nanomedicine for potentiating the ferroptosis to overcome solid Tumor Radioresistance and enhance immunotherapy. Adv Healthc Mater. 2024;13(9):e2303412.PubMedCrossRef Song H, Sun H, He N, et al. Glutathione Depletion-Induced Versatile Nanomedicine for potentiating the ferroptosis to overcome solid Tumor Radioresistance and enhance immunotherapy. Adv Healthc Mater. 2024;13(9):e2303412.PubMedCrossRef
144.
go back to reference Fan Z, Wu S, Deng H, Li G, Huang L, Liu H. Light-triggered nanozymes remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for ferroptosis-enhanced Antitumor Immunity. ACS Nano. 2024;18(19):12261–75.PubMedCrossRef Fan Z, Wu S, Deng H, Li G, Huang L, Liu H. Light-triggered nanozymes remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for ferroptosis-enhanced Antitumor Immunity. ACS Nano. 2024;18(19):12261–75.PubMedCrossRef
145.
go back to reference Wang H, Jiao D, Feng D, et al. Transformable Supramolecular Self-assembled peptides for Cascade Self-enhanced ferroptosis primed Cancer Immunotherapy. Adv Mater. 2024;36(21):e2311733.PubMedCrossRef Wang H, Jiao D, Feng D, et al. Transformable Supramolecular Self-assembled peptides for Cascade Self-enhanced ferroptosis primed Cancer Immunotherapy. Adv Mater. 2024;36(21):e2311733.PubMedCrossRef
146.
go back to reference Liu J, Zhan J, Zhang Y, et al. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and Cancer immunotherapy. Adv Mater. 2024;36(9):e2309562.PubMedCrossRef Liu J, Zhan J, Zhang Y, et al. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and Cancer immunotherapy. Adv Mater. 2024;36(9):e2309562.PubMedCrossRef
147.
go back to reference Lei H, Li Q, Li G, et al. Manganese molybdate nanodots with dual amplification of STING activation for cycle treatment of metalloimmunotherapy. Bioact Mater. 2024;31:53–62.PubMed Lei H, Li Q, Li G, et al. Manganese molybdate nanodots with dual amplification of STING activation for cycle treatment of metalloimmunotherapy. Bioact Mater. 2024;31:53–62.PubMed
148.
go back to reference Wu Q, Li Z, Zhou X, et al. Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-based Ternary Chalcogenide nanoparticles against Triple-negative breast Cancer. Small. 2024;20(20):e2306766.PubMedCrossRef Wu Q, Li Z, Zhou X, et al. Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-based Ternary Chalcogenide nanoparticles against Triple-negative breast Cancer. Small. 2024;20(20):e2306766.PubMedCrossRef
149.
go back to reference Zhang L, Qiu M, Wang R, et al. Monitoring ROS Responsive Fe(3)O(4)-based Nanoparticle Mediated Ferroptosis and immunotherapy via (129)Xe MRI. Angew Chem Int Ed Engl. 2024;63(22):e202403771.PubMedCrossRef Zhang L, Qiu M, Wang R, et al. Monitoring ROS Responsive Fe(3)O(4)-based Nanoparticle Mediated Ferroptosis and immunotherapy via (129)Xe MRI. Angew Chem Int Ed Engl. 2024;63(22):e202403771.PubMedCrossRef
150.
go back to reference Feng Q, Fang W, Guo Y, Hu P, Shi J. Nebulized therapy of early orthotopic Lung Cancer by Iron-based nanoparticles: macrophage-regulated ferroptosis of Cancer Stem cells. J Am Chem Soc. 2023;145(44):24153–65.PubMedCrossRef Feng Q, Fang W, Guo Y, Hu P, Shi J. Nebulized therapy of early orthotopic Lung Cancer by Iron-based nanoparticles: macrophage-regulated ferroptosis of Cancer Stem cells. J Am Chem Soc. 2023;145(44):24153–65.PubMedCrossRef
151.
go back to reference Wang Y, Xu H, Wang D, et al. Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform. Acta Biomater. 2024;174:358–71.PubMedCrossRef Wang Y, Xu H, Wang D, et al. Synergistic reinforcement of immunogenic cell death and transformation of tumor-associated macrophages via an M1-type macrophage membrane-camouflaged ferrous-supply-regeneration nanoplatform. Acta Biomater. 2024;174:358–71.PubMedCrossRef
Metadata
Title
Ferroptosis and the tumor microenvironment
Authors
Kaisa Cui
Kang Wang
Zhaohui Huang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-024-03235-0
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now