Fabry disease is a rare but life-threatening, X-linked, inherited lysosomal storage disorder in which globotriaosylceramide is insufficiently metabolized because of reduced α-galactosidase A activity. Cellular globotriaosylceramide accumulation causes a multisystemic disease, which, if left untreated, reduces life expectancy in female and male individuals by around 10 and 20 years, respectively, leading to progressive renal failure, hypertrophic cardiomyopathy, cardiac arrhythmia, and premature cerebral infarction. The method of choice for confirming the diagnosis is the determination of reduced α-galactosidase A activity in leukocytes in male individuals and the molecular genetic detection of a disease-causing mutation in female individuals. Current approved treatment includes enzyme replacement therapy (agalsidase alfa [0.2 mg/kg body weight], agalsidase beta or pegunigalsidase alfa [both 1.0 mg/kg body weight]) every other week intravenously or, if a responding (‘amenable’) α-galactosidase A mutation is present, oral pharmacological chaperone therapy (migalastat 123 mg, every other day). Future therapeutic options may include substrate reduction therapy, gene therapy, messenger RNA therapy, and/or vesicle-packaged enzyme replacement therapy. This review presents current and future treatment options with advantages and disadvantages of the different treatment options.