Skip to main content
Top
Published in:

Open Access 01-12-2024 | Esophageal Cancer | Research

Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model

Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients

Authors: Yuxin Zhang, Xu Cheng, Xianli Luo, Ruixia Sun, Xiang Huang, Lingling Liu, Min Zhu, Xueling Li

Published in: BMC Medical Imaging | Issue 1/2024

Login to get access

Abstract

Background

Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effectively predicting the occurrence of EF.

Methods

The study involved esophageal cancer patients undergoing radiotherapy or chemoradiotherapy. Arterial phase enhanced CT images were used to extract handcrafted and deep learning radiomic features. Along with clinical information, a 3-step feature selection method (statistical tests, Least Absolute Shrinkage and Selection Operator, and Recursive Feature Elimination) was used to identify five feature sets in training cohort for constructing random forest EF prediction models. Model performance was compared and validated in both retrospective and prospective test cohorts.

Results

One hundred seventy five patients (122 in training and 53 in test cohort)were retrospectively collected from April 2018 to June 2022. An additional 27 patients were enrolled as a prospective test cohort from June 2022 to December 2023. Post-selection in the training cohort, five feature sets were used for model construction: clinical, handcrafted radiomic, deep learning radiomic, clinical-handcrafted radiomic, and clinical-deep learning radiomic. The clinical-deep learning radiomic model excelled with AUC of 0.89 (95% Confidence Interval: 0.83–0.95) in the training cohort, 0.81 (0.65–0.94) in the test cohort, and 0.85 (0.71–0.97) in the prospective test cohort. Brier-score and calibration curve analyses validated its predictive ability.

Conclusions

The clinical-deep learning radiomic model can effectively predict EF in patients with advanced esophageal cancer undergoing radiotherapy or chemoradiotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef
2.
go back to reference Pao TH, Chen YY, Chang WL, Chang JS, Chiang NJ, Lin CY, Lai WW, Tseng YL, Yen YT, Chung TJ, et al. Esophageal fistula after definitive concurrent chemotherapy and intensity modulated radiotherapy for esophageal squamous cell carcinoma. PLoS ONE. 2021;16(5):e0251811.PubMedPubMedCentralCrossRef Pao TH, Chen YY, Chang WL, Chang JS, Chiang NJ, Lin CY, Lai WW, Tseng YL, Yen YT, Chung TJ, et al. Esophageal fistula after definitive concurrent chemotherapy and intensity modulated radiotherapy for esophageal squamous cell carcinoma. PLoS ONE. 2021;16(5):e0251811.PubMedPubMedCentralCrossRef
3.
go back to reference Guan X, Liu C, Zhou T, Ma Z, Zhang C, Wang B, Yao Y, Fan X, Li Z, Zhang Y. Survival and prognostic factors of patients with esophageal fistula in advanced esophageal squamous cell carcinoma. Biosci Rep. 2020;40(1):BSR20193379.PubMedPubMedCentralCrossRef Guan X, Liu C, Zhou T, Ma Z, Zhang C, Wang B, Yao Y, Fan X, Li Z, Zhang Y. Survival and prognostic factors of patients with esophageal fistula in advanced esophageal squamous cell carcinoma. Biosci Rep. 2020;40(1):BSR20193379.PubMedPubMedCentralCrossRef
4.
go back to reference Guo W, Li B, Xu W, Cheng C, Qiu C, Sam SK, Zhang J, Teng X, Meng L, Zheng X, et al. Multi-omics and multi-VOIs to predict esophageal fistula in esophageal cancer patients treated with radiotherapy. J Cancer Res Clin Oncol. 2024;150(2):39. Guo W, Li B, Xu W, Cheng C, Qiu C, Sam SK, Zhang J, Teng X, Meng L, Zheng X, et al. Multi-omics and multi-VOIs to predict esophageal fistula in esophageal cancer patients treated with radiotherapy. J Cancer Res Clin Oncol. 2024;150(2):39.
5.
go back to reference Lan K, Chen J. Efficacy and safety of re-irradiation for locoregional esophageal squamous cell carcinoma recurrence after radiotherapy: a systematic review and meta-analysis. Radiation Oncol (London England). 2022;17(1):61.CrossRef Lan K, Chen J. Efficacy and safety of re-irradiation for locoregional esophageal squamous cell carcinoma recurrence after radiotherapy: a systematic review and meta-analysis. Radiation Oncol (London England). 2022;17(1):61.CrossRef
6.
go back to reference Gui Z, Liu H, Shi W, Xu Y, Qian H, Wang F. A Nomogram for Predicting the risk of Radiotherapy-related esophageal fistula in Esophageal Cancer patients. Front Oncol. 2021;11:785850.PubMedCrossRef Gui Z, Liu H, Shi W, Xu Y, Qian H, Wang F. A Nomogram for Predicting the risk of Radiotherapy-related esophageal fistula in Esophageal Cancer patients. Front Oncol. 2021;11:785850.PubMedCrossRef
7.
go back to reference Xu Y, Wang L, He B, Li W, Wen Q, Wang S, Sun X, Meng X, Yu J. Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer. Radiation Oncol (London England). 2019;14(1):181.CrossRef Xu Y, Wang L, He B, Li W, Wen Q, Wang S, Sun X, Meng X, Yu J. Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer. Radiation Oncol (London England). 2019;14(1):181.CrossRef
8.
go back to reference Watanabe S, Ogino I, Kunisaki C, Hata M. Relationship between nutritional status and esophageal fistula formation after radiotherapy for esophageal cancer. Cancer Radiother. 2019;23(3):222–7.PubMedCrossRef Watanabe S, Ogino I, Kunisaki C, Hata M. Relationship between nutritional status and esophageal fistula formation after radiotherapy for esophageal cancer. Cancer Radiother. 2019;23(3):222–7.PubMedCrossRef
9.
go back to reference Xie H, Song C, Jian L, Guo Y, Li M, Luo J, Li Q, Tan T. A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma. BMC Med Imaging. 2024;24(1):121.PubMedPubMedCentralCrossRef Xie H, Song C, Jian L, Guo Y, Li M, Luo J, Li Q, Tan T. A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma. BMC Med Imaging. 2024;24(1):121.PubMedPubMedCentralCrossRef
10.
go back to reference Wang H, Chen X, He L. A narrative review of radiomics and deep learning advances in neuroblastoma: updates and challenges. Pediatr Radiol. 2023;53(13):2742–55.PubMedCrossRef Wang H, Chen X, He L. A narrative review of radiomics and deep learning advances in neuroblastoma: updates and challenges. Pediatr Radiol. 2023;53(13):2742–55.PubMedCrossRef
11.
go back to reference Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Sem Cancer Biol. 2023;93:97–113.CrossRef Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Sem Cancer Biol. 2023;93:97–113.CrossRef
12.
go back to reference Li G, Li L, Li Y, Qian Z, Wu F, He Y, Jiang H, Li R, Wang D, Zhai Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain. 2022;145(3):1151–61.PubMedPubMedCentralCrossRef Li G, Li L, Li Y, Qian Z, Wu F, He Y, Jiang H, Li R, Wang D, Zhai Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain. 2022;145(3):1151–61.PubMedPubMedCentralCrossRef
13.
go back to reference Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol. 2021;31(2):1049–58.PubMedCrossRef Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol. 2021;31(2):1049–58.PubMedCrossRef
14.
go back to reference Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to Radiomics. J Nuclear Med: Off Public Soc Nuclear Med. 2020;61(4):488–95.CrossRef Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to Radiomics. J Nuclear Med: Off Public Soc Nuclear Med. 2020;61(4):488–95.CrossRef
15.
go back to reference Zhu C, Sun W, Chen C, Qiu Q, Wang S, Song y, Ma X. Prediction of malignant esophageal fistula in esophageal cancer using a radiomics-clinical nomogram. Eur J Med Res. 2024;29(1):217. Zhu C, Sun W, Chen C, Qiu Q, Wang S, Song y, Ma X. Prediction of malignant esophageal fistula in esophageal cancer using a radiomics-clinical nomogram. Eur J Med Res. 2024;29(1):217.
16.
go back to reference Li Z, Shi L, Li J, Yang Z, Chai G, Lyu B, Shi M, Zhao Y, Zhao L. Clinical-radiomics nomogram for risk prediction of esophageal fistula in patients with esophageal squamous cell carcinoma treated by IMRT or VMAT. Int J Radiat Oncol Biol Phys. 2023;117 2S:e315. Li Z, Shi L, Li J, Yang Z, Chai G, Lyu B, Shi M, Zhao Y, Zhao L. Clinical-radiomics nomogram for risk prediction of esophageal fistula in patients with esophageal squamous cell carcinoma treated by IMRT or VMAT. Int J Radiat Oncol Biol Phys. 2023;117 2S:e315.
17.
go back to reference Shi YJ, Liu C, Wei YY, Li XT, Shen L, Lu ZH, Sun YS. Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy. Cancer Imaging: Off Publication Int Cancer Imaging Soc. 2022;22(1):62.CrossRef Shi YJ, Liu C, Wei YY, Li XT, Shen L, Lu ZH, Sun YS. Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy. Cancer Imaging: Off Publication Int Cancer Imaging Soc. 2022;22(1):62.CrossRef
18.
go back to reference Zhu C, Ding J, Wang S, Qiu Q, Ji Y, Wang L. Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors. Thorac cancer. 2021;12(23):3110–20.PubMedPubMedCentralCrossRef Zhu C, Ding J, Wang S, Qiu Q, Ji Y, Wang L. Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors. Thorac cancer. 2021;12(23):3110–20.PubMedPubMedCentralCrossRef
19.
go back to reference Jiang Y, Zhou K, Sun Z, Wang H, Xie J, Zhang T, Sang S, Islam MT, Wang JY, Chen C, et al. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med. 2023;4(8):101146.PubMedPubMedCentralCrossRef Jiang Y, Zhou K, Sun Z, Wang H, Xie J, Zhang T, Sang S, Islam MT, Wang JY, Chen C, et al. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med. 2023;4(8):101146.PubMedPubMedCentralCrossRef
20.
go back to reference Feng L, Liu Z, Li C, Li Z, Lou X, Shao L, Wang Y, Huang Y, Chen H, Pang X, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit Health. 2022;4(1):e8-17.PubMedCrossRef Feng L, Liu Z, Li C, Li Z, Lou X, Shao L, Wang Y, Huang Y, Chen H, Pang X, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit Health. 2022;4(1):e8-17.PubMedCrossRef
21.
go back to reference Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, Mao R, Li F, Xiao Y, Wang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun. 2020;11(1):1236.PubMedPubMedCentralCrossRef Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, Mao R, Li F, Xiao Y, Wang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun. 2020;11(1):1236.PubMedPubMedCentralCrossRef
22.
go back to reference Park JE, Kickingereder P, Kim HS. Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging. Korean J Radiol. 2020;21(10):1126–37.PubMedPubMedCentralCrossRef Park JE, Kickingereder P, Kim HS. Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging. Korean J Radiol. 2020;21(10):1126–37.PubMedPubMedCentralCrossRef
23.
go back to reference Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol: Organ Der Deutschen Rontgengesellschaft [et al]. 2020;196(10):879–87.CrossRef Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol: Organ Der Deutschen Rontgengesellschaft [et al]. 2020;196(10):879–87.CrossRef
24.
go back to reference Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer staging Manual: continuing to build a bridge from a population-based to a more personalized approach to cancer staging. Cancer J Clin. 2017;67(2):93–9.CrossRef Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer staging Manual: continuing to build a bridge from a population-based to a more personalized approach to cancer staging. Cancer J Clin. 2017;67(2):93–9.CrossRef
25.
go back to reference Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Corvera C, Das P, Denlinger CS, Enzinger PC, Fanta P, Farjah F, et al. Esophageal and Esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Network: JNCCN. 2019;17(7):855–83.PubMedCrossRef Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Corvera C, Das P, Denlinger CS, Enzinger PC, Fanta P, Farjah F, et al. Esophageal and Esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Network: JNCCN. 2019;17(7):855–83.PubMedCrossRef
26.
go back to reference Cheng X, Zhang Y, Zhu M, Sun R, Liu L, Li X. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. BMC Med Imaging. 2023;23(1):145.PubMedPubMedCentralCrossRef Cheng X, Zhang Y, Zhu M, Sun R, Liu L, Li X. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. BMC Med Imaging. 2023;23(1):145.PubMedPubMedCentralCrossRef
27.
go back to reference Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. In: Seminal graphics: pioneering efforts that shaped the field. Boston: Addison-Wesley; 1998. p. 347–353. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. In: Seminal graphics: pioneering efforts that shaped the field. Boston: Addison-Wesley; 1998. p. 347–353.
28.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah: USENIX Association; 2016. p. 265–283. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah: USENIX Association; 2016. p. 265–283.
29.
go back to reference Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.
30.
go back to reference Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef
31.
go back to reference van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational Radiomics System to Decode the Radiographic phenotype. Cancer Res. 2017;77(21):e104–7.PubMedPubMedCentralCrossRef van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational Radiomics System to Decode the Radiographic phenotype. Cancer Res. 2017;77(21):e104–7.PubMedPubMedCentralCrossRef
32.
go back to reference Shapiro SS, Wilk MB. An analysis of Variance Test for Normality (complete samples). Biometrika. 1965;52:591–611.CrossRef Shapiro SS, Wilk MB. An analysis of Variance Test for Normality (complete samples). Biometrika. 1965;52:591–611.CrossRef
33.
go back to reference Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.PubMedCrossRef Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.PubMedCrossRef
34.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer classification using support Vector machines. Mach Learn. 2002;46(1):389–422.CrossRef Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer classification using support Vector machines. Mach Learn. 2002;46(1):389–422.CrossRef
35.
go back to reference Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.PubMedCrossRef Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.PubMedCrossRef
36.
go back to reference Harrell FE. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2nd ed. Cham, Switzerland: Springer International Publishing; 2015.CrossRef Harrell FE. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2nd ed. Cham, Switzerland: Springer International Publishing; 2015.CrossRef
38.
go back to reference Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. San Francisco: Morgan Kaufmann Publishing; 1995. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. San Francisco: Morgan Kaufmann Publishing; 1995.
39.
go back to reference Friedman M. The Use of ranks to avoid the Assumption of Normality Implicit in the analysis of Variance. J Am Stat Assoc. 1937;32:675–701.CrossRef Friedman M. The Use of ranks to avoid the Assumption of Normality Implicit in the analysis of Variance. J Am Stat Assoc. 1937;32:675–701.CrossRef
40.
go back to reference Demiar J, Schuurmans D. Statistical Comparisons of Classifiers over multiple data sets. J Mach Learn Res. 2006;7(1):1–30. Demiar J, Schuurmans D. Statistical Comparisons of Classifiers over multiple data sets. J Mach Learn Res. 2006;7(1):1–30.
41.
go back to reference Xu Y, Cui H, Dong T, Zou B, Fan B, Li W, Wang S, Sun X, Yu J, Wang L. Integrating Clinical Data and Attentional CT Imaging Features for esophageal Fistula Prediction in Esophageal Cancer. Front Oncol. 2021;11: 688706.PubMedPubMedCentralCrossRef Xu Y, Cui H, Dong T, Zou B, Fan B, Li W, Wang S, Sun X, Yu J, Wang L. Integrating Clinical Data and Attentional CT Imaging Features for esophageal Fistula Prediction in Esophageal Cancer. Front Oncol. 2021;11: 688706.PubMedPubMedCentralCrossRef
42.
go back to reference Guan Y, Cui H, Xu Y, Jin Q, Feng T, Tu H, Xuan P, Li W, Wang L, Duh B-L. Predicting esophageal fistula risks using a multimodal self-attention network. Medical image computing and computer assisted intervention – MICCAI 2021: 2021// 2021. Cham: Springer International Publishing; 2021. p. 721–30.CrossRef Guan Y, Cui H, Xu Y, Jin Q, Feng T, Tu H, Xuan P, Li W, Wang L, Duh B-L.  Predicting esophageal fistula risks using a multimodal self-attention network. Medical image computing and computer assisted intervention – MICCAI 2021: 2021// 2021. Cham: Springer International Publishing; 2021. p. 721–30.CrossRef
43.
go back to reference Wang X, Hu B, Chen J, Xie F, Han D, Zhao Q, Sun H, Fu C, Liu C, Wang Z, et al. Risk factors of esophageal fistula induced by re-radiotherapy for recurrent esophageal cancer with local primary site. BMC Cancer. 2022;22(1):207.PubMedPubMedCentralCrossRef Wang X, Hu B, Chen J, Xie F, Han D, Zhao Q, Sun H, Fu C, Liu C, Wang Z, et al. Risk factors of esophageal fistula induced by re-radiotherapy for recurrent esophageal cancer with local primary site. BMC Cancer. 2022;22(1):207.PubMedPubMedCentralCrossRef
44.
go back to reference Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, et al. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Radiol Med. 2023;128(11):1310–32.PubMedCrossRef Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, et al. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Radiol Med. 2023;128(11):1310–32.PubMedCrossRef
45.
go back to reference Jing R, Wang J, Li J, Wang X, Li B, Xue F, Shao G, Xue H. A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules. Sci Rep. 2021;11(1):22330.PubMedPubMedCentralCrossRef Jing R, Wang J, Li J, Wang X, Li B, Xue F, Shao G, Xue H. A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules. Sci Rep. 2021;11(1):22330.PubMedPubMedCentralCrossRef
46.
go back to reference Sharma K, Mittal D. Contrast enhancement technique for CT images. J Biomed Eng Med Imaging. 2015;2:44. Sharma K, Mittal D. Contrast enhancement technique for CT images. J Biomed Eng Med Imaging. 2015;2:44.
47.
go back to reference Gandhamal A, Talbar S, Gajre S, Hani AF, Kumar D. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images. Comput Biol Med. 2017;83:120–33.PubMedCrossRef Gandhamal A, Talbar S, Gajre S, Hani AF, Kumar D. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images. Comput Biol Med. 2017;83:120–33.PubMedCrossRef
48.
go back to reference Gorgel P. A brain tumor detection system using gradient based watershed marked active contours and curvelet transform. Trans Emerg Telecommun Technol. 2020;32:32. Gorgel P. A brain tumor detection system using gradient based watershed marked active contours and curvelet transform. Trans Emerg Telecommun Technol. 2020;32:32.
49.
go back to reference Wei L, Rosen B, Vallières M, Chotchutipan T, Mierzwa M, Eisbruch A, El Naqa I. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys Imaging Radiation Oncol. 2019;10:49–54.CrossRef Wei L, Rosen B, Vallières M, Chotchutipan T, Mierzwa M, Eisbruch A, El Naqa I. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys Imaging Radiation Oncol. 2019;10:49–54.CrossRef
50.
go back to reference Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46.PubMedCrossRef Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46.PubMedCrossRef
51.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Montreal, Canada: MIT Press; 2014. p. 2672–80. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Montreal, Canada: MIT Press; 2014. p. 2672–80.
Metadata
Title
Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model
Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients
Authors
Yuxin Zhang
Xu Cheng
Xianli Luo
Ruixia Sun
Xiang Huang
Lingling Liu
Min Zhu
Xueling Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2024
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-024-01473-4