Skip to main content
Top
Published in:

Open Access 14-07-2024 | Epilepsy | Original Research Article

Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies

Authors: Marina Andjelkovic, Kristel Klaassen, Anita Skakic, Irena Marjanovic, Ruzica Kravljanac, Maja Djordjevic, Biljana Vucetic Tadic, Bozica Kecman, Sonja Pavlovic, Maja Stojiljkovic

Published in: Molecular Diagnosis & Therapy | Issue 5/2024

Login to get access

Abstract

Background

Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets.

Methods

In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction.

Results

The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants.

Conclusions

Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Appendix
Available only for authorised users
Literature
2.
go back to reference Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:522–30.PubMedCrossRef Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:522–30.PubMedCrossRef
3.
go back to reference Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, et al. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord. 2022;24:765–86.PubMedPubMedCentralCrossRef Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, et al. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord. 2022;24:765–86.PubMedPubMedCentralCrossRef
4.
go back to reference Kothur K, Holman K, Farnsworth E, Ho G, Lorentzos M, Troedson C, et al. Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure. 2018;59:132–40.PubMedCrossRef Kothur K, Holman K, Farnsworth E, Ho G, Lorentzos M, Troedson C, et al. Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure. 2018;59:132–40.PubMedCrossRef
5.
go back to reference Graifman JL, Lippa NC, Mulhern MS, Bergner AL, Sands TT. Clinical utility of exome sequencing in a pediatric epilepsy cohort. Epilepsia. 2023;64:986–97.PubMedCrossRef Graifman JL, Lippa NC, Mulhern MS, Bergner AL, Sands TT. Clinical utility of exome sequencing in a pediatric epilepsy cohort. Epilepsia. 2023;64:986–97.PubMedCrossRef
6.
go back to reference Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, et al. Genetic testing for the epilepsies: a systematic review. Epilepsia. 2022;63:375–87.PubMedCrossRef Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, et al. Genetic testing for the epilepsies: a systematic review. Epilepsia. 2022;63:375–87.PubMedCrossRef
7.
go back to reference Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019;152:18–30.PubMedCrossRef Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019;152:18–30.PubMedCrossRef
8.
go back to reference Gao C, Pielas M, Jiao F, Mei D, Wang X, Kotulska K, et al. Epilepsy in Dravet syndrome: current and future therapeutic opportunities. J Clin Med. 2023;12:2532.PubMedPubMedCentralCrossRef Gao C, Pielas M, Jiao F, Mei D, Wang X, Kotulska K, et al. Epilepsy in Dravet syndrome: current and future therapeutic opportunities. J Clin Med. 2023;12:2532.PubMedPubMedCentralCrossRef
9.
go back to reference Ding J, Li X, Tian H, Li W, Wang F, Sun T. SCN1A mutation: beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;12: 743726.PubMedPubMedCentralCrossRef Ding J, Li X, Tian H, Li W, Wang F, Sun T. SCN1A mutation: beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;12: 743726.PubMedPubMedCentralCrossRef
10.
go back to reference Mangano GD, Fontana A, Antona V, Salpietro V, Mangano GR, Giuffrè M, et al. Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review. Mol Genet Genomic Med. 2022;10: e1911.PubMedPubMedCentralCrossRef Mangano GD, Fontana A, Antona V, Salpietro V, Mangano GR, Giuffrè M, et al. Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review. Mol Genet Genomic Med. 2022;10: e1911.PubMedPubMedCentralCrossRef
12.
go back to reference Wei F, Yan L-M, Su T, He N, Lin Z-J, Wang J, et al. Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull. 2017;33:455–77.PubMedPubMedCentralCrossRef Wei F, Yan L-M, Su T, He N, Lin Z-J, Wang J, et al. Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull. 2017;33:455–77.PubMedPubMedCentralCrossRef
13.
go back to reference Becchetti A, Aracri P, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol. 2015;6: 125966.CrossRef Becchetti A, Aracri P, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol. 2015;6: 125966.CrossRef
15.
go back to reference Amin JB, Moody GR, Wollmuth LP. From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol. 2021;599:397–416.PubMedCrossRef Amin JB, Moody GR, Wollmuth LP. From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol. 2021;599:397–416.PubMedCrossRef
16.
go back to reference Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, et al. Synaptopathies in developmental and epileptic encephalopathies: a focus on pre-synaptic dysfunction. Front Neurol. 2022;13: 826211.PubMedPubMedCentralCrossRef Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, et al. Synaptopathies in developmental and epileptic encephalopathies: a focus on pre-synaptic dysfunction. Front Neurol. 2022;13: 826211.PubMedPubMedCentralCrossRef
17.
go back to reference Gautam V, Rawat K, Sandhu A, Kumari P, Singh N, Saha L. An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol. 2021;910: 174469.PubMedCrossRef Gautam V, Rawat K, Sandhu A, Kumari P, Singh N, Saha L. An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol. 2021;910: 174469.PubMedCrossRef
19.
go back to reference Savino E, Cervigni RI, Povolo M, Stefanetti A, Ferrante D, Valente P, et al. Proline-rich transmembrane protein 2 (PRRT2) regulates the actin cytoskeleton during synaptogenesis. Cell Death Dis. 2020;11:856.PubMedPubMedCentralCrossRef Savino E, Cervigni RI, Povolo M, Stefanetti A, Ferrante D, Valente P, et al. Proline-rich transmembrane protein 2 (PRRT2) regulates the actin cytoskeleton during synaptogenesis. Cell Death Dis. 2020;11:856.PubMedPubMedCentralCrossRef
20.
go back to reference Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy phenotypes of vitamin B6-dependent diseases: an updated systematic review. Children. 2023;10:553.PubMedPubMedCentralCrossRef Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy phenotypes of vitamin B6-dependent diseases: an updated systematic review. Children. 2023;10:553.PubMedPubMedCentralCrossRef
21.
go back to reference Gabriel M, Loos MA, Armeno M, Alonso CN, Roberto H. Glucose transporter type 1 deficiency syndrome: clinical aspects, diagnosis, and treatment. Arch Argent Pediatr. 2023;121: e202202677. Gabriel M, Loos MA, Armeno M, Alonso CN, Roberto H. Glucose transporter type 1 deficiency syndrome: clinical aspects, diagnosis, and treatment. Arch Argent Pediatr. 2023;121: e202202677.
22.
23.
go back to reference Mei D, Parrini E, Marini C, Guerrini R. The impact of next-generation sequencing on the diagnosis and treatment of epilepsy in paediatric patients. Mol Diagn Ther. 2017;21:357–73.PubMedCrossRef Mei D, Parrini E, Marini C, Guerrini R. The impact of next-generation sequencing on the diagnosis and treatment of epilepsy in paediatric patients. Mol Diagn Ther. 2017;21:357–73.PubMedCrossRef
24.
go back to reference Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7.PubMedPubMedCentralCrossRef Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7.PubMedPubMedCentralCrossRef
25.
26.
go back to reference Skakic A, Djordjevic M, Sarajlija A, Klaassen K, Tosic N, Kecman B, et al. Genetic characterization of GSD I in Serbian population revealed unexpectedly high incidence of GSD Ib and 3 novel SLC37A4 variants. Clin Genet. 2018;93:350–5.PubMedCrossRef Skakic A, Djordjevic M, Sarajlija A, Klaassen K, Tosic N, Kecman B, et al. Genetic characterization of GSD I in Serbian population revealed unexpectedly high incidence of GSD Ib and 3 novel SLC37A4 variants. Clin Genet. 2018;93:350–5.PubMedCrossRef
27.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.PubMedPubMedCentralCrossRef
29.
go back to reference Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.PubMedCrossRef Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9.PubMedCrossRef
30.
go back to reference Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.PubMedPubMedCentralCrossRef Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.PubMedCrossRef Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.PubMedCrossRef
33.
go back to reference Li C, Zhi D, Wang K, Liu X. MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning. Genome Med. 2022;14:115.PubMedPubMedCentralCrossRef Li C, Zhi D, Wang K, Liu X. MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning. Genome Med. 2022;14:115.PubMedPubMedCentralCrossRef
34.
go back to reference Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020;11:5918.PubMedPubMedCentralCrossRef Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H-J, et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020;11:5918.PubMedPubMedCentralCrossRef
38.
go back to reference Liu H, Liu D-T, Lan S, Yang Y, Huang J, Huang J, et al. ASH1L mutation caused seizures and intellectual disability in twin sisters. J Clin Neurosci. 2021;91:69–74.PubMedCrossRef Liu H, Liu D-T, Lan S, Yang Y, Huang J, Huang J, et al. ASH1L mutation caused seizures and intellectual disability in twin sisters. J Clin Neurosci. 2021;91:69–74.PubMedCrossRef
39.
go back to reference Poirier K, Hubert L, Viot G, Rio M, Billuart P, Besmond C, et al. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum Mutat. 2017;38(8):932–41.PubMedCrossRef Poirier K, Hubert L, Viot G, Rio M, Billuart P, Besmond C, et al. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum Mutat. 2017;38(8):932–41.PubMedCrossRef
40.
go back to reference Thévenon J, Milh M, Feillet F, St-Onge J, Duffourd Y, Jugé C, et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am J Hum Genet. 2014;95:113–20.PubMedPubMedCentralCrossRef Thévenon J, Milh M, Feillet F, St-Onge J, Duffourd Y, Jugé C, et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am J Hum Genet. 2014;95:113–20.PubMedPubMedCentralCrossRef
41.
go back to reference Straub J, Konrad EDH, Grüner J, Toutain A, Bok LA, Cho MT, et al. Missense variants in RHOBTB2 cause a developmental and epileptic encephalopathy in humans, and altered levels cause neurological defects in Drosophila. Am J Hum Genet. 2018;102:44–57.PubMedCrossRef Straub J, Konrad EDH, Grüner J, Toutain A, Bok LA, Cho MT, et al. Missense variants in RHOBTB2 cause a developmental and epileptic encephalopathy in humans, and altered levels cause neurological defects in Drosophila. Am J Hum Genet. 2018;102:44–57.PubMedCrossRef
42.
go back to reference Rochtus A, Olson HE, Smith L, Keith LG, El Achkar C, Taylor A, et al. Genetic diagnoses in epilepsy: the impact of dynamic exome analysis in a pediatric cohort. Epilepsia. 2020;61:249–58.PubMedPubMedCentralCrossRef Rochtus A, Olson HE, Smith L, Keith LG, El Achkar C, Taylor A, et al. Genetic diagnoses in epilepsy: the impact of dynamic exome analysis in a pediatric cohort. Epilepsia. 2020;61:249–58.PubMedPubMedCentralCrossRef
43.
go back to reference Riza AL, Streață I, Roza E, Budișteanu M, Iliescu C, Burloiu C, et al. Phenotypic and genotypic spectrum of early-onset developmental and epileptic encephalopathies: data from a Romanian cohort. Genes (Basel). 2022;13(7):1253.PubMedPubMedCentralCrossRef Riza AL, Streață I, Roza E, Budișteanu M, Iliescu C, Burloiu C, et al. Phenotypic and genotypic spectrum of early-onset developmental and epileptic encephalopathies: data from a Romanian cohort. Genes (Basel). 2022;13(7):1253.PubMedPubMedCentralCrossRef
44.
go back to reference Epilepsy Genetics Initiative. The Epilepsy Genetics Initiative: systematic reanalysis of diagnostic exomes increases yield. Epilepsia. 2019;60(5):797–806.CrossRef Epilepsy Genetics Initiative. The Epilepsy Genetics Initiative: systematic reanalysis of diagnostic exomes increases yield. Epilepsia. 2019;60(5):797–806.CrossRef
47.
go back to reference Mastrogiorgio G, Macchiaiolo M, Buonuomo PS, Bellacchio E, Bordi M, Vecchio D, et al. Clinical and molecular characterization of patients with adenylosuccinate lyase deficiency. Orphanet J Rare Dis. 2021;16:1–10.CrossRef Mastrogiorgio G, Macchiaiolo M, Buonuomo PS, Bellacchio E, Bordi M, Vecchio D, et al. Clinical and molecular characterization of patients with adenylosuccinate lyase deficiency. Orphanet J Rare Dis. 2021;16:1–10.CrossRef
48.
go back to reference Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27(24):8466–79.PubMedPubMedCentralCrossRef Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27(24):8466–79.PubMedPubMedCentralCrossRef
49.
go back to reference Cordova I, Blesson A, Savatt JM, Sveden A, Mahida S, Hazlett H, et al. Expansion of the genotypic and phenotypic spectrum of ASH1L-related syndromic neurodevelopmental disorder. Genes (Basel). 2024;15(4):423.PubMedPubMedCentralCrossRef Cordova I, Blesson A, Savatt JM, Sveden A, Mahida S, Hazlett H, et al. Expansion of the genotypic and phenotypic spectrum of ASH1L-related syndromic neurodevelopmental disorder. Genes (Basel). 2024;15(4):423.PubMedPubMedCentralCrossRef
50.
go back to reference Okur V, Cho MT, Henderson L, Retterer K, Schneider M, Sattler S, et al. De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet. 2016;135(7):699–705.PubMedCrossRef Okur V, Cho MT, Henderson L, Retterer K, Schneider M, Sattler S, et al. De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet. 2016;135(7):699–705.PubMedCrossRef
51.
52.
go back to reference Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet. 2019;64(4):313–22.PubMedCrossRef Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet. 2019;64(4):313–22.PubMedCrossRef
53.
go back to reference Siripurapu V, Meth J, Kobayashi N, Hamaguchi M. DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol. 2005;346:83–9.PubMedCrossRef Siripurapu V, Meth J, Kobayashi N, Hamaguchi M. DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol. 2005;346:83–9.PubMedCrossRef
54.
go back to reference Belal H, Nakashima M, Matsumoto H, Yokochi K, Taniguchi-Ikeda M, Aoto K, et al. De novo variants in RHOBTB2, an atypical Rho GTPase gene, cause epileptic encephalopathy. Hum Mutat. 2018;39:1070–5.PubMedCrossRef Belal H, Nakashima M, Matsumoto H, Yokochi K, Taniguchi-Ikeda M, Aoto K, et al. De novo variants in RHOBTB2, an atypical Rho GTPase gene, cause epileptic encephalopathy. Hum Mutat. 2018;39:1070–5.PubMedCrossRef
55.
go back to reference Zagaglia S, Steel D, Krithika S, Hernandez-Hernandez L, Custodio HM, Gorman KM, et al. RHOBTB2 mutations expand the phenotypic spectrum of alternating hemiplegia of childhood. Neurology. 2021;96:e1539–50.PubMedPubMedCentralCrossRef Zagaglia S, Steel D, Krithika S, Hernandez-Hernandez L, Custodio HM, Gorman KM, et al. RHOBTB2 mutations expand the phenotypic spectrum of alternating hemiplegia of childhood. Neurology. 2021;96:e1539–50.PubMedPubMedCentralCrossRef
56.
go back to reference Langhammer F, Maroofian R, Badar R, Gregor A, Rochman M, Ratliff JB, et al. Genotype-phenotype correlations in RHOBTB2-associated neurodevelopmental disorders. Genet Med. 2023;25: 100885.PubMedCrossRef Langhammer F, Maroofian R, Badar R, Gregor A, Rochman M, Ratliff JB, et al. Genotype-phenotype correlations in RHOBTB2-associated neurodevelopmental disorders. Genet Med. 2023;25: 100885.PubMedCrossRef
57.
go back to reference Fonseca J, Melo C, Ferreira C, Sampaio M, Sousa R, Leão M. RHOBTB2 p. Arg511Trp mutation in early infantile epileptic encephalopathy-64: review and case report. J Pediatr Genet. 2023;12:155–8.PubMedCrossRef Fonseca J, Melo C, Ferreira C, Sampaio M, Sousa R, Leão M. RHOBTB2 p. Arg511Trp mutation in early infantile epileptic encephalopathy-64: review and case report. J Pediatr Genet. 2023;12:155–8.PubMedCrossRef
58.
go back to reference Myers KA, Scheffer IE. Precision medicine approaches for infantile-onset developmental and epileptic encephalopathies. Annu Rev Pharmacol Toxicol. 2022;62:641–62.PubMedCrossRef Myers KA, Scheffer IE. Precision medicine approaches for infantile-onset developmental and epileptic encephalopathies. Annu Rev Pharmacol Toxicol. 2022;62:641–62.PubMedCrossRef
59.
go back to reference Coughlin CR, Gospe SM Jr. Pyridoxine-dependent epilepsy: current perspectives and questions for future research. Ann Child Neurol Soc. 2023;1:24–37.CrossRef Coughlin CR, Gospe SM Jr. Pyridoxine-dependent epilepsy: current perspectives and questions for future research. Ann Child Neurol Soc. 2023;1:24–37.CrossRef
61.
go back to reference Stojiljkovic M, Klaassen K, Djordjevic M, Sarajlija A, Brasil S, Kecman B, et al. Molecular and phenotypic characteristics of seven novel mutations causing branched-chain organic acidurias. Clin Genet. 2016;90:252–7.PubMedCrossRef Stojiljkovic M, Klaassen K, Djordjevic M, Sarajlija A, Brasil S, Kecman B, et al. Molecular and phenotypic characteristics of seven novel mutations causing branched-chain organic acidurias. Clin Genet. 2016;90:252–7.PubMedCrossRef
62.
go back to reference Poothrikovil RP, Al Thihli K, Al Futaisi A, Al MF. Nonketotic hyperglycinemia: two case reports and review. Neurodiagn J. 2019;59:142–51.PubMedCrossRef Poothrikovil RP, Al Thihli K, Al Futaisi A, Al MF. Nonketotic hyperglycinemia: two case reports and review. Neurodiagn J. 2019;59:142–51.PubMedCrossRef
63.
go back to reference Falk MJ, Gai X, Shigematsu M, Vilardo E, Takase R, McCormick E, et al. A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol. 2016;13:477–85.PubMedPubMedCentralCrossRef Falk MJ, Gai X, Shigematsu M, Vilardo E, Takase R, McCormick E, et al. A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol. 2016;13:477–85.PubMedPubMedCentralCrossRef
64.
go back to reference Strzelczyk A, Lagae L, Wilmshurst JM, Brunklaus A, Striano P, Rosenow F, et al. Dravet syndrome: a systematic literature review of the illness burden. Epilepsia Open. 2023;8:1256–70.PubMedPubMedCentralCrossRef Strzelczyk A, Lagae L, Wilmshurst JM, Brunklaus A, Striano P, Rosenow F, et al. Dravet syndrome: a systematic literature review of the illness burden. Epilepsia Open. 2023;8:1256–70.PubMedPubMedCentralCrossRef
65.
go back to reference Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. 2009;46:183–91.PubMedCrossRef Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. 2009;46:183–91.PubMedCrossRef
66.
go back to reference Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, et al. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain. 2022;145:3816–31.PubMedPubMedCentralCrossRef Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, et al. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain. 2022;145:3816–31.PubMedPubMedCentralCrossRef
67.
go back to reference Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140:1316–36.PubMedCrossRef Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140:1316–36.PubMedCrossRef
69.
go back to reference Mulkey SB, Ben-Zeev B, Nicolai J, Carroll JL, Grønborg S, Jiang Y, et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ 2 gain-of-function variants R201C and R201H. Epilepsia. 2017;58:436–45.PubMedPubMedCentralCrossRef Mulkey SB, Ben-Zeev B, Nicolai J, Carroll JL, Grønborg S, Jiang Y, et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ 2 gain-of-function variants R201C and R201H. Epilepsia. 2017;58:436–45.PubMedPubMedCentralCrossRef
70.
go back to reference Hayashida T, Saito Y, Ishii A, Yamada H, Itakura A, Minato T, et al. CACNA1A-related early-onset encephalopathy with myoclonic epilepsy: a case report. Brain Dev. 2018;40:130–3.PubMedCrossRef Hayashida T, Saito Y, Ishii A, Yamada H, Itakura A, Minato T, et al. CACNA1A-related early-onset encephalopathy with myoclonic epilepsy: a case report. Brain Dev. 2018;40:130–3.PubMedCrossRef
71.
go back to reference Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother. 2022;153: 113324.PubMedCrossRef Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother. 2022;153: 113324.PubMedCrossRef
Metadata
Title
Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies
Authors
Marina Andjelkovic
Kristel Klaassen
Anita Skakic
Irena Marjanovic
Ruzica Kravljanac
Maja Djordjevic
Biljana Vucetic Tadic
Bozica Kecman
Sonja Pavlovic
Maja Stojiljkovic
Publication date
14-07-2024
Publisher
Springer International Publishing
Published in
Molecular Diagnosis & Therapy / Issue 5/2024
Print ISSN: 1177-1062
Electronic ISSN: 1179-2000
DOI
https://doi.org/10.1007/s40291-024-00720-2

Other articles of this Issue 5/2024

Molecular Diagnosis & Therapy 5/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more