Skip to main content
Top
Published in:

Open Access 01-12-2024 | Epigenetics | Research

Gain of bipolar disorder-related lncRNA AP1AR-DT in mice induces depressive and anxiety-like behaviors by reducing Negr1-mediated excitatory synaptic transmission

Authors: Shufen Li, Hongyu Ni, Yaping Wang, Xiaohui Wu, Jianqiang Bi, Haiyan Ou, Zhongwei Li, Junjiao Ping, Zhongju Wang, Renhao Chen, Qiong Yang, Meijun Jiang, Liping Cao, Tingyun Jiang, Siqiang Ren, Cunyou Zhao

Published in: BMC Medicine | Issue 1/2024

Login to get access

Abstract

Background

Bipolar disorder is a complex polygenic disorder that is characterized by recurrent episodes of depression and mania, the heterogeneity of which is likely complicated by epigenetic modifications that remain to be elucidated.

Methods

We performed transcriptomic analysis of peripheral blood RNA from monozygotic (MZ) twins discordant for bipolar disorder to identify disease-associated differentially expressed long noncoding RNAs (DE-lncRNAs), which were further validated in the PsychENCODE brain RNA-seq dataset. We then performed behavioral tests, electrophysiological assays, chromatin immunoprecipitation, and PCR to investigate the function of DE-lncRNAs in the mouse and cell models. Statistical analyses were performed using GraphPad Prism 9.0 or SPSS.

Results

We identified a bipolar disorder-associated upregulated long non-coding RNA (lncRNA), AP1AR-DT. We observed that overexpression of AP1AR-DT in the mouse medial prefrontal cortex (mPFC) resulted in a reduction of both the total spine density and the spontaneous excitatory postsynaptic current (sEPSC) frequency of mPFC neurons as well as depressive and anxiety-like behaviors. A combination of the results of brain transcriptome analysis of AP1AR-DT overexpressing mice brains with the known genes associated with bipolar disorder revealed that NEGR1, which encodes neuronal growth regulator 1, is one of the AP1AR-DT targets and is reduced in vivo upon gain of AP1AR-DT in mice. We further demonstrated that overexpression of recombinant Negr1 in the mPFC neurons of AP1AR-DTOE mice ameliorates depressive and anxiety-like behaviors and normalizes the reduced excitatory synaptic transmission induced by the gain of AP1AR-DT. We finally identified that AP1AR-DT reduces NEGR1 expression by competing for the transcriptional activator NRF1 in the overlapping binding site of the NEGR1 promoter region.

Conclusions

The epigenetic and pathophysiological mechanism linking AP1AR-DT to the modulation of depressive and anxiety-like behaviors and excitatory synaptic function provides etiological implications for bipolar disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, Malhi GS, Nierenberg AA, Rosenblat JD, Majeed A, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–56.PubMedCrossRef McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, Malhi GS, Nierenberg AA, Rosenblat JD, Majeed A, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–56.PubMedCrossRef
2.
go back to reference Althoff RR, Faraone SV, Rettew DC, Morley CP, Hudziak JJ. Family, twin, adoption, and molecular genetic studies of juvenile bipolar disorder. Bipolar Disord. 2005;7(6):598–609.PubMedCrossRef Althoff RR, Faraone SV, Rettew DC, Morley CP, Hudziak JJ. Family, twin, adoption, and molecular genetic studies of juvenile bipolar disorder. Bipolar Disord. 2005;7(6):598–609.PubMedCrossRef
4.
go back to reference Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, Mattheisen M, Wang Y, Coleman JRI, Gaspar HA, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51(5):793–803.PubMedPubMedCentralCrossRef Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, Mattheisen M, Wang Y, Coleman JRI, Gaspar HA, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51(5):793–803.PubMedPubMedCentralCrossRef
6.
go back to reference Nikolova VL, Pelton L, Moulton CD, Zorzato D, Cleare AJ, Young AH, Stone JM. The prevalence and incidence of irritable bowel syndrome and inflammatory bowel disease in depression and bipolar disorder: a systematic review and meta-analysis. Psychosom Med. 2022;84(3):313–24.PubMedCrossRef Nikolova VL, Pelton L, Moulton CD, Zorzato D, Cleare AJ, Young AH, Stone JM. The prevalence and incidence of irritable bowel syndrome and inflammatory bowel disease in depression and bipolar disorder: a systematic review and meta-analysis. Psychosom Med. 2022;84(3):313–24.PubMedCrossRef
7.
go back to reference Zovetti N, Perlini C, Brambilla P, Bellani M. Childhood adversities and bipolar disorder: a neuroimaging focus. Epidemiol Psych Sci. 2022;31:31. Zovetti N, Perlini C, Brambilla P, Bellani M. Childhood adversities and bipolar disorder: a neuroimaging focus. Epidemiol Psych Sci. 2022;31:31.
8.
go back to reference Miola A, De Filippis E, Veldic M, Ho AMC, Winham SJ, Mendoza M, Romo-Nava F, Nunez NA, Resendez MG, Prieto ML, et al. The genetics of bipolar disorder with obesity and type 2 diabetes. J Affect Disorders. 2022;313:222–31.PubMedCrossRef Miola A, De Filippis E, Veldic M, Ho AMC, Winham SJ, Mendoza M, Romo-Nava F, Nunez NA, Resendez MG, Prieto ML, et al. The genetics of bipolar disorder with obesity and type 2 diabetes. J Affect Disorders. 2022;313:222–31.PubMedCrossRef
9.
go back to reference Aliperti V, Skonieczna J, Cerase A. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders. Noncoding RNA. 2021;7(2):36.PubMedPubMedCentral Aliperti V, Skonieczna J, Cerase A. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders. Noncoding RNA. 2021;7(2):36.PubMedPubMedCentral
10.
go back to reference Ghafouri-Fard S, Badrlou E, Taheri M, Dursteler KM, Beatrix Bruhl A, Sadeghi-Bahmani D, Brand S. A comprehensive review on the role of non-coding RNAs in the pathophysiology of bipolar disorder. Int J Mol Sci. 2021;22(10):5156.PubMedPubMedCentralCrossRef Ghafouri-Fard S, Badrlou E, Taheri M, Dursteler KM, Beatrix Bruhl A, Sadeghi-Bahmani D, Brand S. A comprehensive review on the role of non-coding RNAs in the pathophysiology of bipolar disorder. Int J Mol Sci. 2021;22(10):5156.PubMedPubMedCentralCrossRef
11.
go back to reference Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yucel M, Gama CS, Dodd S, Dean B, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17.PubMedCrossRef Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yucel M, Gama CS, Dodd S, Dean B, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17.PubMedCrossRef
12.
go back to reference Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2015;17(1):47–62.CrossRef Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2015;17(1):47–62.CrossRef
13.
go back to reference Mattick JS, Mehler MF. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci. 2008;31(5):227–33.PubMedCrossRef Mattick JS, Mehler MF. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci. 2008;31(5):227–33.PubMedCrossRef
15.
go back to reference Kahaei MS, Ghafouri-Fard S, Namvar A, Omrani MD, Sayad A, Taheri M. Association study of a single nucleotide polymorphism in brain cytoplasmic 200 long-noncoding RNA and psychiatric disorders. Metab Brain Dis. 2020;35(7):1095–100.PubMedCrossRef Kahaei MS, Ghafouri-Fard S, Namvar A, Omrani MD, Sayad A, Taheri M. Association study of a single nucleotide polymorphism in brain cytoplasmic 200 long-noncoding RNA and psychiatric disorders. Metab Brain Dis. 2020;35(7):1095–100.PubMedCrossRef
16.
go back to reference Keihani S, Kluever V, Mandad S, Bansal V, Rahman R, Fritsch E, Gomes LC, Gartner A, Kugler S, Urlaub H, et al. The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Sci Adv. 2019;5(12):eaay2670.PubMedPubMedCentralCrossRef Keihani S, Kluever V, Mandad S, Bansal V, Rahman R, Fritsch E, Gomes LC, Gartner A, Kugler S, Urlaub H, et al. The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Sci Adv. 2019;5(12):eaay2670.PubMedPubMedCentralCrossRef
17.
go back to reference Barry G, Briggs JA, Hwang DW, Nayler SP, Fortuna PR, Jonkhout N, Dachet F, Maag JL, Mestdagh P, Singh EM, et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci Rep. 2017;7:40127.PubMedPubMedCentralCrossRef Barry G, Briggs JA, Hwang DW, Nayler SP, Fortuna PR, Jonkhout N, Dachet F, Maag JL, Mestdagh P, Singh EM, et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci Rep. 2017;7:40127.PubMedPubMedCentralCrossRef
18.
go back to reference Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98(3):466–81.PubMedCrossRef Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98(3):466–81.PubMedCrossRef
19.
go back to reference Schloesser RJ, Huang J, Klein PS, Manji HK. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2007;33(1):110–33.PubMedCrossRef Schloesser RJ, Huang J, Klein PS, Manji HK. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2007;33(1):110–33.PubMedCrossRef
20.
go back to reference Grazyna R. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiat. 2000;48(8):766–77.CrossRef Grazyna R. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiat. 2000;48(8):766–77.CrossRef
22.
go back to reference Sher LEO. Manic-depressive illness: bipolar disorders and recurrent depression, second edition by Frederick K. Goodwin, M.D., and Kay Redfield Jamison, Ph.D. New York, Oxford University Press, 2007, 1,288 pp., $99.00. Am J Psychiat. 2008;165(4):541–2.CrossRef Sher LEO. Manic-depressive illness: bipolar disorders and recurrent depression, second edition by Frederick K. Goodwin, M.D., and Kay Redfield Jamison, Ph.D. New York, Oxford University Press, 2007, 1,288 pp., $99.00. Am J Psychiat. 2008;165(4):541–2.CrossRef
23.
go back to reference Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-Tonou N, Tanaka K, Benjamin KJM, Paquola ACM, Erwin JA, Goda Y, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Mol Psychiatry. 2020;25(11):2695–711.PubMedPubMedCentralCrossRef Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-Tonou N, Tanaka K, Benjamin KJM, Paquola ACM, Erwin JA, Goda Y, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Mol Psychiatry. 2020;25(11):2695–711.PubMedPubMedCentralCrossRef
24.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef
25.
go back to reference Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362(6420):1265.CrossRef Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362(6420):1265.CrossRef
26.
go back to reference Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, Liu Z, Ou H, Jiang T, Liang W, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2021;26(8):4511–28.PubMedCrossRef Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, Liu Z, Ou H, Jiang T, Liang W, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2021;26(8):4511–28.PubMedCrossRef
27.
go back to reference Noh K, Lee H, Choi TY, Joo Y, Kim SJ, Kim H, Kim JY, Jahng JW, Lee S, Choi SY, et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry. 2019;24(8):1189–205.PubMedCrossRef Noh K, Lee H, Choi TY, Joo Y, Kim SJ, Kim H, Kim JY, Jahng JW, Lee S, Choi SY, et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry. 2019;24(8):1189–205.PubMedCrossRef
28.
go back to reference Zhang J, Ko S-Y, Liao Y, Kwon Y, Jeon SJ, Sohn A, Cheong JH, Kim DH, Ryu JH. Barnes mazeActivation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice. Neurobiol Learn Memory. 2018;155:568–77.CrossRef Zhang J, Ko S-Y, Liao Y, Kwon Y, Jeon SJ, Sohn A, Cheong JH, Kim DH, Ryu JH. Barnes mazeActivation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice. Neurobiol Learn Memory. 2018;155:568–77.CrossRef
29.
go back to reference Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The Tail Suspension Test. Jove-J Vis Exp. 2012;59(59):e3769. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The Tail Suspension Test. Jove-J Vis Exp. 2012;59(59):e3769.
30.
go back to reference Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. Jove-J Vis Exp 2015;97(97):52587. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. Jove-J Vis Exp 2015;97(97):52587.
31.
go back to reference Chen YC, Kuo HY, Bornschein U, Takahashi H, Chen SY, Lu KM, Yang HY, Chen GM, Lin JR, Lee YH, et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing. Nat Neurosci. 2016;19(11):1513–22.PubMedPubMedCentralCrossRef Chen YC, Kuo HY, Bornschein U, Takahashi H, Chen SY, Lu KM, Yang HY, Chen GM, Lin JR, Lee YH, et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing. Nat Neurosci. 2016;19(11):1513–22.PubMedPubMedCentralCrossRef
32.
go back to reference Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Borte S, Bryois J, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53(6):817–29.PubMedPubMedCentralCrossRef Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Borte S, Bryois J, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53(6):817–29.PubMedPubMedCentralCrossRef
33.
go back to reference Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 2017;23(7):1080–7.PubMedPubMedCentralCrossRef Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 2017;23(7):1080–7.PubMedPubMedCentralCrossRef
34.
go back to reference Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Medicine. 2020;12(1):34.PubMedPubMedCentralCrossRef Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Medicine. 2020;12(1):34.PubMedPubMedCentralCrossRef
35.
go back to reference Chang H, Cai X, Yang ZH, Xiao X, Li M. Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Mol Psychiatry. 2021;26(11):6109–11.PubMedCrossRef Chang H, Cai X, Yang ZH, Xiao X, Li M. Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Mol Psychiatry. 2021;26(11):6109–11.PubMedCrossRef
36.
go back to reference Lai J, Zhang P, Jiang J, Mou T, Li Y, Xi C, Wu L, Gao X, Zhang D, Chen Y, et al. New evidence of gut microbiota involvement in the neuropathogenesis of bipolar depression by TRANK1 modulation: joint clinical and animal data. Front Immunol. 2021;12: 789647.PubMedPubMedCentralCrossRef Lai J, Zhang P, Jiang J, Mou T, Li Y, Xi C, Wu L, Gao X, Zhang D, Chen Y, et al. New evidence of gut microbiota involvement in the neuropathogenesis of bipolar depression by TRANK1 modulation: joint clinical and animal data. Front Immunol. 2021;12: 789647.PubMedPubMedCentralCrossRef
37.
go back to reference Deng YT, Ou YN, Wu BS, Yang YX, Jiang Y, Huang YY, Liu Y, Tan L, Dong Q, Suckling J, et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry. 2022;27(6):2849–57.PubMedCrossRef Deng YT, Ou YN, Wu BS, Yang YX, Jiang Y, Huang YY, Liu Y, Tan L, Dong Q, Suckling J, et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry. 2022;27(6):2849–57.PubMedCrossRef
38.
go back to reference Szczurkowska J, Pischedda F, Pinto B, Manago F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schafer MK, Piccoli G, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral Szczurkowska J, Pischedda F, Pinto B, Manago F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schafer MK, Piccoli G, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral
39.
40.
go back to reference Li S, Li Y, Li X, Liu J, Huo Y, Wang J, Liu Z, Li M, Luo XJ. Regulatory mechanisms of major depressive disorder risk variants. Mol Psychiatry. 2020;25(9):1926–45.PubMedCrossRef Li S, Li Y, Li X, Liu J, Huo Y, Wang J, Liu Z, Li M, Luo XJ. Regulatory mechanisms of major depressive disorder risk variants. Mol Psychiatry. 2020;25(9):1926–45.PubMedCrossRef
41.
go back to reference He S, Zhang H, Liu H, Zhu H. LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics. 2015;31(2):178–86.PubMedCrossRef He S, Zhang H, Liu H, Zhu H. LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics. 2015;31(2):178–86.PubMedCrossRef
42.
go back to reference Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranasic D, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–92.PubMed Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranasic D, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–92.PubMed
43.
go back to reference Preciados M, Yoo C, Roy D. Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci. 2016;17(12):2086.PubMedPubMedCentralCrossRef Preciados M, Yoo C, Roy D. Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci. 2016;17(12):2086.PubMedPubMedCentralCrossRef
44.
go back to reference Wang JL, Tong CW, Chang WT, Huang AM. Novel genes FAM134C, C3orf10 and ENOX1 are regulated by NRF-1 and differentially regulate neurite outgrowth in neuroblastoma cells and hippocampal neurons. Gene. 2013;529(1):7–15.PubMedCrossRef Wang JL, Tong CW, Chang WT, Huang AM. Novel genes FAM134C, C3orf10 and ENOX1 are regulated by NRF-1 and differentially regulate neurite outgrowth in neuroblastoma cells and hippocampal neurons. Gene. 2013;529(1):7–15.PubMedCrossRef
45.
go back to reference Liang W, Hou Y, Huang W, Wang Y, Jiang T, Huang X, Wang Z, Wu F, Zheng J, Zhang J, et al. Loss of schizophrenia-related miR-501–3p in mice impairs sociability and memory by enhancing mGluR5-mediated glutamatergic transmission. Sci Adv. 2022;8(33):eabn7357.PubMedPubMedCentralCrossRef Liang W, Hou Y, Huang W, Wang Y, Jiang T, Huang X, Wang Z, Wu F, Zheng J, Zhang J, et al. Loss of schizophrenia-related miR-501–3p in mice impairs sociability and memory by enhancing mGluR5-mediated glutamatergic transmission. Sci Adv. 2022;8(33):eabn7357.PubMedPubMedCentralCrossRef
46.
go back to reference Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res. 2008;1224:1–11.PubMedCrossRef Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res. 2008;1224:1–11.PubMedCrossRef
47.
go back to reference Singh K, Loreth D, Pottker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, et al. Neuronal growth and behavioral alterations in mice deficient for the psychiatric disease-associated Negr1 gene. Front Mol Neurosci. 2018;11: 30.PubMedPubMedCentralCrossRef Singh K, Loreth D, Pottker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, et al. Neuronal growth and behavioral alterations in mice deficient for the psychiatric disease-associated Negr1 gene. Front Mol Neurosci. 2018;11: 30.PubMedPubMedCentralCrossRef
48.
go back to reference Wang X, Cheng W, Zhu J, Yin H, Chang S, Yue W, Yu H. Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. J Affect Disord. 2020;265:679–86.PubMedCrossRef Wang X, Cheng W, Zhu J, Yin H, Chang S, Yue W, Yu H. Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. J Affect Disord. 2020;265:679–86.PubMedCrossRef
49.
go back to reference Dhar SS, Wong-Riley MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci. 2009;29(2):483–92.PubMedPubMedCentralCrossRef Dhar SS, Wong-Riley MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci. 2009;29(2):483–92.PubMedPubMedCentralCrossRef
50.
go back to reference Zandi PP, Jaffe AE, Goes FS, Burke EE, Collado-Torres L, Huuki-Myers L, Seyedian A, Lin Y, Seifuddin F, Pirooznia M, et al. Amygdala and anterior cingulate transcriptomes from individuals with bipolar disorder reveal downregulated neuroimmune and synaptic pathways. Nat Neurosci. 2022;25(3):381–9.PubMedPubMedCentralCrossRef Zandi PP, Jaffe AE, Goes FS, Burke EE, Collado-Torres L, Huuki-Myers L, Seyedian A, Lin Y, Seifuddin F, Pirooznia M, et al. Amygdala and anterior cingulate transcriptomes from individuals with bipolar disorder reveal downregulated neuroimmune and synaptic pathways. Nat Neurosci. 2022;25(3):381–9.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry. 2021;26(1):186–202.PubMedCrossRef Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry. 2021;26(1):186–202.PubMedCrossRef
Metadata
Title
Gain of bipolar disorder-related lncRNA AP1AR-DT in mice induces depressive and anxiety-like behaviors by reducing Negr1-mediated excitatory synaptic transmission
Authors
Shufen Li
Hongyu Ni
Yaping Wang
Xiaohui Wu
Jianqiang Bi
Haiyan Ou
Zhongwei Li
Junjiao Ping
Zhongju Wang
Renhao Chen
Qiong Yang
Meijun Jiang
Liping Cao
Tingyun Jiang
Siqiang Ren
Cunyou Zhao
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2024
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-024-03725-0

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more