Skip to main content
Top

08-06-2024 | Review

Emerging Roles of Galectin-3 in Pulmonary Diseases

Authors: Qi Jia, Yiyi Yang, Shanglong Yao, Xiangdong Chen, Zhiqiang Hu

Published in: Lung

Login to get access

Abstract

Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Literature
1.
go back to reference Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z (2024) Osteopontin: a novel therapeutic target for pulmonary diseases. Lung 202:25–39PubMedCrossRef Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z (2024) Osteopontin: a novel therapeutic target for pulmonary diseases. Lung 202:25–39PubMedCrossRef
2.
go back to reference Liu FT, Stowell SR (2023) The role of galectins in immunity and infection. Nat Rev Immunol 23:479–494PubMedCrossRef Liu FT, Stowell SR (2023) The role of galectins in immunity and infection. Nat Rev Immunol 23:479–494PubMedCrossRef
3.
go back to reference Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA (2023) Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 22:295–316PubMedCrossRef Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA (2023) Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 22:295–316PubMedCrossRef
4.
go back to reference Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T et al (2016) Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167:973-984.e912PubMedPubMedCentralCrossRef Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T et al (2016) Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167:973-984.e912PubMedPubMedCentralCrossRef
5.
go back to reference Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S et al (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48:2788–2795PubMedCrossRef Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S et al (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48:2788–2795PubMedCrossRef
6.
go back to reference Hu G, Wu J, Gu H, Deng X, Xu W, Feng S et al (2023) Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult. Sci China Life Sci 66:1067–1078PubMedCrossRef Hu G, Wu J, Gu H, Deng X, Xu W, Feng S et al (2023) Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult. Sci China Life Sci 66:1067–1078PubMedCrossRef
7.
go back to reference Van den Brûle FA, Fernandez PL, Buicu C, Liu FT, Jackers P, Lambotte R, Castronovo V (1997) Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn 209:399–405PubMedCrossRef Van den Brûle FA, Fernandez PL, Buicu C, Liu FT, Jackers P, Lambotte R, Castronovo V (1997) Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn 209:399–405PubMedCrossRef
8.
go back to reference Aliberti S, Dela Cruz CS, Amati F, Sotgiu G, Restrepo MI (2021) Community-acquired pneumonia. Lancet 398:906–919PubMedCrossRef Aliberti S, Dela Cruz CS, Amati F, Sotgiu G, Restrepo MI (2021) Community-acquired pneumonia. Lancet 398:906–919PubMedCrossRef
9.
go back to reference MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658PubMedCrossRef MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658PubMedCrossRef
10.
go back to reference Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, Karlsson A, Simpson JL (2019) Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 20:1PubMedPubMedCentralCrossRef Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, Karlsson A, Simpson JL (2019) Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 20:1PubMedPubMedCentralCrossRef
11.
go back to reference Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K et al (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405PubMedPubMedCentralCrossRef Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K et al (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405PubMedPubMedCentralCrossRef
12.
go back to reference Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T et al (2017) Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov 7:1464–1479PubMedPubMedCentralCrossRef Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T et al (2017) Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov 7:1464–1479PubMedPubMedCentralCrossRef
14.
go back to reference Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC et al (2023) An inhaled galectin-3 inhibitor in COVID-19 pneumonitis: a phase Ib/IIa randomized controlled clinical trial (DEFINE). Am J Respir Crit Care Med 207:138–149PubMedCrossRef Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC et al (2023) An inhaled galectin-3 inhibitor in COVID-19 pneumonitis: a phase Ib/IIa randomized controlled clinical trial (DEFINE). Am J Respir Crit Care Med 207:138–149PubMedCrossRef
15.
go back to reference Krześlak A, Lipińska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328PubMed Krześlak A, Lipińska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328PubMed
16.
go back to reference Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q (2021) Galectin-3: a key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci 11:78PubMedPubMedCentralCrossRef Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q (2021) Galectin-3: a key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci 11:78PubMedPubMedCentralCrossRef
17.
go back to reference Yu F, Finley RL Jr, Raz A, Kim HR (2002) Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria: a role for synexin in galectin-3 translocation. J Biol Chem 277:15819–15827PubMedCrossRef Yu F, Finley RL Jr, Raz A, Kim HR (2002) Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria: a role for synexin in galectin-3 translocation. J Biol Chem 277:15819–15827PubMedCrossRef
18.
go back to reference Liu L, Sakai T, Sano N, Fukui K (2004) Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J 380:31–41PubMedPubMedCentralCrossRef Liu L, Sakai T, Sano N, Fukui K (2004) Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J 380:31–41PubMedPubMedCentralCrossRef
19.
go back to reference Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, Kanayama HO, Kim HR, Raz A (2004) Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res 64:3376–3379PubMedCrossRef Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, Kanayama HO, Kim HR, Raz A (2004) Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res 64:3376–3379PubMedCrossRef
20.
go back to reference Park JW, Voss PG, Grabski S, Wang JL, Patterson RJ (2001) Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29:3595–3602PubMedPubMedCentralCrossRef Park JW, Voss PG, Grabski S, Wang JL, Patterson RJ (2001) Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29:3595–3602PubMedPubMedCentralCrossRef
21.
go back to reference Coppin L, Jannin A, Ait Yahya E, Thuillier C, Villenet C, Tardivel M et al (2020) Galectin-3 modulates epithelial cell adaptation to stress at the ER-mitochondria interface. Cell Death Dis 11:360PubMedPubMedCentralCrossRef Coppin L, Jannin A, Ait Yahya E, Thuillier C, Villenet C, Tardivel M et al (2020) Galectin-3 modulates epithelial cell adaptation to stress at the ER-mitochondria interface. Cell Death Dis 11:360PubMedPubMedCentralCrossRef
22.
go back to reference Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B et al (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell 52:69-87.e68PubMedCrossRef Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B et al (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell 52:69-87.e68PubMedCrossRef
23.
go back to reference Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A (1999) Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol 163:5592–5598PubMedCrossRef Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A (1999) Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol 163:5592–5598PubMedCrossRef
24.
go back to reference Piyush T, Chacko AR, Sindrewicz P, Hilkens J, Rhodes JM, Yu LG (2017) Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 24:1937–1947PubMedPubMedCentralCrossRef Piyush T, Chacko AR, Sindrewicz P, Hilkens J, Rhodes JM, Yu LG (2017) Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 24:1937–1947PubMedPubMedCentralCrossRef
25.
go back to reference Milara J, Ballester B, Montero P, Escriva J, Artigues E, Alós M, Pastor-Clerigues A, Morcillo E, Cortijo J (2020) MUC1 intracellular bioactivation mediates lung fibrosis. Thorax 75:132–142PubMedCrossRef Milara J, Ballester B, Montero P, Escriva J, Artigues E, Alós M, Pastor-Clerigues A, Morcillo E, Cortijo J (2020) MUC1 intracellular bioactivation mediates lung fibrosis. Thorax 75:132–142PubMedCrossRef
26.
go back to reference Boza-Serrano A, Ruiz R, Sanchez-Varo R, García-Revilla J, Yang Y, Jimenez-Ferrer I et al (2019) Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol 138:251–273PubMedPubMedCentralCrossRef Boza-Serrano A, Ruiz R, Sanchez-Varo R, García-Revilla J, Yang Y, Jimenez-Ferrer I et al (2019) Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol 138:251–273PubMedPubMedCentralCrossRef
27.
go back to reference Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT (2018) Galectin-3 enhances avian H5N1 influenza a virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am J Pathol 188:1031–1042PubMedCrossRef Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT (2018) Galectin-3 enhances avian H5N1 influenza a virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am J Pathol 188:1031–1042PubMedCrossRef
28.
go back to reference Almeida F, Wolf JM, da Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM et al (2017) Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun 8:1968PubMedPubMedCentralCrossRef Almeida F, Wolf JM, da Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM et al (2017) Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun 8:1968PubMedPubMedCentralCrossRef
29.
go back to reference Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168:1813–1822PubMedCrossRef Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168:1813–1822PubMedCrossRef
30.
go back to reference Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S (2008) Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J Immunol 180:2466–2473PubMedCrossRef Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S (2008) Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J Immunol 180:2466–2473PubMedCrossRef
31.
go back to reference Gajovic N, Markovic SS, Jurisevic M, Jovanovic M, Arsenijevic N, Mijailovic Z, Jovanovic M, Jovanovic I (2023) Galectin-3 as an important prognostic marker for COVID-19 severity. Sci Rep 13:1460PubMedPubMedCentralCrossRef Gajovic N, Markovic SS, Jurisevic M, Jovanovic M, Arsenijevic N, Mijailovic Z, Jovanovic M, Jovanovic I (2023) Galectin-3 as an important prognostic marker for COVID-19 severity. Sci Rep 13:1460PubMedPubMedCentralCrossRef
32.
go back to reference De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11:3434PubMedPubMedCentralCrossRef De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11:3434PubMedPubMedCentralCrossRef
33.
go back to reference Murphy SL, Halvorsen B, Holter JC, Huse C, Tveita A, Trøseid M et al (2023) Circulating markers of extracellular matrix remodelling in severe COVID-19 patients. J Intern Med 294:784–797PubMedCrossRef Murphy SL, Halvorsen B, Holter JC, Huse C, Tveita A, Trøseid M et al (2023) Circulating markers of extracellular matrix remodelling in severe COVID-19 patients. J Intern Med 294:784–797PubMedCrossRef
34.
go back to reference Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J (2023) Epithelial galectin-3 induced the mitochondrial complex inhibition and cell cycle arrest of CD8(+) T cells in severe/critical COVID-19. Int J Mol Sci 24:dmm032086 Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J (2023) Epithelial galectin-3 induced the mitochondrial complex inhibition and cell cycle arrest of CD8(+) T cells in severe/critical COVID-19. Int J Mol Sci 24:dmm032086
35.
36.
go back to reference Behloul N, Baha S, Shi R, Meng J (2020) Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Virus Res 286:198058PubMedCrossRef Behloul N, Baha S, Shi R, Meng J (2020) Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Virus Res 286:198058PubMedCrossRef
37.
go back to reference Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D (2023) An oral galectin inhibitor in COVID-19-a phase II randomized controlled trial. Vaccines 11:731PubMedPubMedCentralCrossRef Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D (2023) An oral galectin inhibitor in COVID-19-a phase II randomized controlled trial. Vaccines 11:731PubMedPubMedCentralCrossRef
38.
go back to reference Pedicillo MC, De Stefano IS, Zamparese R, Barile R, Meccariello M, Agostinone A et al (2023) The role of toll-like receptor-4 in macrophage imbalance in lethal COVID-19 lung disease, and its correlation with galectin-3. Int J Mol Sci 24:13259PubMedPubMedCentralCrossRef Pedicillo MC, De Stefano IS, Zamparese R, Barile R, Meccariello M, Agostinone A et al (2023) The role of toll-like receptor-4 in macrophage imbalance in lethal COVID-19 lung disease, and its correlation with galectin-3. Int J Mol Sci 24:13259PubMedPubMedCentralCrossRef
39.
go back to reference Portacci A, Amendolara M, Quaranta VN, Iorillo I, Buonamico E, Diaferia F et al (2024) Can Galectin-3 be a reliable predictive biomarker for post-COVID syndrome development? Respir Med 226:107628PubMedCrossRef Portacci A, Amendolara M, Quaranta VN, Iorillo I, Buonamico E, Diaferia F et al (2024) Can Galectin-3 be a reliable predictive biomarker for post-COVID syndrome development? Respir Med 226:107628PubMedCrossRef
40.
go back to reference Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR (2015) Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 65:1–16PubMedPubMedCentralCrossRef Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR (2015) Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 65:1–16PubMedPubMedCentralCrossRef
41.
go back to reference Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH et al (2023) Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 30:14PubMedPubMedCentralCrossRef Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH et al (2023) Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 30:14PubMedPubMedCentralCrossRef
42.
go back to reference Snarr BD, St-Pierre G, Ralph B, Lehoux M, Sato Y, Rancourt A et al (2020) Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog 16:e1008741PubMedPubMedCentralCrossRef Snarr BD, St-Pierre G, Ralph B, Lehoux M, Sato Y, Rancourt A et al (2020) Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog 16:e1008741PubMedPubMedCentralCrossRef
43.
go back to reference Rezende CP, Brito P, Da Silva TA, Pessoni AM, Ramalho LNZ, Almeida F (2021) Influence of galectin-3 on the innate immune response during experimental cryptococcosis. J Fungi (Basel) 7:492PubMedPubMedCentralCrossRef Rezende CP, Brito P, Da Silva TA, Pessoni AM, Ramalho LNZ, Almeida F (2021) Influence of galectin-3 on the innate immune response during experimental cryptococcosis. J Fungi (Basel) 7:492PubMedPubMedCentralCrossRef
44.
go back to reference Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC et al (2013) Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 183:1209–1222PubMedPubMedCentralCrossRef Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC et al (2013) Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 183:1209–1222PubMedPubMedCentralCrossRef
46.
go back to reference Fernandes Bertocchi AP, Campanhole G, Wang PH, Gonçalves GM, Damião MJ, Cenedeze MA et al (2008) A role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transpl Int 21:999–1007PubMedCrossRef Fernandes Bertocchi AP, Campanhole G, Wang PH, Gonçalves GM, Damião MJ, Cenedeze MA et al (2008) A role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transpl Int 21:999–1007PubMedCrossRef
47.
go back to reference Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M et al (2016) Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. J Crohns Colitis 10:593–606PubMedPubMedCentralCrossRef Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M et al (2016) Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. J Crohns Colitis 10:593–606PubMedPubMedCentralCrossRef
48.
go back to reference Ferreira RG, Rodrigues LC, Nascimento DC, Kanashiro A, Melo PH, Borges VF et al (2018) Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. J Infect 77:391–397PubMedCrossRef Ferreira RG, Rodrigues LC, Nascimento DC, Kanashiro A, Melo PH, Borges VF et al (2018) Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. J Infect 77:391–397PubMedCrossRef
49.
go back to reference Portacci A, Diaferia F, Santomasi C, Dragonieri S, Boniello E, Di Serio F, Carpagnano GE (2021) Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med 187:106556PubMedPubMedCentralCrossRef Portacci A, Diaferia F, Santomasi C, Dragonieri S, Boniello E, Di Serio F, Carpagnano GE (2021) Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med 187:106556PubMedPubMedCentralCrossRef
50.
go back to reference Humphries DC, Mills R, Boz C, McHugh BJ, Hirani N, Rossi AG et al (2022) Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation. Front Pharmacol 13:949264PubMedPubMedCentralCrossRef Humphries DC, Mills R, Boz C, McHugh BJ, Hirani N, Rossi AG et al (2022) Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation. Front Pharmacol 13:949264PubMedPubMedCentralCrossRef
51.
go back to reference Humphries DC, Mills R, Dobie R, Henderson NC, Sethi T, Mackinnon AC (2021) Selective myeloid depletion of galectin-3 offers protection against acute and chronic lung injury. Front Pharmacol 12:715986PubMedPubMedCentralCrossRef Humphries DC, Mills R, Dobie R, Henderson NC, Sethi T, Mackinnon AC (2021) Selective myeloid depletion of galectin-3 offers protection against acute and chronic lung injury. Front Pharmacol 12:715986PubMedPubMedCentralCrossRef
52.
go back to reference Liu H, Zhang L, Liu Z, Lin J, He X, Wu S et al (2023) Galectin-3 as TREM2 upstream factor contributes to lung ischemia-reperfusion injury by regulating macrophage polarization. iScience 26:107496PubMedPubMedCentralCrossRef Liu H, Zhang L, Liu Z, Lin J, He X, Wu S et al (2023) Galectin-3 as TREM2 upstream factor contributes to lung ischemia-reperfusion injury by regulating macrophage polarization. iScience 26:107496PubMedPubMedCentralCrossRef
53.
go back to reference Sunil VR, Francis M, Vayas KN, Cervelli JA, Choi H, Laskin JD, Laskin DL (2015) Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3. Toxicol Appl Pharmacol 284:236–245PubMedPubMedCentralCrossRef Sunil VR, Francis M, Vayas KN, Cervelli JA, Choi H, Laskin JD, Laskin DL (2015) Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3. Toxicol Appl Pharmacol 284:236–245PubMedPubMedCentralCrossRef
54.
go back to reference Lee JK, Lee JY, Kim DK, Yoon HI, Jeong I, Heo EY et al (2019) Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: a prospective, multicentre, randomised, open-label, phase 2 trial. Lancet Infect Dis 19:46–55PubMedCrossRef Lee JK, Lee JY, Kim DK, Yoon HI, Jeong I, Heo EY et al (2019) Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: a prospective, multicentre, randomised, open-label, phase 2 trial. Lancet Infect Dis 19:46–55PubMedCrossRef
55.
go back to reference Beatty WL, Rhoades ER, Hsu DK, Liu FT, Russell DG (2002) Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell Microbiol 4:167–176PubMedCrossRef Beatty WL, Rhoades ER, Hsu DK, Liu FT, Russell DG (2002) Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell Microbiol 4:167–176PubMedCrossRef
56.
go back to reference de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS et al (2018) Imbalance of NET and alpha-1-antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage. Front Immunol 9:3147PubMedCrossRef de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS et al (2018) Imbalance of NET and alpha-1-antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage. Front Immunol 9:3147PubMedCrossRef
57.
go back to reference Barboni E, Coade S, Fiori A (2005) The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett 579:6749–6755PubMedCrossRef Barboni E, Coade S, Fiori A (2005) The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett 579:6749–6755PubMedCrossRef
58.
go back to reference Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T et al (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39:13–27PubMedPubMedCentralCrossRef Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T et al (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39:13–27PubMedPubMedCentralCrossRef
59.
go back to reference Kumar S, Chauhan S, Jain A, Ponpuak M, Choi SW, Mudd M et al (2017) Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy 13:1086–1087PubMedPubMedCentralCrossRef Kumar S, Chauhan S, Jain A, Ponpuak M, Choi SW, Mudd M et al (2017) Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy 13:1086–1087PubMedPubMedCentralCrossRef
60.
go back to reference Higham A, Quinn AM, Cançado JED, Singh D (2019) The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 20:49PubMedPubMedCentralCrossRef Higham A, Quinn AM, Cançado JED, Singh D (2019) The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 20:49PubMedPubMedCentralCrossRef
61.
go back to reference Pilette C, Colinet B, Kiss R, André S, Kaltner H, Gabius HJ et al (2007) Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD. Eur Respir J 29:914–922PubMedCrossRef Pilette C, Colinet B, Kiss R, André S, Kaltner H, Gabius HJ et al (2007) Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD. Eur Respir J 29:914–922PubMedCrossRef
62.
go back to reference Araya J, Saito N, Hosaka Y, Ichikawa A, Kadota T, Fujita Y et al (2021) Impaired TRIM16-mediated lysophagy in chronic obstructive pulmonary disease pathogenesis. J Immunol 207:65–76PubMedCrossRef Araya J, Saito N, Hosaka Y, Ichikawa A, Kadota T, Fujita Y et al (2021) Impaired TRIM16-mediated lysophagy in chronic obstructive pulmonary disease pathogenesis. J Immunol 207:65–76PubMedCrossRef
63.
go back to reference Sundqvist M, Andelid K, Ekberg-Jansson A, Bylund J, Karlsson-Bengtsson A, Lindén A (2021) Systemic galectin-3 in smokers with chronic obstructive pulmonary disease and chronic bronchitis: the impact of exacerbations. Int J Chron Obstruct Pulmon Dis 16:367–377PubMedPubMedCentralCrossRef Sundqvist M, Andelid K, Ekberg-Jansson A, Bylund J, Karlsson-Bengtsson A, Lindén A (2021) Systemic galectin-3 in smokers with chronic obstructive pulmonary disease and chronic bronchitis: the impact of exacerbations. Int J Chron Obstruct Pulmon Dis 16:367–377PubMedPubMedCentralCrossRef
64.
go back to reference Pouwels SD, Hesse L, Faiz A, Lubbers J, Bodha PK, Ten Hacken NH, van Oosterhout AJ, Nawijn MC, Heijink IH (2016) Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 311:L881-l892PubMedCrossRef Pouwels SD, Hesse L, Faiz A, Lubbers J, Bodha PK, Ten Hacken NH, van Oosterhout AJ, Nawijn MC, Heijink IH (2016) Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 311:L881-l892PubMedCrossRef
65.
67.
go back to reference Gao P, Gibson PG, Baines KJ, Yang IA, Upham JW, Reynolds PN et al (2015) Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respir Res 16:5PubMedPubMedCentralCrossRef Gao P, Gibson PG, Baines KJ, Yang IA, Upham JW, Reynolds PN et al (2015) Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respir Res 16:5PubMedPubMedCentralCrossRef
68.
go back to reference Gülen T, Teufelberger A, Ekoff M, Westerberg CM, Lyberg K, Dahlén SE, Dahlén B, Nilsson G (2021) Distinct plasma biomarkers confirm the diagnosis of mastocytosis and identify increased risk of anaphylaxis. J Allergy Clin Immunol 148:889–894PubMedCrossRef Gülen T, Teufelberger A, Ekoff M, Westerberg CM, Lyberg K, Dahlén SE, Dahlén B, Nilsson G (2021) Distinct plasma biomarkers confirm the diagnosis of mastocytosis and identify increased risk of anaphylaxis. J Allergy Clin Immunol 148:889–894PubMedCrossRef
69.
go back to reference Huang X, Tan X, Liang Y, Hou C, Qu D, Li M, Huang Q (2019) Differential DAMP release was observed in the sputum of COPD, asthma and asthma-COPD overlap (ACO) patients. Sci Rep 9:19241PubMedPubMedCentralCrossRef Huang X, Tan X, Liang Y, Hou C, Qu D, Li M, Huang Q (2019) Differential DAMP release was observed in the sputum of COPD, asthma and asthma-COPD overlap (ACO) patients. Sci Rep 9:19241PubMedPubMedCentralCrossRef
70.
go back to reference Sanchez-Cuellar S, de la Fuente H, Cruz-Adalia A, Lamana A, Cibrian D, Giron RM, Vara A, Sanchez-Madrid F, Ancochea J (2012) Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. Clin Exp Immunol 170:365–374PubMedPubMedCentralCrossRef Sanchez-Cuellar S, de la Fuente H, Cruz-Adalia A, Lamana A, Cibrian D, Giron RM, Vara A, Sanchez-Madrid F, Ancochea J (2012) Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. Clin Exp Immunol 170:365–374PubMedPubMedCentralCrossRef
71.
go back to reference Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Bartezaghi M, Saccheri F, Canonica GW (2020) Plasma Galectin-3 and urine proteomics predict FEV(1) improvement in omalizumab-treated patients with severe allergic asthma: Results from the PROXIMA sub-study. World Allergy Organ J 13:100095PubMedPubMedCentralCrossRef Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Bartezaghi M, Saccheri F, Canonica GW (2020) Plasma Galectin-3 and urine proteomics predict FEV(1) improvement in omalizumab-treated patients with severe allergic asthma: Results from the PROXIMA sub-study. World Allergy Organ J 13:100095PubMedPubMedCentralCrossRef
72.
go back to reference Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L et al (2017) Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy 7:6PubMedPubMedCentralCrossRef Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L et al (2017) Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy 7:6PubMedPubMedCentralCrossRef
73.
go back to reference Mauri P, Riccio AM, Rossi R, Di Silvestre D, Benazzi L, De Ferrari L, Dal Negro RW, Holgate ST, Canonica GW (2014) Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett 162:2–10PubMedCrossRef Mauri P, Riccio AM, Rossi R, Di Silvestre D, Benazzi L, De Ferrari L, Dal Negro RW, Holgate ST, Canonica GW (2014) Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett 162:2–10PubMedCrossRef
74.
go back to reference Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112:389–397PubMedPubMedCentralCrossRef Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112:389–397PubMedPubMedCentralCrossRef
75.
go back to reference Karlsson A, Christenson K, Matlak M, Björstad A, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19:16–20PubMedCrossRef Karlsson A, Christenson K, Matlak M, Björstad A, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19:16–20PubMedCrossRef
76.
go back to reference del Pozo V, Rojo M, Rubio ML, Cortegano I, Cárdaba B, Gallardo S et al (2002) Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 166:732–737PubMedCrossRef del Pozo V, Rojo M, Rubio ML, Cortegano I, Cárdaba B, Gallardo S et al (2002) Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 166:732–737PubMedCrossRef
77.
go back to reference López E, del Pozo V, Miguel T, Sastre B, Seoane C, Civantos E et al (2006) Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 176:1943–1950PubMedCrossRef López E, del Pozo V, Miguel T, Sastre B, Seoane C, Civantos E et al (2006) Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 176:1943–1950PubMedCrossRef
78.
go back to reference Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L et al (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165:2045–2053PubMedPubMedCentralCrossRef Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L et al (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165:2045–2053PubMedPubMedCentralCrossRef
79.
go back to reference Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P (2010) Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol 185:1205–1214PubMedCrossRef Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P (2010) Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol 185:1205–1214PubMedCrossRef
80.
go back to reference Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311PubMedCrossRef Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311PubMedCrossRef
81.
go back to reference Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH, Chun KH (2010) Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138:1035–1045PubMedCrossRef Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH, Chun KH (2010) Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138:1035–1045PubMedCrossRef
82.
go back to reference Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12:6709–6715PubMedCrossRef Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12:6709–6715PubMedCrossRef
83.
go back to reference Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134PubMedCrossRef Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134PubMedCrossRef
84.
go back to reference Song M, Pan Q, Yang J, He J, Zeng J, Cheng S et al (2020) Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 123:1521–1534PubMedPubMedCentralCrossRef Song M, Pan Q, Yang J, He J, Zeng J, Cheng S et al (2020) Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 123:1521–1534PubMedPubMedCentralCrossRef
85.
go back to reference Pacis RA, Pilat MJ, Pienta KJ, Wojno K, Raz A, Hogan V, Cooper CR (2000) Decreased galectin-3 expression in prostate cancer. Prostate 44:118–123PubMedCrossRef Pacis RA, Pilat MJ, Pienta KJ, Wojno K, Raz A, Hogan V, Cooper CR (2000) Decreased galectin-3 expression in prostate cancer. Prostate 44:118–123PubMedCrossRef
86.
go back to reference Chen X, Yu C, Liu X, Liu B, Wu X, Wu J et al (2022) Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun 13:7578PubMedPubMedCentralCrossRef Chen X, Yu C, Liu X, Liu B, Wu X, Wu J et al (2022) Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun 13:7578PubMedPubMedCentralCrossRef
87.
go back to reference Yoshimura A, Gemma A, Hosoya Y, Komaki E, Hosomi Y, Okano T et al (2003) Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer 37:159–164PubMedCrossRef Yoshimura A, Gemma A, Hosoya Y, Komaki E, Hosomi Y, Okano T et al (2003) Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer 37:159–164PubMedCrossRef
88.
go back to reference Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44:339–344PubMedCrossRef Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44:339–344PubMedCrossRef
89.
go back to reference Puglisi F, Minisini AM, Barbone F, Intersimone D, Aprile G, Puppin C et al (2004) Galectin-3 expression in non-small cell lung carcinoma. Cancer Lett 212:233–239PubMedCrossRef Puglisi F, Minisini AM, Barbone F, Intersimone D, Aprile G, Puppin C et al (2004) Galectin-3 expression in non-small cell lung carcinoma. Cancer Lett 212:233–239PubMedCrossRef
90.
go back to reference Sharma JR, Agraval H, Yadav UCS (2023) Cigarette smoke induces epithelial-to-mesenchymal transition, stemness, and metastasis in lung adenocarcinoma cells via upregulated RUNX-2/galectin-3 pathway. Life Sci 318:121480PubMedCrossRef Sharma JR, Agraval H, Yadav UCS (2023) Cigarette smoke induces epithelial-to-mesenchymal transition, stemness, and metastasis in lung adenocarcinoma cells via upregulated RUNX-2/galectin-3 pathway. Life Sci 318:121480PubMedCrossRef
91.
go back to reference Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3:1122PubMedCrossRef Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3:1122PubMedCrossRef
92.
go back to reference Pokhare S, Sharma UC, Attwood K, Mansoor S (2022) Clinical significance of galectin-3 expression in squamous cell carcinoma of lung. J Cancer Sci Clin Ther 6:322–327PubMedPubMedCentral Pokhare S, Sharma UC, Attwood K, Mansoor S (2022) Clinical significance of galectin-3 expression in squamous cell carcinoma of lung. J Cancer Sci Clin Ther 6:322–327PubMedPubMedCentral
93.
go back to reference Capalbo C, Scafetta G, Filetti M, Marchetti P, Bartolazzi A (2019) Predictive biomarkers for checkpoint inhibitor-based immunotherapy: the galectin-3 signature in NSCLCs. Int J Mol Sci 20:1607PubMedPubMedCentralCrossRef Capalbo C, Scafetta G, Filetti M, Marchetti P, Bartolazzi A (2019) Predictive biomarkers for checkpoint inhibitor-based immunotherapy: the galectin-3 signature in NSCLCs. Int J Mol Sci 20:1607PubMedPubMedCentralCrossRef
94.
go back to reference Kusuhara S, Igawa S, Ichinoe M, Nagashio R, Kuchitsu Y, Hiyoshi Y et al (2021) Prognostic significance of galectin-3 expression in patients with resected NSCLC treated with platinum-based adjuvant chemotherapy. Thorac Cancer 12:1570–1578PubMedPubMedCentralCrossRef Kusuhara S, Igawa S, Ichinoe M, Nagashio R, Kuchitsu Y, Hiyoshi Y et al (2021) Prognostic significance of galectin-3 expression in patients with resected NSCLC treated with platinum-based adjuvant chemotherapy. Thorac Cancer 12:1570–1578PubMedPubMedCentralCrossRef
95.
go back to reference Abdel-Aziz HO, Murai Y, Takasaki I, Tabuchi Y, Zheng HC, Nomoto K et al (2008) Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: an oligonucleotide microarray study. J Cancer Res Clin Oncol 134:777–788PubMedCrossRef Abdel-Aziz HO, Murai Y, Takasaki I, Tabuchi Y, Zheng HC, Nomoto K et al (2008) Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: an oligonucleotide microarray study. J Cancer Res Clin Oncol 134:777–788PubMedCrossRef
96.
go back to reference Vuong L, Kouverianou E, Rooney CM, McHugh BJ, Howie SEM, Gregory CD et al (2019) An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res 79:1480–1492PubMedCrossRef Vuong L, Kouverianou E, Rooney CM, McHugh BJ, Howie SEM, Gregory CD et al (2019) An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res 79:1480–1492PubMedCrossRef
97.
go back to reference Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L (2018) Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 18:580PubMedPubMedCentralCrossRef Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L (2018) Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 18:580PubMedPubMedCentralCrossRef
98.
go back to reference Cao Z, Hao Z, Xin M, Yu L, Wang L, Zhang Y, Zhang X, Guo X (2018) Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44. Lab Invest 98:1642–1656PubMedCrossRef Cao Z, Hao Z, Xin M, Yu L, Wang L, Zhang Y, Zhang X, Guo X (2018) Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44. Lab Invest 98:1642–1656PubMedCrossRef
99.
go back to reference Kataoka Y, Ohshio Y, Teramoto K, Igarashi T, Asai T, Hanaoka J (2019) Hypoxia-induced galectin-3 enhances RhoA function to activate the motility of tumor cells in non-small cell lung cancer. Oncol Rep 41:853–862PubMed Kataoka Y, Ohshio Y, Teramoto K, Igarashi T, Asai T, Hanaoka J (2019) Hypoxia-induced galectin-3 enhances RhoA function to activate the motility of tumor cells in non-small cell lung cancer. Oncol Rep 41:853–862PubMed
100.
go back to reference Reck M, Carbone DP, Garassino M, Barlesi F (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110PubMedCrossRef Reck M, Carbone DP, Garassino M, Barlesi F (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110PubMedCrossRef
101.
go back to reference Zhang H, Liu P, Zhang Y, Han L, Hu Z, Cai Z, Cai J (2021) Inhibition of galectin-3 augments the antitumor efficacy of PD-L1 blockade in non-small-cell lung cancer. FEBS Open Bio 11:911–920PubMedPubMedCentralCrossRef Zhang H, Liu P, Zhang Y, Han L, Hu Z, Cai Z, Cai J (2021) Inhibition of galectin-3 augments the antitumor efficacy of PD-L1 blockade in non-small-cell lung cancer. FEBS Open Bio 11:911–920PubMedPubMedCentralCrossRef
102.
103.
go back to reference Kuo HY, Hsu HT, Chen YC, Chang YW, Liu FT, Wu CW (2016) Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology 26:155–165PubMedCrossRef Kuo HY, Hsu HT, Chen YC, Chang YW, Liu FT, Wu CW (2016) Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology 26:155–165PubMedCrossRef
104.
go back to reference Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY, Sun KH (2015) Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget 6:4936–4952PubMedCrossRef Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY, Sun KH (2015) Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget 6:4936–4952PubMedCrossRef
105.
go back to reference Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC et al (2014) An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 16:457–468PubMedPubMedCentralCrossRef Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC et al (2014) An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 16:457–468PubMedPubMedCentralCrossRef
106.
go back to reference Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311PubMed Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311PubMed
107.
go back to reference Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, Tian Z (2014) Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem 289:33311–33319PubMedPubMedCentralCrossRef Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, Tian Z (2014) Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem 289:33311–33319PubMedPubMedCentralCrossRef
108.
go back to reference Jia W, Kidoya H, Yamakawa D, Naito H, Takakura N (2013) Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831PubMedCrossRef Jia W, Kidoya H, Yamakawa D, Naito H, Takakura N (2013) Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831PubMedCrossRef
109.
go back to reference Wang T, Chu Z, Lin H, Jiang J, Zhou X, Liang X (2014) Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice. Mol Biol Rep 41:4069–4076PubMedCrossRef Wang T, Chu Z, Lin H, Jiang J, Zhou X, Liang X (2014) Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice. Mol Biol Rep 41:4069–4076PubMedCrossRef
110.
go back to reference Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF et al (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–424PubMedCrossRef Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF et al (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–424PubMedCrossRef
111.
go back to reference Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K et al (2010) A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 70:7476–7488PubMedCrossRef Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K et al (2010) A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 70:7476–7488PubMedCrossRef
112.
go back to reference Reticker-Flynn NE, Bhatia SN (2015) Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 5:168–181PubMedCrossRef Reticker-Flynn NE, Bhatia SN (2015) Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 5:168–181PubMedCrossRef
113.
go back to reference Mabbitt J, Holyer ID, Roper JA, Nilsson UJ, Zetterberg FR, Vuong L, Mackinnon AC, Pedersen A, Slack RJ (2023) Resistance to anti-PD-1/anti-PD-L1: galectin-3 inhibition with GB1211 reverses galectin-3-induced blockade of pembrolizumab and atezolizumab binding to PD-1/PD-L1. Front Immunol 14:1250559PubMedPubMedCentralCrossRef Mabbitt J, Holyer ID, Roper JA, Nilsson UJ, Zetterberg FR, Vuong L, Mackinnon AC, Pedersen A, Slack RJ (2023) Resistance to anti-PD-1/anti-PD-L1: galectin-3 inhibition with GB1211 reverses galectin-3-induced blockade of pembrolizumab and atezolizumab binding to PD-1/PD-L1. Front Immunol 14:1250559PubMedPubMedCentralCrossRef
115.
go back to reference Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD et al (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102:390–396PubMedCrossRef Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD et al (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102:390–396PubMedCrossRef
116.
go back to reference Luo H, Liu B, Zhao L, He J, Li T, Zha L et al (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11:673-683.e673PubMedCrossRef Luo H, Liu B, Zhao L, He J, Li T, Zha L et al (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11:673-683.e673PubMedCrossRef
117.
go back to reference Scelsi L, Ghio S, Matrone B, Mannucci L, Klersy C, Valaperta S et al (2020) Galectin-3 plasma levels are associated with risk profiles in pulmonary arterial hypertension. Diagnostics 10:19CrossRef Scelsi L, Ghio S, Matrone B, Mannucci L, Klersy C, Valaperta S et al (2020) Galectin-3 plasma levels are associated with risk profiles in pulmonary arterial hypertension. Diagnostics 10:19CrossRef
118.
go back to reference He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11:275-289.e272PubMedCrossRef He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11:275-289.e272PubMedCrossRef
119.
go back to reference Li T, Zha L, Luo H, Li S, Zhao L, He J et al (2019) Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Aging Dis 10:731–745PubMedPubMedCentralCrossRef Li T, Zha L, Luo H, Li S, Zhao L, He J et al (2019) Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Aging Dis 10:731–745PubMedPubMedCentralCrossRef
120.
go back to reference Barman SA, Li X, Haigh S, Kondrikov D, Mahboubi K, Bordan Z et al (2019) Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol 316:L784-l797PubMedPubMedCentralCrossRef Barman SA, Li X, Haigh S, Kondrikov D, Mahboubi K, Bordan Z et al (2019) Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol 316:L784-l797PubMedPubMedCentralCrossRef
121.
go back to reference Cao N, Tang X, Gao R, Kong L, Zhang J, Qin W et al (2021) Galectin-3 participates in PASMC migration and proliferation by interacting with TGF-β1. Life Sci 274:119347PubMedCrossRef Cao N, Tang X, Gao R, Kong L, Zhang J, Qin W et al (2021) Galectin-3 participates in PASMC migration and proliferation by interacting with TGF-β1. Life Sci 274:119347PubMedCrossRef
122.
go back to reference Zhang Q, Li W, Zhu Y, Wang Q, Zhai C, Shi W et al (2021) Activation of AMPK inhibits galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP. Mol Cell Biochem 476:3037–3049PubMedCrossRef Zhang Q, Li W, Zhu Y, Wang Q, Zhai C, Shi W et al (2021) Activation of AMPK inhibits galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP. Mol Cell Biochem 476:3037–3049PubMedCrossRef
123.
go back to reference Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S et al (2018) Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 314:L256-l275PubMed Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S et al (2018) Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 314:L256-l275PubMed
124.
go back to reference Luo H, Zhao L, Ou Z, Li T, Liu Y, Yu Z (2023) Novel lncRNA LNC_000113 drives the activation of pulmonary adventitial fibroblasts through modulating PTEN/Akt/FoxO1 pathway. J Cardiovasc Dev Dis 10:1 Luo H, Zhao L, Ou Z, Li T, Liu Y, Yu Z (2023) Novel lncRNA LNC_000113 drives the activation of pulmonary adventitial fibroblasts through modulating PTEN/Akt/FoxO1 pathway. J Cardiovasc Dev Dis 10:1
125.
go back to reference Barman SA, Bordan Z, Batori R, Haigh S, Fulton DJR (2021) Galectin-3 promotes ROS, inflammation, and vascular fibrosis in pulmonary arterial hypertension. Adv Exp Med Biol 1303:13–32PubMedCrossRef Barman SA, Bordan Z, Batori R, Haigh S, Fulton DJR (2021) Galectin-3 promotes ROS, inflammation, and vascular fibrosis in pulmonary arterial hypertension. Adv Exp Med Biol 1303:13–32PubMedCrossRef
126.
go back to reference Geng Y, Li L, Yan J, Liu K, Yang A, Zhang L et al (2022) PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun 13:7114PubMedPubMedCentralCrossRef Geng Y, Li L, Yan J, Liu K, Yang A, Zhang L et al (2022) PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun 13:7114PubMedPubMedCentralCrossRef
127.
go back to reference Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256PubMedPubMedCentralCrossRef Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256PubMedPubMedCentralCrossRef
128.
go back to reference Jiang JX, Chen X, Hsu DK, Baghy K, Serizawa N, Scott F et al (2012) Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 302:G439-446PubMedCrossRef Jiang JX, Chen X, Hsu DK, Baghy K, Serizawa N, Scott F et al (2012) Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 302:G439-446PubMedCrossRef
129.
go back to reference Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245-253PubMedCrossRef Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245-253PubMedCrossRef
130.
go back to reference Cullinane AR, Yeager C, Dorward H, Carmona-Rivera C, Wu HP, Moss J et al (2014) Dysregulation of galectin-3: implications for Hermansky-Pudlak syndrome pulmonary fibrosis. Am J Respir Cell Mol Biol 50:605–613PubMedPubMedCentralCrossRef Cullinane AR, Yeager C, Dorward H, Carmona-Rivera C, Wu HP, Moss J et al (2014) Dysregulation of galectin-3: implications for Hermansky-Pudlak syndrome pulmonary fibrosis. Am J Respir Cell Mol Biol 50:605–613PubMedPubMedCentralCrossRef
131.
go back to reference Wang T, Ou L, Li X, Zhang P, Miao Q, Niu R, Chen Y (2022) Inhibition of galectin-3 attenuates silica particles-induced silicosis via regulating the GSK-3β/β-catenin signal pathway-mediated epithelial-mesenchymal transition. Chem Biol Interact 368:110218PubMedCrossRef Wang T, Ou L, Li X, Zhang P, Miao Q, Niu R, Chen Y (2022) Inhibition of galectin-3 attenuates silica particles-induced silicosis via regulating the GSK-3β/β-catenin signal pathway-mediated epithelial-mesenchymal transition. Chem Biol Interact 368:110218PubMedCrossRef
132.
go back to reference Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A (2020) Hyperinflammation and fibrosis in severe COVID-19 patients: galectin-3, a target molecule to consider. Front Immunol 11:2069PubMedPubMedCentralCrossRef Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A (2020) Hyperinflammation and fibrosis in severe COVID-19 patients: galectin-3, a target molecule to consider. Front Immunol 11:2069PubMedPubMedCentralCrossRef
133.
134.
go back to reference Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K et al (2007) Role of galectin-3 in human pulmonary fibrosis. Allergol Int 56:57–65PubMedCrossRef Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K et al (2007) Role of galectin-3 in human pulmonary fibrosis. Allergol Int 56:57–65PubMedCrossRef
135.
go back to reference Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T et al (2012) Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185:537–546PubMedPubMedCentralCrossRef Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T et al (2012) Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185:537–546PubMedPubMedCentralCrossRef
136.
go back to reference Ho JE, Gao W, Levy D, Santhanakrishnan R, Araki T, Rosas IO et al (2016) Galectin-3 is associated with restrictive lung disease and interstitial lung abnormalities. Am J Respir Crit Care Med 194:77–83PubMedPubMedCentralCrossRef Ho JE, Gao W, Levy D, Santhanakrishnan R, Araki T, Rosas IO et al (2016) Galectin-3 is associated with restrictive lung disease and interstitial lung abnormalities. Am J Respir Crit Care Med 194:77–83PubMedPubMedCentralCrossRef
137.
go back to reference Jia W, Wang Z, Gao C, Wu J, Wu Q (2021) Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis 12:327PubMedPubMedCentralCrossRef Jia W, Wang Z, Gao C, Wu J, Wu Q (2021) Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis 12:327PubMedPubMedCentralCrossRef
138.
go back to reference Shochet GE, Pomerantz A, Shitrit D, Bardenstein-Wald B, Ask K, Surber M et al (2020) Galectin-3 levels are elevated following nintedanib treatment. Ther Adv Chronic Dis 11:2040622320968412PubMedPubMedCentralCrossRef Shochet GE, Pomerantz A, Shitrit D, Bardenstein-Wald B, Ask K, Surber M et al (2020) Galectin-3 levels are elevated following nintedanib treatment. Ther Adv Chronic Dis 11:2040622320968412PubMedPubMedCentralCrossRef
139.
go back to reference Rajput VK, MacKinnon A, Mandal S, Collins P, Blanchard H, Leffler H et al (2016) A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J Med Chem 59:8141–8147PubMedCrossRef Rajput VK, MacKinnon A, Mandal S, Collins P, Blanchard H, Leffler H et al (2016) A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J Med Chem 59:8141–8147PubMedCrossRef
140.
go back to reference Zhou Y, He CH, Yang DS, Nguyen T, Cao Y, Kamle S et al (2018) Galectin-3 interacts with the CHI3L1 axis and contributes to Hermansky-Pudlak syndrome lung disease. J Immunol 200:2140–2153PubMedCrossRef Zhou Y, He CH, Yang DS, Nguyen T, Cao Y, Kamle S et al (2018) Galectin-3 interacts with the CHI3L1 axis and contributes to Hermansky-Pudlak syndrome lung disease. J Immunol 200:2140–2153PubMedCrossRef
141.
go back to reference Pang Y, Maxwell E, Sindrewicz-Goral P, Shapanis A, Li S, Morgan M, Yu LG (2022) Galectin-3 is a natural binding ligand of MCAM (CD146, MUC18) in melanoma cells and their interaction promotes melanoma progression. Biomolecules 12:1451PubMedPubMedCentralCrossRef Pang Y, Maxwell E, Sindrewicz-Goral P, Shapanis A, Li S, Morgan M, Yu LG (2022) Galectin-3 is a natural binding ligand of MCAM (CD146, MUC18) in melanoma cells and their interaction promotes melanoma progression. Biomolecules 12:1451PubMedPubMedCentralCrossRef
142.
go back to reference Yehya N, Fazelinia H, Taylor DM, Lawrence GG, Spruce LA, Thompson JM, Margulies SS, Seeholzer SH, Worthen GS (2022) Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol 322:L365-l372PubMedPubMedCentralCrossRef Yehya N, Fazelinia H, Taylor DM, Lawrence GG, Spruce LA, Thompson JM, Margulies SS, Seeholzer SH, Worthen GS (2022) Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol 322:L365-l372PubMedPubMedCentralCrossRef
143.
go back to reference Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z et al (2020) Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol 11:1598PubMedPubMedCentralCrossRef Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z et al (2020) Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol 11:1598PubMedPubMedCentralCrossRef
144.
go back to reference Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J et al (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110:1236–1243PubMedPubMedCentralCrossRef Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J et al (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110:1236–1243PubMedPubMedCentralCrossRef
145.
go back to reference Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V (2017) Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 3:17010PubMedPubMedCentralCrossRef Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V (2017) Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 3:17010PubMedPubMedCentralCrossRef
146.
go back to reference Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH (2012) Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 287:9753–9764PubMedPubMedCentralCrossRef Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH (2012) Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 287:9753–9764PubMedPubMedCentralCrossRef
147.
go back to reference Hsieh TJ, Lin HY, Tu Z, Lin TC, Wu SC, Tseng YY, Liu FT, Hsu ST, Lin CH (2016) Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 6:29457PubMedPubMedCentralCrossRef Hsieh TJ, Lin HY, Tu Z, Lin TC, Wu SC, Tseng YY, Liu FT, Hsu ST, Lin CH (2016) Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 6:29457PubMedPubMedCentralCrossRef
148.
go back to reference Wang L, Li YS, Yu LG, Zhang XK, Zhao L, Gong FL, Yang XX, Guo XL (2020) Galectin-3 expression and secretion by tumor-associated macrophages in hypoxia promotes breast cancer progression. Biochem Pharmacol 178:114113PubMedCrossRef Wang L, Li YS, Yu LG, Zhang XK, Zhao L, Gong FL, Yang XX, Guo XL (2020) Galectin-3 expression and secretion by tumor-associated macrophages in hypoxia promotes breast cancer progression. Biochem Pharmacol 178:114113PubMedCrossRef
149.
go back to reference Çakır Y, Kelten Talu C, Mermut Ö, Can Trabulus D, Arslan E (2021) The expression of galectin-3 in tumor and cancer-associated fibroblasts in invasive micropapillary breast carcinomas: relationship with clinicopathologic parameters. Eur J Breast Health 17:341–351PubMedPubMedCentralCrossRef Çakır Y, Kelten Talu C, Mermut Ö, Can Trabulus D, Arslan E (2021) The expression of galectin-3 in tumor and cancer-associated fibroblasts in invasive micropapillary breast carcinomas: relationship with clinicopathologic parameters. Eur J Breast Health 17:341–351PubMedPubMedCentralCrossRef
Metadata
Title
Emerging Roles of Galectin-3 in Pulmonary Diseases
Authors
Qi Jia
Yiyi Yang
Shanglong Yao
Xiangdong Chen
Zhiqiang Hu
Publication date
08-06-2024
Publisher
Springer US
Published in
Lung
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-024-00709-y
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare