Skip to main content
Top
Published in:

Open Access 01-12-2024 | Electroconvulsive Therapy | Research

Network integration and segregation changes in schizophrenia: impact of electroconvulsive therapy

Authors: Ningning Ding, Entu Zhang, Yangyang Liu, Shuaiqi Zhang, Pei Lu, Haisan Zhang

Published in: BMC Psychiatry | Issue 1/2024

Login to get access

Abstract

Background

Studies have confirmed brain network topology disruption in schizophrenia (SZ). Electroconvulsive therapy (ECT) rapidly improves acute psychiatric symptoms, yet the exact mechanism by which it impacts brain network topology in SZ patients remains unclear. This study aims to explore topological changes in SZ patients' whole-brain functional networks during ECT, ultimately elucidating implicated neurological mechanisms.

Methods

This study collected resting-state functional magnetic resonance imaging (rs-fMRI) data from 53 patients with schizophrenia before and after ECT, as well as data from 46 age-, gender-, and education-matched healthy control participants (HC). Using the Brainnetome Atlas, brain functional networks were constructed for each participant. Graph theory methods were applied to measure global and nodal topological properties. Clinical symptoms of patients were assessed using the Positive And Negative Syndrome Scale (PANSS). Independent sample t-tests were employed to compare topological properties between patients and healthy controls, while paired t-tests were used to assess before and after ECT differences within the patient group. Finally, partial correlation analyses were conducted to examine the relationship between changes in topological properties and changes in PANSS scores among patients before and after ECT.

Results

Before ECT, compared to the HC group, the patient group demonstrated reduced local efficiency (Eloc) and clustering coefficient (Cp). In the right superior temporal gyrus, degree centrality (Dc) and nodal global efficiency (Ne) were lower, whereas in the left cingulate gyrus, Ne and Dc were higher. Following ECT, Eloc and Cp normalized in the patient group. Additionally, nodal local efficiency (NLe) and nodal clustering coefficient (NCp) increased in the bilateral superior frontal gyrus. Conversely, in the left inferior parietal lobule, Ne and Dc decreased, and nodal shortest path length (NLp) increased. Both NLe and NCp were lower in the bilateral lateral occipital cortex, both before and after ECT. However, no significant correlation was observed between changes in PANSS scores and alterations in global and nodal topological properties before and after ECT treatment.

Conclusions

Our study suggests that ECT may improve psychiatric symptoms by modulating the integration and dissociation functions within damaged brain networks in SZ patients. Specifically, the balance between the integration and dissociation functions of the default mode network (DMN), central executive network (CEN), and auditory networks (AN) may play a crucial role in the improvement of psychiatric symptoms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27.PubMedPubMedCentralCrossRef Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27.PubMedPubMedCentralCrossRef
2.
go back to reference Wernicke C. Grundrisse der Psychiatrie. Leipzig, Germany: Thieme; 1960. Wernicke C. Grundrisse der Psychiatrie. Leipzig, Germany: Thieme; 1960.
3.
go back to reference Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M, et al. Definition and description of schizophrenia in the DSM-5. Schizophr Res. 2013;150(1):3–10.PubMedCrossRef Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M, et al. Definition and description of schizophrenia in the DSM-5. Schizophr Res. 2013;150(1):3–10.PubMedCrossRef
4.
go back to reference Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. The Lancet Psychiatry. 2020;7(3):272–81.PubMedCrossRef Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. The Lancet Psychiatry. 2020;7(3):272–81.PubMedCrossRef
5.
go back to reference Schork AJ, Won H, Appadurai V, Nudel R, Gandal M, Delaneau O, Revsbech Christiansen M, Hougaard DM, Bækved-Hansen M, Bybjerg-Grauholm J, et al. A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nat Neurosci. 2019;22(3):353–61.PubMedPubMedCentralCrossRef Schork AJ, Won H, Appadurai V, Nudel R, Gandal M, Delaneau O, Revsbech Christiansen M, Hougaard DM, Bækved-Hansen M, Bybjerg-Grauholm J, et al. A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nat Neurosci. 2019;22(3):353–61.PubMedPubMedCentralCrossRef
6.
go back to reference Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res. 2024;332: 115708.PubMedCrossRef Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res. 2024;332: 115708.PubMedCrossRef
7.
go back to reference Nucifora FC Jr, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019;131: 104257.PubMedCrossRef Nucifora FC Jr, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019;131: 104257.PubMedCrossRef
8.
go back to reference Sinclair DJM, Zhao S, Qi F, Nyakyoma K, Kwong JSW, Adams CE. Electroconvulsive Therapy for Treatment-Resistant Schizophrenia. Schizophr Bull. 2019;45(4):730–2.PubMedPubMedCentralCrossRef Sinclair DJM, Zhao S, Qi F, Nyakyoma K, Kwong JSW, Adams CE. Electroconvulsive Therapy for Treatment-Resistant Schizophrenia. Schizophr Bull. 2019;45(4):730–2.PubMedPubMedCentralCrossRef
9.
go back to reference Yen C, Lin CL, Chiang MC. Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders. Life (Basel, Switzerland). 2023;13(7):1472.PubMed Yen C, Lin CL, Chiang MC. Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders. Life (Basel, Switzerland). 2023;13(7):1472.PubMed
11.
go back to reference Hu Q, Huang H, Jiang Y, Jiao X, Zhou J, Tang Y, Zhang T, Sun J, Yao D, Luo C, et al. Temporoparietal Connectivity Within Default Mode Network Associates With Clinical Improvements in Schizophrenia Following Modified Electroconvulsive Therapy. Front Psychiatry. 2021;12: 768279.PubMedCrossRef Hu Q, Huang H, Jiang Y, Jiao X, Zhou J, Tang Y, Zhang T, Sun J, Yao D, Luo C, et al. Temporoparietal Connectivity Within Default Mode Network Associates With Clinical Improvements in Schizophrenia Following Modified Electroconvulsive Therapy. Front Psychiatry. 2021;12: 768279.PubMedCrossRef
12.
go back to reference Pang Y, Wei Q, Zhao S, Li N, Li Z, Lu F, Pang J, Zhang R, Wang K, Chu C, et al. Enhanced default mode network functional connectivity links with electroconvulsive therapy response in major depressive disorder. J Affect Disord. 2022;306:47–54.PubMedCrossRef Pang Y, Wei Q, Zhao S, Li N, Li Z, Lu F, Pang J, Zhang R, Wang K, Chu C, et al. Enhanced default mode network functional connectivity links with electroconvulsive therapy response in major depressive disorder. J Affect Disord. 2022;306:47–54.PubMedCrossRef
13.
go back to reference Jiang Y, Duan M, He H, Yao D, Luo C. Structural and Functional MRI Brain Changes in Patients with Schizophrenia Following Electroconvulsive Therapy: A Systematic Review. Curr Neuropharmacol. 2022;20(6):1241–52.PubMedPubMedCentralCrossRef Jiang Y, Duan M, He H, Yao D, Luo C. Structural and Functional MRI Brain Changes in Patients with Schizophrenia Following Electroconvulsive Therapy: A Systematic Review. Curr Neuropharmacol. 2022;20(6):1241–52.PubMedPubMedCentralCrossRef
15.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.PubMedCrossRef Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.PubMedCrossRef
18.
go back to reference Zhao Z, Cheng Y, Li Z, Yi Y. Altered Small-World Networks in First-Episode Schizophrenia Patients during Cool Executive Function Task. Behav Neurol. 2018;2018:1–11.CrossRef Zhao Z, Cheng Y, Li Z, Yi Y. Altered Small-World Networks in First-Episode Schizophrenia Patients during Cool Executive Function Task. Behav Neurol. 2018;2018:1–11.CrossRef
19.
go back to reference Zhang Y, Lin L, Lin CP, Zhou Y, Chou KH, Lo CY, Su TP, Jiang T. Abnormal topological organization of structural brain networks in schizophrenia. Schizophr Res. 2012;141(2–3):109–18PubMedCrossRef Zhang Y, Lin L, Lin CP, Zhou Y, Chou KH, Lo CY, Su TP, Jiang T. Abnormal topological organization of structural brain networks in schizophrenia. Schizophr Res. 2012;141(2–3):109–18PubMedCrossRef
20.
go back to reference Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo CJPM. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med. 2022;52(7):1333–43.PubMedCrossRef Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo CJPM. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med. 2022;52(7):1333–43.PubMedCrossRef
21.
go back to reference Hu H, Jiang Y, Xia M, Tang Y, Zhang T, Cui H, Wang J, Xu L, Curtin A, Sheng J, et al. Functional reconfiguration of cerebellum-cerebral neural loop in schizophrenia following electroconvulsive therapy. Psychiatry Res Neuroimaging. 2022;320: 111441.PubMedCrossRef Hu H, Jiang Y, Xia M, Tang Y, Zhang T, Cui H, Wang J, Xu L, Curtin A, Sheng J, et al. Functional reconfiguration of cerebellum-cerebral neural loop in schizophrenia following electroconvulsive therapy. Psychiatry Res Neuroimaging. 2022;320: 111441.PubMedCrossRef
22.
go back to reference Gao Z, Xiao Y, Zhu F, Tao B, Yu W, Lui S. The whole-brain connectome landscape in patients with schizophrenia: A systematic review and meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev. 2023;148: 105144.PubMedCrossRef Gao Z, Xiao Y, Zhu F, Tao B, Yu W, Lui S. The whole-brain connectome landscape in patients with schizophrenia: A systematic review and meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev. 2023;148: 105144.PubMedCrossRef
23.
go back to reference Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A, et al. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Network neuroscience (Cambridge, Mass). 2023;7(1):184–212.PubMedCrossRef Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A, et al. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Network neuroscience (Cambridge, Mass). 2023;7(1):184–212.PubMedCrossRef
24.
go back to reference Geng Y, Zhang H, Dong Z, Zhang H. Effects of electroconvulsive therapy on functional brain networks in patients with schizophrenia. BMC Psychiatry. 2024;24(1):29.PubMedPubMedCentralCrossRef Geng Y, Zhang H, Dong Z, Zhang H. Effects of electroconvulsive therapy on functional brain networks in patients with schizophrenia. BMC Psychiatry. 2024;24(1):29.PubMedPubMedCentralCrossRef
25.
go back to reference Li Y, Li Y, Wei Q, Bai T, Wang K, Wang J, Tian Y. Mapping intrinsic functional network topological architecture in major depression disorder after electroconvulsive therapy. J Affect Disord. 2022;311:103–9.PubMedCrossRef Li Y, Li Y, Wei Q, Bai T, Wang K, Wang J, Tian Y. Mapping intrinsic functional network topological architecture in major depression disorder after electroconvulsive therapy. J Affect Disord. 2022;311:103–9.PubMedCrossRef
26.
go back to reference Leucht S, Davis JM, Engel RR, Kissling W, Kane JM. Definitions of response and remission in schizophrenia: recommendations for their use and their presentation. Acta Psychiatr Scand Suppl. 2009;438:7–14.CrossRef Leucht S, Davis JM, Engel RR, Kissling W, Kane JM. Definitions of response and remission in schizophrenia: recommendations for their use and their presentation. Acta Psychiatr Scand Suppl. 2009;438:7–14.CrossRef
28.
go back to reference Tong W, Dong Z, Guo W, Zhang M, Zhang Y, Du Y, Zhao J, Lv L, Liu Y, Wang X, et al. Progressive Changes in Brain Regional Homogeneity Induced by Electroconvulsive Therapy Among Patients With Schizophrenia. J ECT. 2022;38(2):117–23.PubMedCrossRef Tong W, Dong Z, Guo W, Zhang M, Zhang Y, Du Y, Zhao J, Lv L, Liu Y, Wang X, et al. Progressive Changes in Brain Regional Homogeneity Induced by Electroconvulsive Therapy Among Patients With Schizophrenia. J ECT. 2022;38(2):117–23.PubMedCrossRef
29.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.PubMedCrossRef Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.PubMedCrossRef
30.
go back to reference Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, Comi G, Rocca MA. Assessment of system dysfunction in the brain through MRI-based connectomics. The Lancet Neurology. 2013;12(12):1189–99.PubMedCrossRef Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, Comi G, Rocca MA. Assessment of system dysfunction in the brain through MRI-based connectomics. The Lancet Neurology. 2013;12(12):1189–99.PubMedCrossRef
31.
go back to reference Zhu J, Wang C, Liu F, Qin W, Li J, Zhuo C. Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations. Front Hum Neurosci. 2016;10:114.PubMedPubMedCentralCrossRef Zhu J, Wang C, Liu F, Qin W, Li J, Zhuo C. Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations. Front Hum Neurosci. 2016;10:114.PubMedPubMedCentralCrossRef
32.
go back to reference Suo XS, Lei DL, Li LL, Li WL, Dai JD, Wang SW, He MH, Zhu HZ, Kemp GJK, Gong QG. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci. 2018;43(6):427.PubMedCrossRef Suo XS, Lei DL, Li LL, Li WL, Dai JD, Wang SW, He MH, Zhu HZ, Kemp GJK, Gong QG. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci. 2018;43(6):427.PubMedCrossRef
33.
go back to reference David AS. Dysmodularity: a neurocognitive model for schizophrenia. Schizophr Bull. 1994;20(2):249–55.PubMedCrossRef David AS. Dysmodularity: a neurocognitive model for schizophrenia. Schizophr Bull. 1994;20(2):249–55.PubMedCrossRef
34.
go back to reference Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, Calkins ME, Cook PA, García de la Garza A, Vandekar SN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9(1):3003.PubMedPubMedCentralCrossRef Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, Calkins ME, Cook PA, García de la Garza A, Vandekar SN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9(1):3003.PubMedPubMedCentralCrossRef
35.
go back to reference Wang Q, Su TP, Zhou Y, Chou KH, Chen IY, Jiang T, Lin CP. Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage. 2012;59(2):1085–93.PubMedCrossRef Wang Q, Su TP, Zhou Y, Chou KH, Chen IY, Jiang T, Lin CP. Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage. 2012;59(2):1085–93.PubMedCrossRef
36.
go back to reference Lin L, Zhang J, Liu Y, Hao X, Shen J, Yu Y, Xu H, Cong F, Li H, Wu J. Aberrant brain functional networks in type 2 diabetes mellitus: A graph theoretical and support-vector machine approach. Front Hum Neurosci. 2022;16: 974094.PubMedPubMedCentralCrossRef Lin L, Zhang J, Liu Y, Hao X, Shen J, Yu Y, Xu H, Cong F, Li H, Wu J. Aberrant brain functional networks in type 2 diabetes mellitus: A graph theoretical and support-vector machine approach. Front Hum Neurosci. 2022;16: 974094.PubMedPubMedCentralCrossRef
37.
go back to reference Wolff N, Zink N, Stock AK, Beste C. On the relevance of the alpha frequency oscillation’s small-world network architecture for cognitive flexibility. Sci Rep. 2017;7(1):13910.PubMedPubMedCentralCrossRef Wolff N, Zink N, Stock AK, Beste C. On the relevance of the alpha frequency oscillation’s small-world network architecture for cognitive flexibility. Sci Rep. 2017;7(1):13910.PubMedPubMedCentralCrossRef
38.
go back to reference Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology. 2023;48(1):151–67.PubMedCrossRef Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology. 2023;48(1):151–67.PubMedCrossRef
39.
go back to reference Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Altered Heschl’s gyrus duplication pattern in first-episode schizophrenia. Schizophr Res. 2021;237:174–81.PubMedCrossRef Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Altered Heschl’s gyrus duplication pattern in first-episode schizophrenia. Schizophr Res. 2021;237:174–81.PubMedCrossRef
40.
go back to reference Schoorl J, Barbu MC, Shen X, Harris MR, Adams MJ, Whalley HC, Lawrie SM. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl Psychiatry. 2021;11(1):21.PubMedPubMedCentralCrossRef Schoorl J, Barbu MC, Shen X, Harris MR, Adams MJ, Whalley HC, Lawrie SM. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl Psychiatry. 2021;11(1):21.PubMedPubMedCentralCrossRef
41.
go back to reference Shan X, Zhang H, Dong Z, Chen J, Liu F, Zhao J, Zhang H, Guo W. Increased subcortical region volume induced by electroconvulsive therapy in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2021;271(7):1285–95.PubMedCrossRef Shan X, Zhang H, Dong Z, Chen J, Liu F, Zhao J, Zhang H, Guo W. Increased subcortical region volume induced by electroconvulsive therapy in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2021;271(7):1285–95.PubMedCrossRef
42.
go back to reference Li P, Jing RX, Zhao RJ, Ding ZB, Shi L, Sun HQ, Lin X, Fan TT, Dong WT, Fan Y, et al. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr. 2017;3:21.PubMedPubMedCentralCrossRef Li P, Jing RX, Zhao RJ, Ding ZB, Shi L, Sun HQ, Lin X, Fan TT, Dong WT, Fan Y, et al. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr. 2017;3:21.PubMedPubMedCentralCrossRef
43.
go back to reference Ni X, Zhang J, Sun M, Wang L, Xu T, Zeng Q, Wang X, Wang Z, Liao H, Hu Y, et al. Abnormal Dynamics of Functional Connectivity Density Associated With Chronic Neck Pain. Front Mol Neurosci. 2022;15: 880228.PubMedPubMedCentralCrossRef Ni X, Zhang J, Sun M, Wang L, Xu T, Zeng Q, Wang X, Wang Z, Liao H, Hu Y, et al. Abnormal Dynamics of Functional Connectivity Density Associated With Chronic Neck Pain. Front Mol Neurosci. 2022;15: 880228.PubMedPubMedCentralCrossRef
44.
go back to reference Gupta A, Lepping RJ, Yu ASL, Perea RD, Honea RA, Johnson DK, Brooks WM, Burns JM. Cognitive Function and White Matter Changes Associated with Renal Transplantation. Am J Nephrol. 2016;43(1):50–7.PubMedCrossRef Gupta A, Lepping RJ, Yu ASL, Perea RD, Honea RA, Johnson DK, Brooks WM, Burns JM. Cognitive Function and White Matter Changes Associated with Renal Transplantation. Am J Nephrol. 2016;43(1):50–7.PubMedCrossRef
45.
go back to reference Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, et al. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal (1)H-MRS and fMRI study. Psychol Med. 2023;53(11):4904–14.PubMedCrossRef Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, et al. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal (1)H-MRS and fMRI study. Psychol Med. 2023;53(11):4904–14.PubMedCrossRef
46.
go back to reference Li Z, Hou X, Lu Y, Zhao H, Wang M, Xu B, Shi Q, Gui Q, Wu G, Shen M, et al. Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI. Front Neurosci. 2023;16:1031163.PubMedPubMedCentralCrossRef Li Z, Hou X, Lu Y, Zhao H, Wang M, Xu B, Shi Q, Gui Q, Wu G, Shen M, et al. Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI. Front Neurosci. 2023;16:1031163.PubMedPubMedCentralCrossRef
47.
go back to reference Qiu X, Lu S, Zhou M, Yan W, Du J, Zhang A, Xie S, Zhang R. The Relationship Between Abnormal Resting-State Functional Connectivity of the Left Superior Frontal Gyrus and Cognitive Impairments in Youth-Onset Drug-Naïve Schizophrenia. Front Psych. 2021;12: 679642.CrossRef Qiu X, Lu S, Zhou M, Yan W, Du J, Zhang A, Xie S, Zhang R. The Relationship Between Abnormal Resting-State Functional Connectivity of the Left Superior Frontal Gyrus and Cognitive Impairments in Youth-Onset Drug-Naïve Schizophrenia. Front Psych. 2021;12: 679642.CrossRef
48.
go back to reference Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, Peters H, Zimmer C, Förstl H, Bäuml J, et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull. 2014;40(2):428–37.PubMedCrossRef Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, Peters H, Zimmer C, Förstl H, Bäuml J, et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull. 2014;40(2):428–37.PubMedCrossRef
49.
go back to reference Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23(3):315–36.PubMedCrossRef Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23(3):315–36.PubMedCrossRef
50.
go back to reference Jia S, Liu M, Huang P, Zhao Y, Tan S, Go R, Yan T, Wu J. Abnormal Alpha Rhythm During Self-Referential Processing in Schizophrenia Patients. Front Psych. 2019;10:691.CrossRef Jia S, Liu M, Huang P, Zhao Y, Tan S, Go R, Yan T, Wu J. Abnormal Alpha Rhythm During Self-Referential Processing in Schizophrenia Patients. Front Psych. 2019;10:691.CrossRef
51.
go back to reference Shon SH, Yoon W, Kim H, Joo SW, Kim Y, Lee J. Deterioration in Global Organization of Structural Brain Networks in Schizophrenia: A Diffusion MRI Tractography Study. Front Psych. 2018;9:272.CrossRef Shon SH, Yoon W, Kim H, Joo SW, Kim Y, Lee J. Deterioration in Global Organization of Structural Brain Networks in Schizophrenia: A Diffusion MRI Tractography Study. Front Psych. 2018;9:272.CrossRef
52.
go back to reference Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res. 2020;29(1): e1818.PubMedPubMedCentralCrossRef Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res. 2020;29(1): e1818.PubMedPubMedCentralCrossRef
53.
go back to reference Chen M, Li H, Fan H, Dillman JR, Wang H, Altaye M, Zhang B, Parikh NA, He L. ConCeptCNN: A novel multi-filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome. Med Phys. 2022;49(5):3171–84.PubMedCrossRef Chen M, Li H, Fan H, Dillman JR, Wang H, Altaye M, Zhang B, Parikh NA, He L. ConCeptCNN: A novel multi-filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome. Med Phys. 2022;49(5):3171–84.PubMedCrossRef
54.
go back to reference Qiu X, Xu W, Zhang R, Yan W, Ma W, Xie S, Zhou M. Regional Homogeneity Brain Alterations in Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig. 2021;18(8):709–17.PubMedPubMedCentralCrossRef Qiu X, Xu W, Zhang R, Yan W, Ma W, Xie S, Zhou M. Regional Homogeneity Brain Alterations in Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig. 2021;18(8):709–17.PubMedPubMedCentralCrossRef
56.
go back to reference Liu X, Zhuo C, Qin W, Zhu J, Xu L, Xu Y, Yu C. Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia. Neuroimage Clin. 2016;11:789–95.PubMedPubMedCentralCrossRef Liu X, Zhuo C, Qin W, Zhu J, Xu L, Xu Y, Yu C. Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia. Neuroimage Clin. 2016;11:789–95.PubMedPubMedCentralCrossRef
58.
go back to reference Hahn B, Robinson BM, Leonard CJ, Luck SJ, Gold JM. Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia. J Neurosci. 2018;38(39):8378–87.PubMedPubMedCentralCrossRef Hahn B, Robinson BM, Leonard CJ, Luck SJ, Gold JM. Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia. J Neurosci. 2018;38(39):8378–87.PubMedPubMedCentralCrossRef
59.
go back to reference Fu Z, Abbott CC, Miller J, Deng ZD, McClintock SM, Sendi MSE, Sui J, Calhoun VD. Cerebro-cerebellar functional neuroplasticity mediates the effect of electric field on electroconvulsive therapy outcomes. Transl Psychiatry. 2023;13(1):43.PubMedPubMedCentralCrossRef Fu Z, Abbott CC, Miller J, Deng ZD, McClintock SM, Sendi MSE, Sui J, Calhoun VD. Cerebro-cerebellar functional neuroplasticity mediates the effect of electric field on electroconvulsive therapy outcomes. Transl Psychiatry. 2023;13(1):43.PubMedPubMedCentralCrossRef
Metadata
Title
Network integration and segregation changes in schizophrenia: impact of electroconvulsive therapy
Authors
Ningning Ding
Entu Zhang
Yangyang Liu
Shuaiqi Zhang
Pei Lu
Haisan Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2024
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-024-06331-9