Skip to main content
Top

17-02-2025 | Dysphagia | Reviews

Artificial Intelligence in Videofluoroscopy Swallow Study Analysis: A Comprehensive Review

Authors: G. Sanjeevi, Uma Gopalakrishnan, Rahul Krishnan Pathinarupothi, K. Subramania Iyer

Published in: Dysphagia

Login to get access

Abstract

Videofluoroscopic Swallowing Study (VFSS) is considered the gold standard for diagnosing swallowing disorders, or dysphagia. However, the interpretation of VFSS is susceptible to human bias and subjectivity, resulting in significant inter- and intra-patient variability. In this context, artificial intelligence (AI) has emerged as a potentially valuable tool for physicians. This study reviews state-of-the-art research utilizing AI to analyze VFSS for the assessment of swallowing disorders and to support clinical decision-making. Our comprehensive analysis highlights substantial progress in areas such as pharyngeal phase detection, segmentation and identification of the bolus and hyoid bone, and penetration-aspiration detection. Despite these advancements, an end-to-end automated AI tool for VFSS analysis has yet to be developed. However, there is considerable potential for AI applications in areas like exploring the clinical relevance of segmented or tracked components and expanding the scope to include more upper aerodigestive components in the analysis. Additionally, we discuss the limitations of current research, including the lack of publicly available datasets, the need to address the generalizability of AI models, the integration of cutting-edge AI techniques, and the clinical implications for speech-language pathologists.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warnecke T, Dziewas R, Wirth R, Bauer JM, Prell T. 2019. Dysphagia from a neurogeriatric point of view: Pathogenesis, diagnosis and management. Z fu¨r Gerontologie und Geriatrie, 52(4). Warnecke T, Dziewas R, Wirth R, Bauer JM, Prell T. 2019. Dysphagia from a neurogeriatric point of view: Pathogenesis, diagnosis and management. Z fu¨r Gerontologie und Geriatrie, 52(4).
2.
go back to reference Rajati F, Ahmadi N, Naghibzadeh ZAS, Kazeminia M. The global prevalence of oropharyngeal dysphagia in different populations: a systematic review and meta-analysis. J Translational Med. 2022;20(1):175.CrossRef Rajati F, Ahmadi N, Naghibzadeh ZAS, Kazeminia M. The global prevalence of oropharyngeal dysphagia in different populations: a systematic review and meta-analysis. J Translational Med. 2022;20(1):175.CrossRef
3.
go back to reference Nordio S, Di Stadio A, Koch I, Stritoni P, Meneghello F, Palmer K. 2020. The correlation between pharyngeal residue, penetration/aspiration and nutritional modality: a cross-sectional study in patients with neurogenic dysphagia. ACTA Otorhinolaryngologica Italica, 40(1), p.38. Nordio S, Di Stadio A, Koch I, Stritoni P, Meneghello F, Palmer K. 2020. The correlation between pharyngeal residue, penetration/aspiration and nutritional modality: a cross-sectional study in patients with neurogenic dysphagia. ACTA Otorhinolaryngologica Italica, 40(1), p.38.
4.
go back to reference Wieseke A, Bantz D, Siktberg L, Dillard N. Assessment and early diagnosis of dysphagia. Geriatr Nurs. 2008;29(6):376–83.CrossRefPubMed Wieseke A, Bantz D, Siktberg L, Dillard N. Assessment and early diagnosis of dysphagia. Geriatr Nurs. 2008;29(6):376–83.CrossRefPubMed
5.
go back to reference Martin-Harris B, Jones B. The videofluorographic swallowing study. Phys Med Rehabil Clin North Am. 2008;19(4):769–85.CrossRef Martin-Harris B, Jones B. The videofluorographic swallowing study. Phys Med Rehabil Clin North Am. 2008;19(4):769–85.CrossRef
6.
go back to reference Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, San- didge J, Maxwell R, Blair J. MBS measurement tool for swallow impairment—MBSImp: establishing a standard. Volume 23. Dysphagia; 2008. pp. 392–405. Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, San- didge J, Maxwell R, Blair J. MBS measurement tool for swallow impairment—MBSImp: establishing a standard. Volume 23. Dysphagia; 2008. pp. 392–405.
7.
go back to reference Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Volume 11. Dysphagia; 1996. pp. 93–8. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Volume 11. Dysphagia; 1996. pp. 93–8.
8.
go back to reference Sejdic E, Malandraki GA, Coyle JL. Computational deglutition: using signal-and image-processing methods to understand swallowing and associ- ated disorders [life sciences]. IEEE Signal Process Mag. 2018;36(1):138–46.CrossRefPubMedPubMedCentral Sejdic E, Malandraki GA, Coyle JL. Computational deglutition: using signal-and image-processing methods to understand swallowing and associ- ated disorders [life sciences]. IEEE Signal Process Mag. 2018;36(1):138–46.CrossRefPubMedPubMedCentral
9.
go back to reference Sejdi´c E, Khalifa Y, Mahoney AS, Coyle JL. Artificial intelligence and dysphagia: novel solutions to old problems. Arq Gastroenterol. 2020;57:343–6.CrossRefPubMed Sejdi´c E, Khalifa Y, Mahoney AS, Coyle JL. Artificial intelligence and dysphagia: novel solutions to old problems. Arq Gastroenterol. 2020;57:343–6.CrossRefPubMed
10.
go back to reference Girardi AM, Cardell EA, Bird SP. Artificial Intelligence in the interpretation of Videofluoroscopic Swallow studies: implications and advances for Speech–Language pathologists. Big Data Cogn Comput. 2023;7(4):178.CrossRef Girardi AM, Cardell EA, Bird SP. Artificial Intelligence in the interpretation of Videofluoroscopic Swallow studies: implications and advances for Speech–Language pathologists. Big Data Cogn Comput. 2023;7(4):178.CrossRef
11.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep Learn Nat. 2015;521(7553):436–44. LeCun Y, Bengio Y, Hinton G. Deep Learn Nat. 2015;521(7553):436–44.
12.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.CrossRefPubMed Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.CrossRefPubMed
13.
go back to reference Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer- assisted intervention–MICCAI 2015: 18th international conference, Munich, Ger- many, October 5–9, 2015, proceedings, part III 18 (pp. 234–241). Springer Interna- tional Publishing. Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer- assisted intervention–MICCAI 2015: 18th international conference, Munich, Ger- many, October 5–9, 2015, proceedings, part III 18 (pp. 234–241). Springer Interna- tional Publishing.
14.
go back to reference Ge Y, Zhang Q, Sun Y, Shen Y, Wang X. Grayscale medical image segmentation method based on 2D& 3D object detection with deep learning. BMC Med Imaging. 2022;22(1):33.CrossRefPubMedPubMedCentral Ge Y, Zhang Q, Sun Y, Shen Y, Wang X. Grayscale medical image segmentation method based on 2D& 3D object detection with deep learning. BMC Med Imaging. 2022;22(1):33.CrossRefPubMedPubMedCentral
15.
go back to reference Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.
17.
go back to reference Rainio O, Teuho J, Kl´en R. 2024. Evaluation metrics and statistical tests for machine learning. Scientific Reports, 14(1), p.6086. Rainio O, Teuho J, Kl´en R. 2024. Evaluation metrics and statistical tests for machine learning. Scientific Reports, 14(1), p.6086.
18.
go back to reference Qureshi I, Yan J, Abbas Q, Shaheed K, Riaz AB, Wahid A, Khan MWJ, Szczuko P. Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends. Volume 90. Information Fusion; 2023. pp. 316–52. Qureshi I, Yan J, Abbas Q, Shaheed K, Riaz AB, Wahid A, Khan MWJ, Szczuko P. Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends. Volume 90. Information Fusion; 2023. pp. 316–52.
19.
go back to reference Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimedia Tools Applica- tions. 2023;82(17):26731–69.CrossRef Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimedia Tools Applica- tions. 2023;82(17):26731–69.CrossRef
20.
go back to reference Lee JT, Park E. 2018. Detection of the pharyngeal phase in the videoflu- oroscopic swallowing study using inflated 3d convolutional networks. In Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 9 (pp. 328–336). Springer International Publishing. Lee JT, Park E. 2018. Detection of the pharyngeal phase in the videoflu- oroscopic swallowing study using inflated 3d convolutional networks. In Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 9 (pp. 328–336). Springer International Publishing.
21.
go back to reference Lee JT, Park E, Jung TD. Automatic detection of the pharyngeal phase in raw videos for the videofluoroscopic swallowing study using efficient data collection and 3d convolutional networks. Sensors. 2019;19(18):3873.CrossRefPubMedPubMedCentral Lee JT, Park E, Jung TD. Automatic detection of the pharyngeal phase in raw videos for the videofluoroscopic swallowing study using efficient data collection and 3d convolutional networks. Sensors. 2019;19(18):3873.CrossRefPubMedPubMedCentral
22.
go back to reference Lee KS, Lee E, Choi B, Pyun SB. Automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks. Diagnostics. 2021;11(2):300.CrossRefPubMedPubMedCentral Lee KS, Lee E, Choi B, Pyun SB. Automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks. Diagnostics. 2021;11(2):300.CrossRefPubMedPubMedCentral
23.
go back to reference Bandini A, Steele CM. 2021, November. The effect of time on the auto- mated detection of the pharyngeal phase in videofluoroscopic swallowing studies. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3435–3438). IEEE. Bandini A, Steele CM. 2021, November. The effect of time on the auto- mated detection of the pharyngeal phase in videofluoroscopic swallowing studies. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3435–3438). IEEE.
24.
go back to reference Bandini A, Smaoui S, Steele CM. Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: killing two birds with one stone? Volume 225. Computer methods and programs in biomedicine; 2022. p. 107058. Bandini A, Smaoui S, Steele CM. Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: killing two birds with one stone? Volume 225. Computer methods and programs in biomedicine; 2022. p. 107058.
25.
go back to reference Sanjeevi G, Gopalakrishnan U, Pathinarupothi RK, Arya CJ, Iyer S. 2023, December. Rapid Detection of Penetration-Aspiration from Fluoroscopic Videos in Dysphagia Patients. In 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 409–413). IEEE Computer Society. Sanjeevi G, Gopalakrishnan U, Pathinarupothi RK, Arya CJ, Iyer S. 2023, December. Rapid Detection of Penetration-Aspiration from Fluoroscopic Videos in Dysphagia Patients. In 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 409–413). IEEE Computer Society.
26.
go back to reference Jeong CW, Lee CS, Lim DW, Noh SH, Moon HK, Park C, Kim MS. 2024. The Development of an Artificial Intelligence Video Analysis-Based Web Application to Diagnose Oropharyngeal Dysphagia: A Pilot Study. Brain Sciences, 14(6), p.546. Jeong CW, Lee CS, Lim DW, Noh SH, Moon HK, Park C, Kim MS. 2024. The Development of an Artificial Intelligence Video Analysis-Based Web Application to Diagnose Oropharyngeal Dysphagia: A Pilot Study. Brain Sciences, 14(6), p.546.
27.
go back to reference Lee JT, Park E, Hwang JM, Jung TD, Park D. Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study. Sci Rep. 2020;10(1):14735.CrossRefPubMedPubMedCentral Lee JT, Park E, Hwang JM, Jung TD, Park D. Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study. Sci Rep. 2020;10(1):14735.CrossRefPubMedPubMedCentral
28.
go back to reference Ruan X, Dai M, Chen Z, You Z, Zhang Y, Li Y, Dou Z, Tan M. Temporal Micro-action localization for videofluoroscopic swallowing study. IEEE Journal of Biomedical and Health Informatics; 2023. Ruan X, Dai M, Chen Z, You Z, Zhang Y, Li Y, Dou Z, Tan M. Temporal Micro-action localization for videofluoroscopic swallowing study. IEEE Journal of Biomedical and Health Informatics; 2023.
29.
go back to reference Jeong SY, Kim JM, Park JE, Baek SJ, Yang SN. Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies. Sci Rep. 2023;13(1):17522.CrossRefPubMedPubMedCentral Jeong SY, Kim JM, Park JE, Baek SJ, Yang SN. Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies. Sci Rep. 2023;13(1):17522.CrossRefPubMedPubMedCentral
30.
go back to reference Celard P, Iglesias EL, Sorribes-Fdez JM, Romero R, Vieira AS, Borrajo L. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput Appl. 2023;35(3):2291–323.CrossRefPubMed Celard P, Iglesias EL, Sorribes-Fdez JM, Romero R, Vieira AS, Borrajo L. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput Appl. 2023;35(3):2291–323.CrossRefPubMed
31.
go back to reference Caliskan H, Mahoney AS, Coyle JL, Sejdi´c E. 2020, July. Automated bolus detection in videofluoroscopic images of swallowing using mask-RCNN. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2173–2177). IEEE. Caliskan H, Mahoney AS, Coyle JL, Sejdi´c E. 2020, July. Automated bolus detection in videofluoroscopic images of swallowing using mask-RCNN. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2173–2177). IEEE.
32.
go back to reference Ariji Y, Gotoh M, Fukuda M, Watanabe S, Nagao T, Katsumata A, Ariji E. A preliminary deep learning study on automatic segmentation of contrast-enhanced bolus in videofluorography of swallowing. Sci Rep. 2022;12(1):18754.CrossRefPubMedPubMedCentral Ariji Y, Gotoh M, Fukuda M, Watanabe S, Nagao T, Katsumata A, Ariji E. A preliminary deep learning study on automatic segmentation of contrast-enhanced bolus in videofluorography of swallowing. Sci Rep. 2022;12(1):18754.CrossRefPubMedPubMedCentral
33.
go back to reference Shaheen N, Burdick R, Pen˜a-Ch´avez R, Ulmschneider C, Yee J, Kurosu A, Rogus-Pulia N, Bednarz B. Use of deep learning to segment bolus dur- ing videofluoroscopic swallow studies. Biomedical Phys Eng Express. 2023;10(1):p015005. Shaheen N, Burdick R, Pen˜a-Ch´avez R, Ulmschneider C, Yee J, Kurosu A, Rogus-Pulia N, Bednarz B. Use of deep learning to segment bolus dur- ing videofluoroscopic swallow studies. Biomedical Phys Eng Express. 2023;10(1):p015005.
34.
go back to reference Li W, Mao S, Mahoney AS, Petkovic S, Coyle JL, Sejdi´c E. Deep learning models for bolus segmentation in videofluoroscopic swallow studies. J Real-Time Image Proc. 2024;21(1):18.CrossRef Li W, Mao S, Mahoney AS, Petkovic S, Coyle JL, Sejdi´c E. Deep learning models for bolus segmentation in videofluoroscopic swallow studies. J Real-Time Image Proc. 2024;21(1):18.CrossRef
35.
go back to reference Zeng C, Yang X, Mirmehdi M, Gambaruto AM, Burghardt T. 2023, June. Video-transunet: Temporally blended vision transformer for ct vfss instance segmentation. In Fifteenth International Conference on Machine Vision (ICMV 2022) (Vol. 12701, pp. 98–105). SPIE. Zeng C, Yang X, Mirmehdi M, Gambaruto AM, Burghardt T. 2023, June. Video-transunet: Temporally blended vision transformer for ct vfss instance segmentation. In Fifteenth International Conference on Machine Vision (ICMV 2022) (Vol. 12701, pp. 98–105). SPIE.
36.
go back to reference Zeng C, Yang X, Smithard D, Mirmehdi M, Gambaruto AM, Burghardt T. 2023, October. Video-SwinUNet: Spatio-temporal Deep Learn- ing Framework for VFSS Instance Segmentation. In 2023 IEEE International Conference on Image Processing (ICIP) (pp. 2470–2474). IEEE. Zeng C, Yang X, Smithard D, Mirmehdi M, Gambaruto AM, Burghardt T. 2023, October. Video-SwinUNet: Spatio-temporal Deep Learn- ing Framework for VFSS Instance Segmentation. In 2023 IEEE International Conference on Image Processing (ICIP) (pp. 2470–2474). IEEE.
37.
go back to reference Park D, Kim Y, Kang H, Lee J, Choi J, Kim T, Lee S, Son S, Kim M, Kim I. PECI-Net: Bolus segmentation from video fluoroscopic swallow- ing study images using preprocessing ensemble and cascaded inference. Computers in Biology and Medicine; 2024. p. 108241. Park D, Kim Y, Kang H, Lee J, Choi J, Kim T, Lee S, Son S, Kim M, Kim I. PECI-Net: Bolus segmentation from video fluoroscopic swallow- ing study images using preprocessing ensemble and cascaded inference. Computers in Biology and Medicine; 2024. p. 108241.
38.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618–626). Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618–626).
39.
go back to reference Zhang Z, Coyle JL, Sejdi´c E. 2018. Automatic hyoid bone detection in fluoroscopic images using deep learning. Scientific reports, 8(1), p.12310. Zhang Z, Coyle JL, Sejdi´c E. 2018. Automatic hyoid bone detection in fluoroscopic images using deep learning. Scientific reports, 8(1), p.12310.
40.
go back to reference Abdelaziz MA, Galloul MK, Seyam MA, Mohamed AM, Basha T, Sejdic E, Khalifa Y. 2022, October. AI-Powered Toolkit for Automated Swallowing Kinematics Analysis in X-Ray Videofluoroscopy. In 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES) (pp. 71–74). IEEE. Abdelaziz MA, Galloul MK, Seyam MA, Mohamed AM, Basha T, Sejdic E, Khalifa Y. 2022, October. AI-Powered Toolkit for Automated Swallowing Kinematics Analysis in X-Ray Videofluoroscopy. In 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES) (pp. 71–74). IEEE.
41.
go back to reference Lee D, Lee WH, Seo HG, Oh BM, Lee JC, Kim HC. Online learning for the hyoid bone tracking during swallowing with neck movement adjustment using semantic segmentation. IEEE Access. 2020;8:157451–61.CrossRef Lee D, Lee WH, Seo HG, Oh BM, Lee JC, Kim HC. Online learning for the hyoid bone tracking during swallowing with neck movement adjustment using semantic segmentation. IEEE Access. 2020;8:157451–61.CrossRef
42.
go back to reference Kim HI, Kim Y, Kim B, Shin DY, Lee SJ, Choi SI. Hyoid bone tracking in a videofluoroscopic swallowing study using a deep-learning-based segmentation network. Diagnostics. 2021;11(7):1147.CrossRefPubMedPubMedCentral Kim HI, Kim Y, Kim B, Shin DY, Lee SJ, Choi SI. Hyoid bone tracking in a videofluoroscopic swallowing study using a deep-learning-based segmentation network. Diagnostics. 2021;11(7):1147.CrossRefPubMedPubMedCentral
43.
go back to reference Hsiao MY, Weng CH, Wang YC, Cheng SH, Wei KC, Tung PY, Chen JY, Yeh CY, Wang TG. Deep learning for automatic hyoid tracking in videofluoroscopic swallow studies. Dysphagia. 2023;38(1):171–80.CrossRefPubMed Hsiao MY, Weng CH, Wang YC, Cheng SH, Wei KC, Tung PY, Chen JY, Yeh CY, Wang TG. Deep learning for automatic hyoid tracking in videofluoroscopic swallow studies. Dysphagia. 2023;38(1):171–80.CrossRefPubMed
44.
go back to reference Li W, Mao S, Mahoney AS, Coyle JL, Sejdi´c E. Automatic Tracking of Hyoid Bone displacement and rotation relative to cervical vertebrae in Videofluoroscopic Swallow studies using deep learning. Journal of Imaging Informatics in Medicine; 2024. pp. 1–11. Li W, Mao S, Mahoney AS, Coyle JL, Sejdi´c E. Automatic Tracking of Hyoid Bone displacement and rotation relative to cervical vertebrae in Videofluoroscopic Swallow studies using deep learning. Journal of Imaging Informatics in Medicine; 2024. pp. 1–11.
45.
46.
go back to reference Zhang Z, Mao S, Coyle J, Sejdi´c E. Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning. Med Image Anal. 2021;74:102218.CrossRefPubMedPubMedCentral Zhang Z, Mao S, Coyle J, Sejdi´c E. Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning. Med Image Anal. 2021;74:102218.CrossRefPubMedPubMedCentral
47.
go back to reference Lee SJ, Ko JY, Kim HI, Choi SI. Automatic detection of airway invasion from videofluoroscopy via deep learning technology. Appl Sci. 2020;10(18):6179.CrossRef Lee SJ, Ko JY, Kim HI, Choi SI. Automatic detection of airway invasion from videofluoroscopy via deep learning technology. Appl Sci. 2020;10(18):6179.CrossRef
48.
go back to reference Rommel N, Borgers C, Van Beckevoort D, Goeleven A, Dejaeger E, Omari TI. Bolus Residue Scale: an easy-to-use and reliable videofluoro- scopic analysis tool to score bolus residue in patients with dysphagia. Int J Otolaryngol. 2015;20151:p780197. Rommel N, Borgers C, Van Beckevoort D, Goeleven A, Dejaeger E, Omari TI. Bolus Residue Scale: an easy-to-use and reliable videofluoro- scopic analysis tool to score bolus residue in patients with dysphagia. Int J Otolaryngol. 2015;20151:p780197.
49.
go back to reference Reddy CS, Park E, Lee JT. Comparative analysis of deep learn- ing architectures for penetration and Aspiration Detection in Videofluoroscopic Swallowing studies. IEEE Access; 2023. Reddy CS, Park E, Lee JT. Comparative analysis of deep learn- ing architectures for penetration and Aspiration Detection in Videofluoroscopic Swallowing studies. IEEE Access; 2023.
50.
go back to reference Kim Y, Kim HI, Park GS, Kim SY, Choi SI, Lee SJ. 2021. Reliability of machine and human examiners for detection of laryngeal penetration or aspiration in videofluoroscopic swallowing studies. Journal of Clinical Medicine, 10(12), p.2681. Kim Y, Kim HI, Park GS, Kim SY, Choi SI, Lee SJ. 2021. Reliability of machine and human examiners for detection of laryngeal penetration or aspiration in videofluoroscopic swallowing studies. Journal of Clinical Medicine, 10(12), p.2681.
51.
go back to reference Kim JK, Choo YJ, Choi GS, Shin H, Chang MC, Park D. 2022. Deep learning analysis to automatically detect the presence of penetration or aspi- ration in videofluoroscopic swallowing study. J Korean Med Sci, 37(6). Kim JK, Choo YJ, Choi GS, Shin H, Chang MC, Park D. 2022. Deep learning analysis to automatically detect the presence of penetration or aspi- ration in videofluoroscopic swallowing study. J Korean Med Sci, 37(6).
52.
go back to reference Lida Y, N¨appi J, Kitano T, Hironaka T, Katsumata A, Yoshida H. Detection of aspiration from images of a videofluoroscopic swallowing study adopting deep learning. Oral Radiol. 2023;39(3):553–62.CrossRef Lida Y, N¨appi J, Kitano T, Hironaka T, Katsumata A, Yoshida H. Detection of aspiration from images of a videofluoroscopic swallowing study adopting deep learning. Oral Radiol. 2023;39(3):553–62.CrossRef
53.
go back to reference Nam K, Lee C, Lee T, Shin M, Kim BH, Park JW. 2024. Automated Laryngeal Invasion Detector of Boluses in Videofluoroscopic Swallowing Study Videos Using Action Recognition-Based Networks. Diagnostics, 14(13), p.1444. Nam K, Lee C, Lee T, Shin M, Kim BH, Park JW. 2024. Automated Laryngeal Invasion Detector of Boluses in Videofluoroscopic Swallowing Study Videos Using Action Recognition-Based Networks. Diagnostics, 14(13), p.1444.
54.
go back to reference Wilhelm P, Reinhardt JM, Van Daele D. 2020, April. A deep learning approach to video fluoroscopic swallowing exam classification. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 1647–1650). IEEE. Wilhelm P, Reinhardt JM, Van Daele D. 2020, April. A deep learning approach to video fluoroscopic swallowing exam classification. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 1647–1650). IEEE.
55.
go back to reference Salih AM, Raisi-Estabragh Z, Galazzo IB, Radeva P, Petersen SE, Lekadir K, Menegaz G. A perspective on explainable Artificial Intelligence methods: SHAP and LIME. Advanced Intelligent Systems; 2024. p. 2400304. Salih AM, Raisi-Estabragh Z, Galazzo IB, Radeva P, Petersen SE, Lekadir K, Menegaz G. A perspective on explainable Artificial Intelligence methods: SHAP and LIME. Advanced Intelligent Systems; 2024. p. 2400304.
56.
go back to reference Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, Liang DH, Ashley EA, Zou JY. Deep learning interpretation of echocardiograms. NPJ Digit Med. 2020;3(1):10.CrossRefPubMedPubMedCentral Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, Liang DH, Ashley EA, Zou JY. Deep learning interpretation of echocardiograms. NPJ Digit Med. 2020;3(1):10.CrossRefPubMedPubMedCentral
57.
go back to reference Zhou SK, Le HN, Luu K, Nguyen HV, Ayache N. Deep rein- forcement learning in medical imaging: a literature review. Med Image Anal. 2021;73:102193.CrossRefPubMed Zhou SK, Le HN, Luu K, Nguyen HV, Ayache N. Deep rein- forcement learning in medical imaging: a literature review. Med Image Anal. 2021;73:102193.CrossRefPubMed
58.
go back to reference Gharoun H, Momenifar F, Chen F, Gandomi A. Meta-learning approaches for few-shot learning: a survey of recent advances. ACM-CSUR. 2024;56(12):1–41. Gharoun H, Momenifar F, Chen F, Gandomi A. Meta-learning approaches for few-shot learning: a survey of recent advances. ACM-CSUR. 2024;56(12):1–41.
Metadata
Title
Artificial Intelligence in Videofluoroscopy Swallow Study Analysis: A Comprehensive Review
Authors
G. Sanjeevi
Uma Gopalakrishnan
Rahul Krishnan Pathinarupothi
K. Subramania Iyer
Publication date
17-02-2025
Publisher
Springer US
Published in
Dysphagia
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-025-10812-8