Skip to main content
Top

Open Access 09-07-2024 | Distal Radius Fracture | Review Article

AI for detection, classification and prediction of loss of alignment of distal radius fractures; a systematic review

Authors: Koen D. Oude Nijhuis, Lente H. M. Dankelman, Jort P. Wiersma, Britt Barvelink, Frank F.A. IJpma, Michael H. J. Verhofstad, Job N. Doornberg, Joost W. Colaris, Mathieu M.E. Wijffels, Machine Learning Consortium

Published in: European Journal of Trauma and Emergency Surgery

Login to get access

Abstract

Purpose

Early and accurate assessment of distal radius fractures (DRFs) is crucial for optimal prognosis. Identifying fractures likely to lose threshold alignment (instability) in a cast is vital for treatment decisions, yet prediction tools’ accuracy and reliability remain challenging. Artificial intelligence (AI), particularly Convolutional Neural Networks (CNNs), can evaluate radiographic images with high performance. This systematic review aims to summarize studies utilizing CNNs to detect, classify, or predict loss of threshold alignment of DRFs.

Methods

A literature search was performed according to the PRISMA. Studies were eligible when the use of AI for the detection, classification, or prediction of loss of threshold alignment was analyzed. Quality assessment was done with a modified version of the methodologic index for non-randomized studies (MINORS).

Results

Of the 576 identified studies, 15 were included. On fracture detection, studies reported sensitivity and specificity ranging from 80 to 99% and 73–100%, respectively; the AUC ranged from 0.87 to 0.99; the accuracy varied from 82 to 99%. The accuracy of fracture classification ranged from 60 to 81% and the AUC from 0.59 to 0.84. No studies focused on predicting loss of thresholds alignement of DRFs.

Conclusion

AI models for DRF detection show promising performance, indicating the potential of algorithms to assist clinicians in the assessment of radiographs. In addition, AI models showed similar performance compared to clinicians. No algorithms for predicting the loss of threshold alignment were identified in our literature search despite the clinical relevance of such algorithms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tyson S, Hatem SF. Easily missed fractures of the Upper Extremity. Radiol Clin North Am. 2015;53(4):717–36. viii.CrossRefPubMed Tyson S, Hatem SF. Easily missed fractures of the Upper Extremity. Radiol Clin North Am. 2015;53(4):717–36. viii.CrossRefPubMed
2.
go back to reference Mattijssen-Horstink L, Langeraar JJ, Mauritz GJ, van der Stappen W, Baggelaar M, Tan E. Radiologic discrepancies in diagnosis of fractures in a Dutch teaching emergency department: a retrospective analysis. Scand J Trauma Resusc Emerg Med. 2020;28(1):38.CrossRefPubMedPubMedCentral Mattijssen-Horstink L, Langeraar JJ, Mauritz GJ, van der Stappen W, Baggelaar M, Tan E. Radiologic discrepancies in diagnosis of fractures in a Dutch teaching emergency department: a retrospective analysis. Scand J Trauma Resusc Emerg Med. 2020;28(1):38.CrossRefPubMedPubMedCentral
4.
go back to reference Ilyas AM, Jupiter JB. Distal radius fractures–classification of treatment and indications for surgery. Orthop Clin North Am. 2007;38(2):167–73.CrossRefPubMed Ilyas AM, Jupiter JB. Distal radius fractures–classification of treatment and indications for surgery. Orthop Clin North Am. 2007;38(2):167–73.CrossRefPubMed
5.
go back to reference Alluri RK, Hill JR, Ghiassi A. Distal Radius fractures: approaches, indications, and techniques. J Hand Surg Am. 2016;41(8):845–54.CrossRefPubMed Alluri RK, Hill JR, Ghiassi A. Distal Radius fractures: approaches, indications, and techniques. J Hand Surg Am. 2016;41(8):845–54.CrossRefPubMed
6.
go back to reference Makhni EC, Ewald TJ, Kelly S, Day CS. Effect of patient age on the radiographic outcomes of distal radius fractures subject to nonoperative treatment. J Hand Surg Am. 2008;33(8):1301–8.CrossRefPubMed Makhni EC, Ewald TJ, Kelly S, Day CS. Effect of patient age on the radiographic outcomes of distal radius fractures subject to nonoperative treatment. J Hand Surg Am. 2008;33(8):1301–8.CrossRefPubMed
7.
go back to reference Walenkamp MM, Aydin S, Mulders MA, Goslings JC, Schep NW. Predictors of unstable distal radius fractures: a systematic review and meta-analysis. J Hand Surg Eur Vol. 2016;41(5):501–15.CrossRefPubMed Walenkamp MM, Aydin S, Mulders MA, Goslings JC, Schep NW. Predictors of unstable distal radius fractures: a systematic review and meta-analysis. J Hand Surg Eur Vol. 2016;41(5):501–15.CrossRefPubMed
8.
go back to reference Gray RRL, Foremny G, Lee S, Greditzer T. Radiography of the distal Radius. J Orthop Trauma. 2021;35(Suppl 3):s21–6.CrossRefPubMed Gray RRL, Foremny G, Lee S, Greditzer T. Radiography of the distal Radius. J Orthop Trauma. 2021;35(Suppl 3):s21–6.CrossRefPubMed
9.
go back to reference Jung HW, Hong H, Jung HJ, Kim JS, Park HY, Bae KH, et al. Redisplacement of distal Radius fracture after initial closed reduction: analysis of prognostic factors. Clin Orthop Surg. 2015;7(3):377–82.CrossRefPubMedPubMedCentral Jung HW, Hong H, Jung HJ, Kim JS, Park HY, Bae KH, et al. Redisplacement of distal Radius fracture after initial closed reduction: analysis of prognostic factors. Clin Orthop Surg. 2015;7(3):377–82.CrossRefPubMedPubMedCentral
10.
go back to reference LaMartina J, Jawa A, Stucken C, Merlin G, Tornetta P. 3rd. Predicting alignment after closed reduction and casting of distal radius fractures. J Hand Surg Am. 2015;40(5):934–9.CrossRefPubMed LaMartina J, Jawa A, Stucken C, Merlin G, Tornetta P. 3rd. Predicting alignment after closed reduction and casting of distal radius fractures. J Hand Surg Am. 2015;40(5):934–9.CrossRefPubMed
12.
go back to reference Adams M, Chen W, Holcdorf D, McCusker MW, Howe PD, Gaillard F. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol. 2019;63(1):27–32.CrossRefPubMed Adams M, Chen W, Holcdorf D, McCusker MW, Howe PD, Gaillard F. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol. 2019;63(1):27–32.CrossRefPubMed
13.
go back to reference Bluthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol. 2020;126:108925.CrossRefPubMed Bluthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol. 2020;126:108925.CrossRefPubMed
14.
go back to reference Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89(4):468–73.CrossRefPubMedPubMedCentral Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89(4):468–73.CrossRefPubMedPubMedCentral
15.
go back to reference Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A. 2018;115(45):11591–6.CrossRefPubMedPubMedCentral Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A. 2018;115(45):11591–6.CrossRefPubMedPubMedCentral
16.
go back to reference Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 2017;88(6):581–6.CrossRefPubMedPubMedCentral Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 2017;88(6):581–6.CrossRefPubMedPubMedCentral
17.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRefPubMed Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRefPubMed
18.
go back to reference Suzuki T, Maki S, Yamazaki T, Wakita H, Toguchi Y, Horii M, et al. Detecting Distal Radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to Hand Orthopedic surgeons. J Digit Imaging. 2022;35(1):39–46.CrossRefPubMed Suzuki T, Maki S, Yamazaki T, Wakita H, Toguchi Y, Horii M, et al. Detecting Distal Radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to Hand Orthopedic surgeons. J Digit Imaging. 2022;35(1):39–46.CrossRefPubMed
19.
go back to reference Ebsim R, Naqvi J, Cootes TF, editors. Automatic detection of wrist fractures from Posteroanterior and lateral radiographs: a deep learning-based Approach. Computational methods and clinical applications in Musculoskeletal Imaging; 2019 2019//; Cham: Springer International Publishing. Ebsim R, Naqvi J, Cootes TF, editors. Automatic detection of wrist fractures from Posteroanterior and lateral radiographs: a deep learning-based Approach. Computational methods and clinical applications in Musculoskeletal Imaging; 2019 2019//; Cham: Springer International Publishing.
20.
go back to reference Hardalaç F, Uysal F, Peker O, Çiçeklidağ M, Tolunay T, Tokgöz N et al. Fracture detection in wrist X-ray images using deep learning-based object detection models. Sens (Basel). 2022;22(3). Hardalaç F, Uysal F, Peker O, Çiçeklidağ M, Tolunay T, Tokgöz N et al. Fracture detection in wrist X-ray images using deep learning-based object detection models. Sens (Basel). 2022;22(3).
21.
go back to reference Joshi D, Singh TP, Joshi AK. Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs. Neural Comput Appl. 2022;34(21):19061–77.CrossRef Joshi D, Singh TP, Joshi AK. Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs. Neural Comput Appl. 2022;34(21):19061–77.CrossRef
22.
go back to reference Rashid T, Zia MS, Najam Ur R, Meraj T, Rauf HT, Kadry S. A minority class Balanced Approach using the DCNN-LSTM Method to Detect Human wrist fracture. Life (Basel). 2023;13(1). Rashid T, Zia MS, Najam Ur R, Meraj T, Rauf HT, Kadry S. A minority class Balanced Approach using the DCNN-LSTM Method to Detect Human wrist fracture. Life (Basel). 2023;13(1).
23.
go back to reference Yahalomi E, Chernofsky M, Werman M, editors. Detection of distal Radius fractures trained by a small set of X-Ray images and faster R-CNN. Intelligent Computing; 2019 2019//; Cham: Springer International Publishing. Yahalomi E, Chernofsky M, Werman M, editors. Detection of distal Radius fractures trained by a small set of X-Ray images and faster R-CNN. Intelligent Computing; 2019 2019//; Cham: Springer International Publishing.
24.
go back to reference Yang F, Cong R, Xing M, Ding B. Study on AO classification of distal radius fractures based on multi-feature fusion. Journal of Physics: Conference Series. 2021;1800(1):012006. Yang F, Cong R, Xing M, Ding B. Study on AO classification of distal radius fractures based on multi-feature fusion. Journal of Physics: Conference Series. 2021;1800(1):012006.
25.
go back to reference Javed R, Khan TA, Janjua JI, Muhammad MA, Ramay SA, Basit MK. WRIST FRACTURE PREDICTION USING TRANSFER LEARNING, A CASE STUDY. J Popul Ther Clin Pharmacol. 2023;30(18):1050–62. Javed R, Khan TA, Janjua JI, Muhammad MA, Ramay SA, Basit MK. WRIST FRACTURE PREDICTION USING TRANSFER LEARNING, A CASE STUDY. J Popul Ther Clin Pharmacol. 2023;30(18):1050–62.
26.
go back to reference Cohen M, Puntonet J, Sanchez J, Kierszbaum E, Crema M, Soyer P et al. Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. Eur Radiol. 2022. Cohen M, Puntonet J, Sanchez J, Kierszbaum E, Crema M, Soyer P et al. Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. Eur Radiol. 2022.
27.
go back to reference Kim JE, Yoo HJ, Chae HD, Choi JY, Hong SH, Kang JH, et al. Dual-layer detector CT with virtual noncalcium imaging: diagnostic performance in patients with suspected wrist fractures. AJR Am J Roentgenol. 2021;216(4):1003–13.CrossRefPubMed Kim JE, Yoo HJ, Chae HD, Choi JY, Hong SH, Kang JH, et al. Dual-layer detector CT with virtual noncalcium imaging: diagnostic performance in patients with suspected wrist fractures. AJR Am J Roentgenol. 2021;216(4):1003–13.CrossRefPubMed
28.
go back to reference Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional Neural Networks for Automated Fracture Detection and localization on wrist radiographs. Radiol Artif Intell. 2019;1(1):e180001.CrossRefPubMedPubMedCentral Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional Neural Networks for Automated Fracture Detection and localization on wrist radiographs. Radiol Artif Intell. 2019;1(1):e180001.CrossRefPubMedPubMedCentral
29.
go back to reference Tobler P, Cyriac J, Kovacs BK, Hofmann V, Sexauer R, Paciolla F, et al. AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size. Eur Radiol. 2021;31(9):6816–24.CrossRefPubMedPubMedCentral Tobler P, Cyriac J, Kovacs BK, Hofmann V, Sexauer R, Paciolla F, et al. AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size. Eur Radiol. 2021;31(9):6816–24.CrossRefPubMedPubMedCentral
30.
go back to reference Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays. J Orthop Surg Res. 2021;16(1):694.CrossRefPubMedPubMedCentral Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays. J Orthop Surg Res. 2021;16(1):694.CrossRefPubMedPubMedCentral
31.
go back to reference Gan K, Xu D, Lin Y, Shen Y, Zhang T, Hu K, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop. 2019;90(4):394–400.CrossRefPubMedPubMedCentral Gan K, Xu D, Lin Y, Shen Y, Zhang T, Hu K, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop. 2019;90(4):394–400.CrossRefPubMedPubMedCentral
32.
go back to reference Anttila TT, Karjalainen TV, Mäkelä TO, Waris EM, Lindfors NC, Leminen MM et al. Detecting Distal Radius fractures using a segmentation-based Deep Learning Model. J Digit Imaging. 2022. Anttila TT, Karjalainen TV, Mäkelä TO, Waris EM, Lindfors NC, Leminen MM et al. Detecting Distal Radius fractures using a segmentation-based Deep Learning Model. J Digit Imaging. 2022.
33.
go back to reference Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73(5):439–45.CrossRefPubMed Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73(5):439–45.CrossRefPubMed
34.
go back to reference Kim MW, Jung J, Park SJ, Park YS, Yi JH, Yang WS, et al. Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room. Clin Exp Emerg Med. 2021;8(2):120–7.CrossRefPubMedPubMedCentral Kim MW, Jung J, Park SJ, Park YS, Yi JH, Yang WS, et al. Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room. Clin Exp Emerg Med. 2021;8(2):120–7.CrossRefPubMedPubMedCentral
35.
go back to reference Üreten K, Sevinç HF, İğdeli U, Onay A, Maraş Y. Use of deep learning methods for hand fracture detection from plain hand radiographs. Ulus Travma Acil Cerrahi Derg. 2022;28(2):196–201.PubMedPubMedCentral Üreten K, Sevinç HF, İğdeli U, Onay A, Maraş Y. Use of deep learning methods for hand fracture detection from plain hand radiographs. Ulus Travma Acil Cerrahi Derg. 2022;28(2):196–201.PubMedPubMedCentral
36.
go back to reference Raisuddin AM, Vaattovaara E, Nevalainen M, Nikki M, Järvenpää E, Makkonen K, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep. 2021;11(1):6006.CrossRefPubMedPubMedCentral Raisuddin AM, Vaattovaara E, Nevalainen M, Nikki M, Järvenpää E, Makkonen K, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep. 2021;11(1):6006.CrossRefPubMedPubMedCentral
37.
go back to reference Lee KC, Choi IC, Kang CH, Ahn KS, Yoon H, Lee JJ et al. Clinical validation of an Artificial Intelligence Model for detecting distal Radius, Ulnar Styloid, and scaphoid fractures on conventional wrist radiographs. Diagnostics. 2023;13(9). Lee KC, Choi IC, Kang CH, Ahn KS, Yoon H, Lee JJ et al. Clinical validation of an Artificial Intelligence Model for detecting distal Radius, Ulnar Styloid, and scaphoid fractures on conventional wrist radiographs. Diagnostics. 2023;13(9).
38.
go back to reference Zhang J, Li Z, Lin H, Xue M, Wang H, Fang Y, et al. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Front Med. 2023;10:1224489.CrossRef Zhang J, Li Z, Lin H, Xue M, Wang H, Fang Y, et al. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Front Med. 2023;10:1224489.CrossRef
39.
go back to reference Min H, Rabi Y, Wadhawan A, Bourgeat P, Dowling J, White J, et al. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework. Phys Eng Sci Med. 2023;46(2):877–86.CrossRefPubMedPubMedCentral Min H, Rabi Y, Wadhawan A, Bourgeat P, Dowling J, White J, et al. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework. Phys Eng Sci Med. 2023;46(2):877–86.CrossRefPubMedPubMedCentral
40.
go back to reference Blüthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol. 2020;126:108925.CrossRefPubMed Blüthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol. 2020;126:108925.CrossRefPubMed
41.
go back to reference Oliveira ECL, van den Merkhof A, Olczak J, Gordon M, Jutte PC, Jaarsma RL, et al. An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics: are these externally validated and ready for clinical application? Bone Jt Open. 2021;2(10):879–85.CrossRef Oliveira ECL, van den Merkhof A, Olczak J, Gordon M, Jutte PC, Jaarsma RL, et al. An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics: are these externally validated and ready for clinical application? Bone Jt Open. 2021;2(10):879–85.CrossRef
Metadata
Title
AI for detection, classification and prediction of loss of alignment of distal radius fractures; a systematic review
Authors
Koen D. Oude Nijhuis
Lente H. M. Dankelman
Jort P. Wiersma
Britt Barvelink
Frank F.A. IJpma
Michael H. J. Verhofstad
Job N. Doornberg
Joost W. Colaris
Mathieu M.E. Wijffels
Machine Learning Consortium
Publication date
09-07-2024
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Trauma and Emergency Surgery
Print ISSN: 1863-9933
Electronic ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-024-02557-0