Skip to main content
Top

New and Emerging Drug and Gene Therapies for Friedreich Ataxia

Stay up to date with medical journals in your specialty

Already registered? Log in here

Looking for something specific?

Find articles from over 500 clinical journals from Springer with the search function.

About journals on Springer Medicine

The range of medical journals on Springer Medicine is extremely diverse. It includes the current editions and archives of around 500 English-language journals from almost all medical disciplines published by Springer. 

The specialist literature is usually available both online in full text and as a PDF for download. The online view is optimized in such a way that the specialist texts can be read comfortably on all screen sizes, from desktops to tablets to smartphones. We also include features to support your use of the journals for your research, such as bookmark setting.

Whether you’re interested in internal medicine, surgery, general medicine, gynecology, orthopedics, neurology, or pediatrics, there are excellent journals in almost every subject area, such as the BMC Series, Diabetologia, Breast Cancer Research, Current Obesity Reports, CNS Drugs and many others, all of which are an integral part of the everyday life of doctors across Europe. 

The breadth of content from this suite of journals allows the Springer Medicine team to collect and deliver broad-ranging content across the full spectrum of medical knowledge, with a special focus on topics highlighted by these leading journals and their editorial boards and specialist authors. This guarantees a high quality of content and ensures that our readers are offered the most relevant topics in their respective specialist area. 

Our experienced clinical content managers constantly monitor the needs of medical professionals to provide up-to-date reports from international congresses, expert interviews, and a range of digestible content on emerging topics in the field of medicine.

Published in:

Open Access 08-08-2024 | Disease of the Nervous System in Children | Review Article

New and Emerging Drug and Gene Therapies for Friedreich Ataxia

Authors: Varlli Scott, Martin B. Delatycki, Geneieve Tai, Louise A. Corben

Published in: CNS Drugs | Issue 10/2024

Login to get access

Abstract

The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.
Literature
1.
go back to reference Cossée M, et al. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA. 1997;94(14):7452–7.PubMedPubMedCentralCrossRef Cossée M, et al. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA. 1997;94(14):7452–7.PubMedPubMedCentralCrossRef
2.
go back to reference Labuda M, et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000;54(12):2322–4.PubMedCrossRef Labuda M, et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000;54(12):2322–4.PubMedCrossRef
3.
go back to reference Friedreich N. Uber degenerative Atrophie der spinalen Hinterstrange. Virchow’s Archiv Pathological Anatomy. 1863;26:291–419. Friedreich N. Uber degenerative Atrophie der spinalen Hinterstrange. Virchow’s Archiv Pathological Anatomy. 1863;26:291–419.
4.
go back to reference Campuzano V, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.PubMedCrossRef Campuzano V, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.PubMedCrossRef
8.
go back to reference Reetz K, et al. Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA). Neurol Res Pract. 2019;1:33.PubMedPubMedCentralCrossRef Reetz K, et al. Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA). Neurol Res Pract. 2019;1:33.PubMedPubMedCentralCrossRef
10.
go back to reference Rummey C, et al. Natural history of Friedreich Ataxia: heterogeneity of neurologic progression and consequences for clinical trial design. Neurology. 2022;99(14):e1499–510.PubMedPubMedCentralCrossRef Rummey C, et al. Natural history of Friedreich Ataxia: heterogeneity of neurologic progression and consequences for clinical trial design. Neurology. 2022;99(14):e1499–510.PubMedPubMedCentralCrossRef
11.
go back to reference Reetz K, et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet Neurol. 2021;20(5):362–72.PubMedCrossRef Reetz K, et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet Neurol. 2021;20(5):362–72.PubMedCrossRef
12.
go back to reference Indelicato E, et al. Predictors of survival in Friedreich’s Ataxia: a prospective cohort study. Mov Disord. 2024;39(3):510–8.PubMedCrossRef Indelicato E, et al. Predictors of survival in Friedreich’s Ataxia: a prospective cohort study. Mov Disord. 2024;39(3):510–8.PubMedCrossRef
13.
go back to reference Campuzano V, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet. 1997;6(11):1771–80.PubMedCrossRef Campuzano V, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet. 1997;6(11):1771–80.PubMedCrossRef
14.
go back to reference Evans-Galea MV, et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med. 2014;17(91):25–35.PubMed Evans-Galea MV, et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med. 2014;17(91):25–35.PubMed
15.
go back to reference Boehm T, et al. Variations of frataxin protein levels in normal individuals. Neurol Sci. 2011;32(2):327–30.PubMedCrossRef Boehm T, et al. Variations of frataxin protein levels in normal individuals. Neurol Sci. 2011;32(2):327–30.PubMedCrossRef
16.
go back to reference Candayan A, et al. The first biallelic missense mutation in the FXN gene in a consanguineous Turkish family with Charcot-Marie-Tooth-like phenotype. Neurogenetics. 2020;21(1):73–8.PubMedCrossRef Candayan A, et al. The first biallelic missense mutation in the FXN gene in a consanguineous Turkish family with Charcot-Marie-Tooth-like phenotype. Neurogenetics. 2020;21(1):73–8.PubMedCrossRef
17.
go back to reference Smith FM, Kosman DJ. Molecular defects in Friedreich’s Ataxia: convergence of oxidative stress and cytoskeletal abnormalities. Front Mol Biosci. 2020;7: 569293.PubMedPubMedCentralCrossRef Smith FM, Kosman DJ. Molecular defects in Friedreich’s Ataxia: convergence of oxidative stress and cytoskeletal abnormalities. Front Mol Biosci. 2020;7: 569293.PubMedPubMedCentralCrossRef
18.
go back to reference Monfort B, et al. Recent advances in the elucidation of Frataxin biochemical function open novel perspectives for the treatment of Friedreich’s Ataxia. Front Neurosci. 2022;16: 838335.PubMedPubMedCentralCrossRef Monfort B, et al. Recent advances in the elucidation of Frataxin biochemical function open novel perspectives for the treatment of Friedreich’s Ataxia. Front Neurosci. 2022;16: 838335.PubMedPubMedCentralCrossRef
19.
go back to reference Maio N, Rouault TA. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta. 2015;1853(6):1493–512.PubMedCrossRef Maio N, Rouault TA. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta. 2015;1853(6):1493–512.PubMedCrossRef
20.
go back to reference Santos R, et al. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13(5):651–90.PubMedPubMedCentralCrossRef Santos R, et al. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13(5):651–90.PubMedPubMedCentralCrossRef
21.
go back to reference Schmucker S, Puccio H. Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet. 2010;19(R1):R103–10.PubMedCrossRef Schmucker S, Puccio H. Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet. 2010;19(R1):R103–10.PubMedCrossRef
22.
go back to reference Saccà F, et al. A combined nucleic acid and protein analysis in Friedreich ataxia: implications for diagnosis, pathogenesis and clinical trial design. PLoS ONE. 2011;6(3): e17627.PubMedPubMedCentralCrossRef Saccà F, et al. A combined nucleic acid and protein analysis in Friedreich ataxia: implications for diagnosis, pathogenesis and clinical trial design. PLoS ONE. 2011;6(3): e17627.PubMedPubMedCentralCrossRef
23.
go back to reference Calabrese V, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005;233(1–2):145–62.PubMedCrossRef Calabrese V, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005;233(1–2):145–62.PubMedCrossRef
26.
go back to reference Reetz K, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14(2):174–82.PubMedCrossRef Reetz K, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14(2):174–82.PubMedCrossRef
27.
go back to reference Mateo I, et al. Expanded GAA repeats and clinical variation in Friedreich’s ataxia. Acta Neurol Scand. 2004;109(1):75–8.PubMedCrossRef Mateo I, et al. Expanded GAA repeats and clinical variation in Friedreich’s ataxia. Acta Neurol Scand. 2004;109(1):75–8.PubMedCrossRef
28.
go back to reference Montermini L, et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol. 1997;41(5):675–82.PubMedCrossRef Montermini L, et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol. 1997;41(5):675–82.PubMedCrossRef
30.
go back to reference Kelly M, et al. A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J Mol Cell Cardiol. 2011;51(5):848–54.PubMedCrossRef Kelly M, et al. A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J Mol Cell Cardiol. 2011;51(5):848–54.PubMedCrossRef
31.
go back to reference Rodden LN, et al. A non-synonymous single nucleotide polymorphism in SIRT6 predicts neurological severity in Friedreich ataxia. Front Mol Biosci. 2022;9: 933788.PubMedCrossRef Rodden LN, et al. A non-synonymous single nucleotide polymorphism in SIRT6 predicts neurological severity in Friedreich ataxia. Front Mol Biosci. 2022;9: 933788.PubMedCrossRef
32.
33.
go back to reference Bhidayasiri R, et al. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62(12):1865–9.PubMedCrossRef Bhidayasiri R, et al. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62(12):1865–9.PubMedCrossRef
34.
go back to reference Junck L, et al. Structural and functional brain imaging in Friedreich’s ataxia. Arch Neurol. 1994;51(4):349–55.PubMedCrossRef Junck L, et al. Structural and functional brain imaging in Friedreich’s ataxia. Arch Neurol. 1994;51(4):349–55.PubMedCrossRef
35.
go back to reference Parkinson MH, et al. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl 1):103–17.PubMedCrossRef Parkinson MH, et al. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl 1):103–17.PubMedCrossRef
36.
go back to reference Koeppen AH, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118(6):763–76.PubMedCrossRef Koeppen AH, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118(6):763–76.PubMedCrossRef
38.
go back to reference Harding IH, et al. Central nervous system therapeutic targets in friedreich ataxia. Hum Gene Ther. 2020;31(23–24):1226–36.PubMedCrossRef Harding IH, et al. Central nervous system therapeutic targets in friedreich ataxia. Hum Gene Ther. 2020;31(23–24):1226–36.PubMedCrossRef
39.
go back to reference Koeppen AH, et al. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4(1):46.PubMedCrossRef Koeppen AH, et al. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4(1):46.PubMedCrossRef
40.
go back to reference Rezende TJR, et al. Progressive spinal cord degeneration in Friedreich’s Ataxia: results from ENIGMA-Ataxia. Mov Disord. 2023;38(1):45–56.PubMedCrossRef Rezende TJR, et al. Progressive spinal cord degeneration in Friedreich’s Ataxia: results from ENIGMA-Ataxia. Mov Disord. 2023;38(1):45–56.PubMedCrossRef
41.
go back to reference Koeppen AH, et al. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. J Neuropathol Exp Neurol. 2015;74(2):166–76.PubMedCrossRef Koeppen AH, et al. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. J Neuropathol Exp Neurol. 2015;74(2):166–76.PubMedCrossRef
42.
go back to reference Apolloni, S., M. Milani, and N. D'Ambrosi, Neuroinflammation in Friedreich's Ataxia. Int J Mol Sci, 2022. 23(11). Apolloni, S., M. Milani, and N. D'Ambrosi, Neuroinflammation in Friedreich's Ataxia. Int J Mol Sci, 2022. 23(11).
43.
go back to reference Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis. 2019;132: 104606.PubMedCrossRef Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis. 2019;132: 104606.PubMedCrossRef
44.
go back to reference Harding IH, et al. Brain structure and degeneration staging in Friedreich Ataxia: magnetic resonance imaging volumetrics from the ENIGMA-Ataxia working group. Ann Neurol. 2021;90(4):570–83.PubMedCrossRef Harding IH, et al. Brain structure and degeneration staging in Friedreich Ataxia: magnetic resonance imaging volumetrics from the ENIGMA-Ataxia working group. Ann Neurol. 2021;90(4):570–83.PubMedCrossRef
45.
go back to reference Peverill RE, et al. Left ventricular structural and functional changes in Friedreich ataxia - Relationship with body size, sex, age and genetic severity. PLoS ONE. 2019;14(11): e0225147.PubMedCrossRef Peverill RE, et al. Left ventricular structural and functional changes in Friedreich ataxia - Relationship with body size, sex, age and genetic severity. PLoS ONE. 2019;14(11): e0225147.PubMedCrossRef
46.
go back to reference Lees JG, et al. Cellular pathophysiology of Friedreich’s ataxia cardiomyopathy. Int J Cardiol. 2022;346:71–8.PubMedCrossRef Lees JG, et al. Cellular pathophysiology of Friedreich’s ataxia cardiomyopathy. Int J Cardiol. 2022;346:71–8.PubMedCrossRef
47.
go back to reference Subramony SH, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.PubMedCrossRef Subramony SH, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.PubMedCrossRef
48.
go back to reference Zesiewicz, T.A., Susan Perlman, Kelly L. Sullivan, Yangxin Huang, Jason L. Salemi, Matthew Klein, Charles Isaacs, Clifton Gooch, Jessica Shaw, David Lynch 88 (S16): S17.005 EPI-743 (alpha-tocotrienol quinone) demonstrates long-term improvement in neurological function and disease progression in Friedreich’s ataxia. Neurology, 2017. 88(S17.005). Zesiewicz, T.A., Susan Perlman, Kelly L. Sullivan, Yangxin Huang, Jason L. Salemi, Matthew Klein, Charles Isaacs, Clifton Gooch, Jessica Shaw, David Lynch 88 (S16): S17.005 EPI-743 (alpha-tocotrienol quinone) demonstrates long-term improvement in neurological function and disease progression in Friedreich’s ataxia. Neurology, 2017. 88(S17.005).
49.
go back to reference Rummey C, et al. Psychometric properties of the Friedreich Ataxia Rating Scale. Neurol Genet. 2019;5(6):371.PubMedCrossRef Rummey C, et al. Psychometric properties of the Friedreich Ataxia Rating Scale. Neurol Genet. 2019;5(6):371.PubMedCrossRef
50.
go back to reference Schmitz-Hübsch T, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.PubMedCrossRef Schmitz-Hübsch T, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.PubMedCrossRef
51.
go back to reference Corben LA, et al. Developing an instrumented measure of upper limb function in Friedreich ataxia. Cerebellum. 2021;20(3):430–8.PubMedCrossRef Corben LA, et al. Developing an instrumented measure of upper limb function in Friedreich ataxia. Cerebellum. 2021;20(3):430–8.PubMedCrossRef
52.
go back to reference Nguyen KD, et al. The assessment of upper limb functionality in Friedreich ataxia via self-feeding activity. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):924–33.PubMedCrossRef Nguyen KD, et al. The assessment of upper limb functionality in Friedreich ataxia via self-feeding activity. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):924–33.PubMedCrossRef
53.
go back to reference Akhlaghi H, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10(1):81–7.PubMedCrossRef Akhlaghi H, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10(1):81–7.PubMedCrossRef
54.
go back to reference Selvadurai LP, et al. Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol. 2016;263(11):2215–23.PubMedCrossRef Selvadurai LP, et al. Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol. 2016;263(11):2215–23.PubMedCrossRef
55.
go back to reference Corben LA, et al. Myelin paucity of the superior cerebellar peduncle in individuals with Friedreich ataxia: an MRI magnetization transfer imaging study. J Neurol Sci. 2014;343(1–2):138–43.PubMedCrossRef Corben LA, et al. Myelin paucity of the superior cerebellar peduncle in individuals with Friedreich ataxia: an MRI magnetization transfer imaging study. J Neurol Sci. 2014;343(1–2):138–43.PubMedCrossRef
56.
go back to reference Rezende TJ, et al. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord. 2016;31(1):70–8.PubMedCrossRef Rezende TJ, et al. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord. 2016;31(1):70–8.PubMedCrossRef
57.
go back to reference Vavla M, et al. Sensitivity of neuroimaging indicators in monitoring the effects of interferon gamma treatment in Friedreich’s ataxia. Front Neurosci. 2020;14:872.PubMedCrossRef Vavla M, et al. Sensitivity of neuroimaging indicators in monitoring the effects of interferon gamma treatment in Friedreich’s ataxia. Front Neurosci. 2020;14:872.PubMedCrossRef
58.
go back to reference Ward PGD, et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Disord. 2019;34(3):335–43.PubMedCrossRef Ward PGD, et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Disord. 2019;34(3):335–43.PubMedCrossRef
59.
go back to reference Straub S, et al. Toward quantitative neuroimaging biomarkers for Friedreich’s ataxia at 7 Tesla: susceptibility mapping, diffusion imaging, R(2) and R(1) relaxometry. J Neurosci Res. 2020;98(11):2219–31.PubMedCrossRef Straub S, et al. Toward quantitative neuroimaging biomarkers for Friedreich’s ataxia at 7 Tesla: susceptibility mapping, diffusion imaging, R(2) and R(1) relaxometry. J Neurosci Res. 2020;98(11):2219–31.PubMedCrossRef
60.
go back to reference Joers, J.M., et al., Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun, 2022. 4(5): p. fcac246. Joers, J.M., et al., Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun, 2022. 4(5): p. fcac246.
61.
go back to reference Georgiou-Karistianis N, et al. A natural history study to track brain and spinal cord changes in individuals with Friedreich’s ataxia: TRACK-FA study protocol. PLoS ONE. 2022;17(11): e0269649.PubMedPubMedCentralCrossRef Georgiou-Karistianis N, et al. A natural history study to track brain and spinal cord changes in individuals with Friedreich’s ataxia: TRACK-FA study protocol. PLoS ONE. 2022;17(11): e0269649.PubMedPubMedCentralCrossRef
62.
go back to reference Legrand L, et al. Predictors of left ventricular dysfunction in Friedreich’s ataxia in a 16-year observational study. Am J Cardiovasc Drugs. 2020;20(2):209–16.PubMedCrossRef Legrand L, et al. Predictors of left ventricular dysfunction in Friedreich’s ataxia in a 16-year observational study. Am J Cardiovasc Drugs. 2020;20(2):209–16.PubMedCrossRef
63.
go back to reference Ribaï P, et al. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol. 2007;64(4):558–64.PubMedCrossRef Ribaï P, et al. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol. 2007;64(4):558–64.PubMedCrossRef
64.
go back to reference Peverill RE. Letter by Peverill regarding article, “The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms.” Circulation. 2012;126(17): e272.PubMedCrossRef Peverill RE. Letter by Peverill regarding article, “The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms.” Circulation. 2012;126(17): e272.PubMedCrossRef
65.
go back to reference Rummey, C., et al., Evaluating mFARS in pediatric Friedreich's ataxia: Insights from the FACHILD study. Ann Clin Transl Neurol, 2024. Rummey, C., et al., Evaluating mFARS in pediatric Friedreich's ataxia: Insights from the FACHILD study. Ann Clin Transl Neurol, 2024.
66.
go back to reference Tiemeier H, et al. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49(1):63–70.PubMedCrossRef Tiemeier H, et al. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49(1):63–70.PubMedCrossRef
67.
go back to reference Gavriilaki, M., et al., Therapeutic biomarkers in Friedreich's ataxia: a systematic review and meta-analysis. Cerebellum, 2023. Gavriilaki, M., et al., Therapeutic biomarkers in Friedreich's ataxia: a systematic review and meta-analysis. Cerebellum, 2023.
71.
go back to reference Lieschke K, et al. How great a risk do you take? A qualitative study exploring attitudes of individuals with Friedreich ataxia toward gene therapy. Hum Gene Ther. 2023;34(19–20):1041–8.PubMedCrossRef Lieschke K, et al. How great a risk do you take? A qualitative study exploring attitudes of individuals with Friedreich ataxia toward gene therapy. Hum Gene Ther. 2023;34(19–20):1041–8.PubMedCrossRef
72.
go back to reference Trantham SJ, et al. Perspectives of the Friedreich ataxia community on gene therapy clinical trials. Mol Ther Methods Clin Dev. 2024;32(1): 101179.PubMedCrossRef Trantham SJ, et al. Perspectives of the Friedreich ataxia community on gene therapy clinical trials. Mol Ther Methods Clin Dev. 2024;32(1): 101179.PubMedCrossRef
73.
go back to reference Rummey C, K.E., Lynch DR, Clinical trial design for Friedreich ataxia - Where are we now and what do we need? OrphDrugs, 2018. 6(3): p. 219-230. Rummey C, K.E., Lynch DR, Clinical trial design for Friedreich ataxia - Where are we now and what do we need? OrphDrugs, 2018. 6(3): p. 219-230.
76.
go back to reference Biogen, Biogen received european commission approval for SKYCLARYS® (omaveloxolone), the first therapy to treat Friedreich’s ataxia. 2024. Biogen, Biogen received european commission approval for SKYCLARYS® (omaveloxolone), the first therapy to treat Friedreich’s ataxia. 2024.
77.
go back to reference Lynch DR, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol. 2021;89(2):212–25.PubMedCrossRef Lynch DR, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol. 2021;89(2):212–25.PubMedCrossRef
78.
go back to reference Lynch DR, et al. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol. 2024;11(1):4–16.PubMedCrossRef Lynch DR, et al. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol. 2024;11(1):4–16.PubMedCrossRef
79.
go back to reference Subramony SH, Lynch DL. A milestone in the treatment of ataxias: approval of omaveloxolone for Friedreich ataxia. Cerebellum. 2024;23(2):775–7.PubMedCrossRef Subramony SH, Lynch DL. A milestone in the treatment of ataxias: approval of omaveloxolone for Friedreich ataxia. Cerebellum. 2024;23(2):775–7.PubMedCrossRef
80.
go back to reference Shrader WD, et al. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett. 2011;21(12):3693–8.PubMedCrossRef Shrader WD, et al. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett. 2011;21(12):3693–8.PubMedCrossRef
81.
go back to reference PTC Therapeutics, PTC Therapeutics announces topline results from vatiquinone MOVE-FA Registration-Directed Trial. 2023. PTC Therapeutics, PTC Therapeutics announces topline results from vatiquinone MOVE-FA Registration-Directed Trial. 2023.
82.
go back to reference PTC Therapeutics, PTC Therapeutics provides corporate update and reports fourth quarter and full year 2023 financial results. 2024. PTC Therapeutics, PTC Therapeutics provides corporate update and reports fourth quarter and full year 2023 financial results. 2024.
83.
go back to reference Pencina KM, et al. MIB-626, an oral formulation of a microcrystalline unique polymorph of β-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2023;78(1):90–6.PubMedCrossRef Pencina KM, et al. MIB-626, an oral formulation of a microcrystalline unique polymorph of β-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2023;78(1):90–6.PubMedCrossRef
85.
go back to reference Pharaoh G, et al. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience. 2023;45(6):3529–48.PubMedPubMedCentralCrossRef Pharaoh G, et al. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience. 2023;45(6):3529–48.PubMedPubMedCentralCrossRef
86.
go back to reference Karaa A, et al. Efficacy and safety of elamipretide in individuals with primary mitochondrial myopathy: The MMPOWER-3 randomized clinical trial. Neurology. 2023;101(3):e238–52.PubMedPubMedCentralCrossRef Karaa A, et al. Efficacy and safety of elamipretide in individuals with primary mitochondrial myopathy: The MMPOWER-3 randomized clinical trial. Neurology. 2023;101(3):e238–52.PubMedPubMedCentralCrossRef
87.
go back to reference Yiu EM, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.PubMedCrossRef Yiu EM, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.PubMedCrossRef
88.
go back to reference Rodríguez-Pascau L, et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia. Neurobiol Dis. 2021;148: 105162.PubMedCrossRef Rodríguez-Pascau L, et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia. Neurobiol Dis. 2021;148: 105162.PubMedCrossRef
89.
go back to reference Coppola G, et al. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum Mol Genet. 2009;18(13):2452–61.PubMedPubMedCentralCrossRef Coppola G, et al. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum Mol Genet. 2009;18(13):2452–61.PubMedPubMedCentralCrossRef
90.
go back to reference Pandolfo M, et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia: a phase 2 double-blind, randomized controlled trial (FRAMES). Neurol Genet. 2022;8(6): e200034.PubMedPubMedCentralCrossRef Pandolfo M, et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia: a phase 2 double-blind, randomized controlled trial (FRAMES). Neurol Genet. 2022;8(6): e200034.PubMedPubMedCentralCrossRef
92.
go back to reference Clayton R, et al. Safety, pharmacokinetics, and pharmacodynamics of nomlabofusp (CTI-1601) in Friedreich’s ataxia. Ann Clin Transl Neurol. 2024;11(3):540–53.PubMedPubMedCentralCrossRef Clayton R, et al. Safety, pharmacokinetics, and pharmacodynamics of nomlabofusp (CTI-1601) in Friedreich’s ataxia. Ann Clin Transl Neurol. 2024;11(3):540–53.PubMedPubMedCentralCrossRef
93.
go back to reference Larimar Therapeutics, Larimar therapeutics reports positive top-line data from phase 2 dose exploration study from 25 mg and 50 mg cohorts of nomlabofusp in patients with Friedreich’s ataxia. 2024. Larimar Therapeutics, Larimar therapeutics reports positive top-line data from phase 2 dose exploration study from 25 mg and 50 mg cohorts of nomlabofusp in patients with Friedreich’s ataxia. 2024.
94.
go back to reference Larimar Therapeutics, Larimar therapeutics announces the dosing of the first patient in long-term open label extension study for nomlabofusp in patients with Friedreich’s ataxia. 2024. Larimar Therapeutics, Larimar therapeutics announces the dosing of the first patient in long-term open label extension study for nomlabofusp in patients with Friedreich’s ataxia. 2024.
95.
go back to reference Khorkova O, et al. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov. 2023;22(7):539–61.PubMedCrossRef Khorkova O, et al. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov. 2023;22(7):539–61.PubMedCrossRef
96.
go back to reference Design Therapeutics, Design therapeutics outlines progress across GeneTAC™ platform and announces fourth quarter and full year 2023 financial results. 2024. Design Therapeutics, Design therapeutics outlines progress across GeneTAC™ platform and announces fourth quarter and full year 2023 financial results. 2024.
97.
go back to reference Sahdeo S, et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet. 2014;23(25):6848–62.PubMedPubMedCentralCrossRef Sahdeo S, et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet. 2014;23(25):6848–62.PubMedPubMedCentralCrossRef
98.
go back to reference Jasoliya M, et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS ONE. 2019;14(6): e0217776.PubMedPubMedCentralCrossRef Jasoliya M, et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS ONE. 2019;14(6): e0217776.PubMedPubMedCentralCrossRef
99.
go back to reference Pane C, et al. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201). Front Neurosci. 2023;17:1260977.PubMedPubMedCentralCrossRef Pane C, et al. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201). Front Neurosci. 2023;17:1260977.PubMedPubMedCentralCrossRef
101.
go back to reference Alfedi G, et al. Drug repositioning screening identifies etravirine as a potential therapeutic for friedreich’s ataxia. Mov Disord. 2019;34(3):323–34.PubMedCrossRef Alfedi G, et al. Drug repositioning screening identifies etravirine as a potential therapeutic for friedreich’s ataxia. Mov Disord. 2019;34(3):323–34.PubMedCrossRef
102.
go back to reference Paparella, G., et al., A pilot phase 2 randomized trial to evaluate the safety and potential efficacy of etravirine in Friedreich ataxia patients, in Preprints. 2024, Preprints. Paparella, G., et al., A pilot phase 2 randomized trial to evaluate the safety and potential efficacy of etravirine in Friedreich ataxia patients, in Preprints. 2024, Preprints.
104.
go back to reference Mendell JR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–88.PubMedCrossRef Mendell JR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–88.PubMedCrossRef
105.
106.
go back to reference Ocana-Santero, G., J. Díaz-Nido, and S. Herranz-Martín, Future prospects of gene therapy for Friedreich's ataxia. Int J Mol Sci, 2021. 22(4). Ocana-Santero, G., J. Díaz-Nido, and S. Herranz-Martín, Future prospects of gene therapy for Friedreich's ataxia. Int J Mol Sci, 2021. 22(4).
107.
go back to reference Perdomini M, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef Perdomini M, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef
108.
109.
110.
go back to reference Popovitz J, et al. Gene editing therapeutics based on mRNA delivery. Adv Drug Deliv Rev. 2023;200: 115026.PubMedCrossRef Popovitz J, et al. Gene editing therapeutics based on mRNA delivery. Adv Drug Deliv Rev. 2023;200: 115026.PubMedCrossRef
111.
go back to reference Li J, et al. Defining transcription regulatory elements in the human frataxin gene: implications for gene therapy. Hum Gene Ther. 2020;31(15–16):839–51.PubMedPubMedCentralCrossRef Li J, et al. Defining transcription regulatory elements in the human frataxin gene: implications for gene therapy. Hum Gene Ther. 2020;31(15–16):839–51.PubMedPubMedCentralCrossRef
112.
go back to reference Maheshwari S, Vilema-Enríquez G, Wade-Martins R. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Transl Neurodegener. 2023;12(1):45.PubMedPubMedCentralCrossRef Maheshwari S, Vilema-Enríquez G, Wade-Martins R. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Transl Neurodegener. 2023;12(1):45.PubMedPubMedCentralCrossRef
113.
go back to reference Li J, et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Res. 2019;40: 101529.PubMedPubMedCentralCrossRef Li J, et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Res. 2019;40: 101529.PubMedPubMedCentralCrossRef
114.
go back to reference Shen X, et al. Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA. 2019;25(9):1118–29.PubMedPubMedCentralCrossRef Shen X, et al. Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA. 2019;25(9):1118–29.PubMedPubMedCentralCrossRef
115.
go back to reference Mazzara PG, et al. Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat Commun. 2020;11(1):4178.PubMedPubMedCentralCrossRef Mazzara PG, et al. Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat Commun. 2020;11(1):4178.PubMedPubMedCentralCrossRef
116.
117.
go back to reference Ouellet DL, et al. Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther. 2017;24(5):265–74.PubMedCrossRef Ouellet DL, et al. Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther. 2017;24(5):265–74.PubMedCrossRef
118.
go back to reference Mishra, P., et al., Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich’s ataxia iPSC-derived neurons. Frontiers in Pharmacology, 2024. 15. Mishra, P., et al., Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich’s ataxia iPSC-derived neurons. Frontiers in Pharmacology, 2024. 15.
119.
go back to reference Salami CO, et al. Stress-induced mouse model of the cardiac manifestations of Friedreich’s ataxia corrected by AAV-mediated gene therapy. Hum Gene Ther. 2020;31(15–16):819–27.PubMedCrossRef Salami CO, et al. Stress-induced mouse model of the cardiac manifestations of Friedreich’s ataxia corrected by AAV-mediated gene therapy. Hum Gene Ther. 2020;31(15–16):819–27.PubMedCrossRef
120.
go back to reference Munoz-Zuluaga, C., et al., Identification of safe and effective intravenous dose of AAVrh.10hFXN to treat the cardiac manifestations of Friedreich's ataxia. Hum Gene Ther, 2023. 34(13-14): p. 605-615. Munoz-Zuluaga, C., et al., Identification of safe and effective intravenous dose of AAVrh.10hFXN to treat the cardiac manifestations of Friedreich's ataxia. Hum Gene Ther, 2023. 34(13-14): p. 605-615.
121.
go back to reference LEXEO Therapeutics, LEXEO THERAPEUTICS REPORTS FOURTH QUARTER AND FULL YEAR 2023 FINANCIAL RESULTS AND OPERATIONAL HIGHLIGHTS. 2024. LEXEO Therapeutics, LEXEO THERAPEUTICS REPORTS FOURTH QUARTER AND FULL YEAR 2023 FINANCIAL RESULTS AND OPERATIONAL HIGHLIGHTS. 2024.
122.
go back to reference Chang JC, et al. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich’s ataxia. Mol Ther Methods Clin Dev. 2024;32(1): 101193.PubMedPubMedCentralCrossRef Chang JC, et al. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich’s ataxia. Mol Ther Methods Clin Dev. 2024;32(1): 101193.PubMedPubMedCentralCrossRef
124.
go back to reference Okamura, N., FY2023 Financial Results Ended March 31, 2024. 2024, Astellas. Okamura, N., FY2023 Financial Results Ended March 31, 2024. 2024, Astellas.
125.
go back to reference Pavlath, G.K. Efficacy and safety of a novel AAV FXN gene therapy (AVB-202) for the treatment of Friedreich’s ataxia. In American Society for Cell and Gene Therapy. 2023. Los Angeles, CA. Pavlath, G.K. Efficacy and safety of a novel AAV FXN gene therapy (AVB-202) for the treatment of Friedreich’s ataxia. In American Society for Cell and Gene Therapy. 2023. Los Angeles, CA.
126.
go back to reference Voyager Therapeutics, I., Voyager Therapeutics Announces Selection of Gene Therapy Development Candidate for Friedreich’s Ataxia in Collaboration with Neurocrine Biosciences, Triggering Milestone Payment. 2024, Voyager Therapeutics: www.voyagertherapeutics.com Voyager Therapeutics, I., Voyager Therapeutics Announces Selection of Gene Therapy Development Candidate for Friedreich’s Ataxia in Collaboration with Neurocrine Biosciences, Triggering Milestone Payment. 2024, Voyager Therapeutics: www.​voyagertherapeut​ics.​com
127.
go back to reference Anzalone, A., Developing Prime Editors to Treat Repeat Expansion Diseases, in 6th International Conference on CRISPR Technologies. 2023: Boston, MA. Anzalone, A., Developing Prime Editors to Treat Repeat Expansion Diseases, in 6th International Conference on CRISPR Technologies. 2023: Boston, MA.
129.
go back to reference Rocca CJ, et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Sci Transl Med. 2017;9(413). Rocca CJ, et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Sci Transl Med. 2017;9(413).
130.
go back to reference Clay A, et al. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother. 2019;20(15):1855–67.PubMedCrossRef Clay A, et al. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother. 2019;20(15):1855–67.PubMedCrossRef
Metadata
Title
New and Emerging Drug and Gene Therapies for Friedreich Ataxia
Authors
Varlli Scott
Martin B. Delatycki
Geneieve Tai
Louise A. Corben
Publication date
08-08-2024
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 10/2024
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-024-01113-z

Other articles of this Issue 10/2024

CNS Drugs 10/2024 Go to the issue