Skip to main content
Top

09-01-2025 | Diabetic Cardiomyopathy | Review

Long Non-Coding RNAs in Diabetic Cardiomyopathy: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training

Authors: Jie Hu, Xinwen Miao, Li-Hua Yu

Published in: Journal of Cardiovascular Translational Research

Login to get access

Abstract

Recent studies emphasize the beneficial effects of exercise on diabetic cardiomyopathy (DCM), adding to the growing body of evidence that underscores the role of exercise in improving health outcomes. Despite this, a notable gap persists in the number of healthcare providers who actively prescribe exercise as a therapeutic intervention for DCM management. In addition, exercise modulates the expression of lncRNAs, which play a pivotal role in DCM progression. Further investigation into this relationship may facilitate the identification of novel biomarkers and therapeutic targets for DCM. This review consolidates recent advances in identifying lncRNAs biomarkers in DCM, summarizing the current knowledge on dysregulated lncRNAs and their molecular mechanisms. Additionally, it offers new insights into the mechanistic roles of lncRNAs, highlighting their potential as biomarkers and therapeutic targets for DCM. Overall, this review aims to inform future research and reinforce the significance of addressing diabetes-related cardiovascular diseases to potentially improve clinical outcomes.

Graphical Abstract

Literature
2.
go back to reference Luo W, Lin K, Hua J, Han J, Zhang Q, Chen L, Khan ZA, Wu G, Wang Y, Liang G. Schisandrin B attenuates diabetic cardiomyopathy by Targeting MyD88 and inhibiting MyD88-dependent inflammation. Adv Sci (Weinh). 2022;9:e2202590.PubMedCrossRef Luo W, Lin K, Hua J, Han J, Zhang Q, Chen L, Khan ZA, Wu G, Wang Y, Liang G. Schisandrin B attenuates diabetic cardiomyopathy by Targeting MyD88 and inhibiting MyD88-dependent inflammation. Adv Sci (Weinh). 2022;9:e2202590.PubMedCrossRef
3.
go back to reference Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–9.PubMedCrossRef Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–9.PubMedCrossRef
4.
go back to reference Hwang G-S, Yang J-Y, Ryu DH, Kwon T-H. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol. 2010;298:F461–70.PubMedCrossRef Hwang G-S, Yang J-Y, Ryu DH, Kwon T-H. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol. 2010;298:F461–70.PubMedCrossRef
5.
go back to reference Sacramento JF, Chew DJ, Melo BF, Donegá M, Dopson W, Guarino MP, Robinson A, Prieto-Lloret J, Patel S, Holinski BJ, Ramnarain N, Pikov V, Famm K, Conde SV. Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes. Diabetologia. 2018;61:700–10.PubMedPubMedCentralCrossRef Sacramento JF, Chew DJ, Melo BF, Donegá M, Dopson W, Guarino MP, Robinson A, Prieto-Lloret J, Patel S, Holinski BJ, Ramnarain N, Pikov V, Famm K, Conde SV. Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes. Diabetologia. 2018;61:700–10.PubMedPubMedCentralCrossRef
6.
go back to reference Prasad R, Floyd JL, Dupont M, Harbour A, Adu-Agyeiwaah Y, Asare-Bediako B, Chakraborty D, Kichler K, Rohella A, Li Calzi S, Lammendella R, Wright J, Boulton ME, Oudit GY, Raizada MK, Stevens BR, Li Q, Grant MB. Maintenance of Enteral ACE2 Prevents Diabetic Retinopathy in Type 1 Diabetes. Circ Res. 2023;132(1):e1–21.PubMedCrossRef Prasad R, Floyd JL, Dupont M, Harbour A, Adu-Agyeiwaah Y, Asare-Bediako B, Chakraborty D, Kichler K, Rohella A, Li Calzi S, Lammendella R, Wright J, Boulton ME, Oudit GY, Raizada MK, Stevens BR, Li Q, Grant MB. Maintenance of Enteral ACE2 Prevents Diabetic Retinopathy in Type 1 Diabetes. Circ Res. 2023;132(1):e1–21.PubMedCrossRef
7.
go back to reference Tang Y, Zhang L, Ye D, Zhao A, Liu Y, Zhang M. Causal relationship between Type 1 diabetes and osteoporosis and fracture occurrence: a two-sample Mendelian randomization analysis. Osteoporos Int. 2023;34(6):1111–7.PubMedCrossRef Tang Y, Zhang L, Ye D, Zhao A, Liu Y, Zhang M. Causal relationship between Type 1 diabetes and osteoporosis and fracture occurrence: a two-sample Mendelian randomization analysis. Osteoporos Int. 2023;34(6):1111–7.PubMedCrossRef
8.
go back to reference Lavie CJ, Johannsen N, Swift D, Senechal M, Earnest C, Church T, Hutber A, Sallis R, Blair SN. Exercise is medicine - the importance of physical activity, exercise training, cardiorespiratory fitness and obesity in the prevention and treatment of type 2 diabetes. Eur Endocrinol. 2014;10:18–22.PubMedPubMedCentralCrossRef Lavie CJ, Johannsen N, Swift D, Senechal M, Earnest C, Church T, Hutber A, Sallis R, Blair SN. Exercise is medicine - the importance of physical activity, exercise training, cardiorespiratory fitness and obesity in the prevention and treatment of type 2 diabetes. Eur Endocrinol. 2014;10:18–22.PubMedPubMedCentralCrossRef
9.
go back to reference Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, Pereira M, Regensteiner JG, Ribisl PM, Look ASG. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the look AHEAD Study. Int J Obes (Lond). 2009;33:305–16.PubMedCrossRef Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, Pereira M, Regensteiner JG, Ribisl PM, Look ASG. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the look AHEAD Study. Int J Obes (Lond). 2009;33:305–16.PubMedCrossRef
10.
go back to reference Perry AS, Dooley EE, Master H, Spartano NL, Brittain EL, Pettee Gabriel K. Physical activity over the lifecourse and cardiovascular disease. Circ Res. 2023;132:1725–40.PubMedPubMedCentralCrossRef Perry AS, Dooley EE, Master H, Spartano NL, Brittain EL, Pettee Gabriel K. Physical activity over the lifecourse and cardiovascular disease. Circ Res. 2023;132:1725–40.PubMedPubMedCentralCrossRef
11.
go back to reference Dunstan DW, Salmon J, Healy GN, Shaw JE, Jolley D, Zimmet PZ, Owen N. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care. 2007;30:516–22.PubMedCrossRef Dunstan DW, Salmon J, Healy GN, Shaw JE, Jolley D, Zimmet PZ, Owen N. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care. 2007;30:516–22.PubMedCrossRef
12.
go back to reference Hemmingsen B, Gimenez-Perez G, Mauricio D, I Figuls MR, Metzendorf M-I, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12:CD003054.PubMed Hemmingsen B, Gimenez-Perez G, Mauricio D, I Figuls MR, Metzendorf M-I, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12:CD003054.PubMed
13.
go back to reference Petermann F, Díaz-Martínez X, Garrido-Méndez Á, Leiva AM, Martínez MA, Salas C, Poblete-Valderrama F, Celis-Morales C. Association between type 2 diabetes and physical activity in individuals with family history of diabetes. Gac Sanit. 2018;32:230–5.PubMedCrossRef Petermann F, Díaz-Martínez X, Garrido-Méndez Á, Leiva AM, Martínez MA, Salas C, Poblete-Valderrama F, Celis-Morales C. Association between type 2 diabetes and physical activity in individuals with family history of diabetes. Gac Sanit. 2018;32:230–5.PubMedCrossRef
14.
go back to reference Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, Donahue K, Doubeni CA, Epling JW, Kubik M, Landefeld S, Ogedegbe G, Pbert L, Silverstein M, Simon MA, Tseng C-W, Wong JB. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US preventive services task force recommendation statement. JAMA. 2020;324:2069–75.PubMedCrossRef Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, Donahue K, Doubeni CA, Epling JW, Kubik M, Landefeld S, Ogedegbe G, Pbert L, Silverstein M, Simon MA, Tseng C-W, Wong JB. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US preventive services task force recommendation statement. JAMA. 2020;324:2069–75.PubMedCrossRef
15.
go back to reference Balducci S, Sacchetti M, Haxhi J, Orlando G, D’Errico V, Fallucca S, Menini S, Pugliese G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev. 2014;30(Suppl 1):13–23.PubMedCrossRef Balducci S, Sacchetti M, Haxhi J, Orlando G, D’Errico V, Fallucca S, Menini S, Pugliese G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev. 2014;30(Suppl 1):13–23.PubMedCrossRef
17.
go back to reference Halabi N, Thomas B, Chidiac O, Robay A, AbiNahed J, Jayyousi A, Al Suwaidi J, Bradic M, Abi Khalil C. Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease. Cardiovasc Diabetol. 2024;23:196.PubMedPubMedCentralCrossRef Halabi N, Thomas B, Chidiac O, Robay A, AbiNahed J, Jayyousi A, Al Suwaidi J, Bradic M, Abi Khalil C. Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease. Cardiovasc Diabetol. 2024;23:196.PubMedPubMedCentralCrossRef
18.
go back to reference Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis. 2022;13:38.PubMedPubMedCentralCrossRef Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis. 2022;13:38.PubMedPubMedCentralCrossRef
19.
go back to reference Dieter C, Lemos NE, Corrêa NRDF, Assmann TS, Crispim D. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses. Front Endocrinol (Lausanne). 2021;12:602597.PubMedPubMedCentralCrossRef Dieter C, Lemos NE, Corrêa NRDF, Assmann TS, Crispim D. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses. Front Endocrinol (Lausanne). 2021;12:602597.PubMedPubMedCentralCrossRef
20.
go back to reference Lu Y, Qie D, Yang F, Wu J. LncRNA MEG3 aggravates adipocyte inflammation and insulin resistance by targeting IGF2BP2 to activate TLR4/NF-κB signaling pathway. Int Immunopharmacol. 2023;121:110467.PubMedCrossRef Lu Y, Qie D, Yang F, Wu J. LncRNA MEG3 aggravates adipocyte inflammation and insulin resistance by targeting IGF2BP2 to activate TLR4/NF-κB signaling pathway. Int Immunopharmacol. 2023;121:110467.PubMedCrossRef
21.
go back to reference Hu Z, Wang J, Pan T, Li X, Tao C, Wu Y, Wang X, Zhang Z, Liu Y, Zhang W, Xu C, Wu X, Gu Q, Fan Y, Qian H, Mugisha A, Yuan S, Liu Q, Xie P. The exosome-transmitted lncRNA LOC100132249 induces endothelial dysfunction in diabetic retinopathy. Diabetes. 2023;72:1307–19.PubMedCrossRef Hu Z, Wang J, Pan T, Li X, Tao C, Wu Y, Wang X, Zhang Z, Liu Y, Zhang W, Xu C, Wu X, Gu Q, Fan Y, Qian H, Mugisha A, Yuan S, Liu Q, Xie P. The exosome-transmitted lncRNA LOC100132249 induces endothelial dysfunction in diabetic retinopathy. Diabetes. 2023;72:1307–19.PubMedCrossRef
22.
go back to reference Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics. 2024;19:2293409.PubMedPubMedCentralCrossRef Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics. 2024;19:2293409.PubMedPubMedCentralCrossRef
23.
go back to reference Alharbi KS. GAS5: A pivotal lncRNA in diabetes mellitus pathogenesis and management. Pathol Res Pract. 2024;253:154955.PubMedCrossRef Alharbi KS. GAS5: A pivotal lncRNA in diabetes mellitus pathogenesis and management. Pathol Res Pract. 2024;253:154955.PubMedCrossRef
24.
go back to reference Xu Y, Kang X, Liu H, Jiang H, Wang W. LncRNA XIST promotes insulin resistance in gestational diabetes mellitus via the microRNA-181b-5p/NDRG2 axis. Gen Physiol Biophys. 2023;42:443–55.PubMedCrossRef Xu Y, Kang X, Liu H, Jiang H, Wang W. LncRNA XIST promotes insulin resistance in gestational diabetes mellitus via the microRNA-181b-5p/NDRG2 axis. Gen Physiol Biophys. 2023;42:443–55.PubMedCrossRef
25.
go back to reference Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015;4:102–7.PubMedPubMedCentralCrossRef Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015;4:102–7.PubMedPubMedCentralCrossRef
26.
go back to reference Quaiyoom A, Kumar R. An overview of diabetic cardiomyopathy. Curr Diabetes Rev. 2024;20:e121023222139.PubMedCrossRef Quaiyoom A, Kumar R. An overview of diabetic cardiomyopathy. Curr Diabetes Rev. 2024;20:e121023222139.PubMedCrossRef
27.
go back to reference Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, Namba Y, Yoshida M, Sugiyama H, Ito H. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 2022;23(7):3587.PubMedPubMedCentralCrossRef Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, Namba Y, Yoshida M, Sugiyama H, Ito H. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 2022;23(7):3587.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.PubMedCrossRef Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.PubMedCrossRef
30.
go back to reference Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal. 2015;22:1606–30.PubMedCrossRef Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal. 2015;22:1606–30.PubMedCrossRef
31.
go back to reference Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 is induced by FOXO1 and causes oxidative stress and diabetic cardiomyopathy. Circ Res. 2021;128:335–57.PubMedCrossRef Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 is induced by FOXO1 and causes oxidative stress and diabetic cardiomyopathy. Circ Res. 2021;128:335–57.PubMedCrossRef
32.
go back to reference Dasari D, Goyal SG, Penmetsa A, Sriram D, Dhar A. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol. 2023;949:175720.PubMedCrossRef Dasari D, Goyal SG, Penmetsa A, Sriram D, Dhar A. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol. 2023;949:175720.PubMedCrossRef
33.
go back to reference Zhang M, Sui W, Xing Y, Cheng J, Cheng C, Xue F, Zhang J, Wang X, Zhang C, Hao P, Zhang Y. Angiotensin IV attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis. Theranostics. 2021;11:8624–39.PubMedPubMedCentralCrossRef Zhang M, Sui W, Xing Y, Cheng J, Cheng C, Xue F, Zhang J, Wang X, Zhang C, Hao P, Zhang Y. Angiotensin IV attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis. Theranostics. 2021;11:8624–39.PubMedPubMedCentralCrossRef
34.
go back to reference Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao X, Xing J, Xue J, Liu F, Li F. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc Diabetol. 2023;22:216.PubMedPubMedCentralCrossRef Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao X, Xing J, Xue J, Liu F, Li F. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc Diabetol. 2023;22:216.PubMedPubMedCentralCrossRef
35.
go back to reference Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16:545–55.PubMedCrossRef Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16:545–55.PubMedCrossRef
36.
go back to reference Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, Khadir A, Tuomilehto J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients. 2017;9(12):1310.PubMedPubMedCentralCrossRef Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, Khadir A, Tuomilehto J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients. 2017;9(12):1310.PubMedPubMedCentralCrossRef
37.
go back to reference Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.PubMedCrossRef Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.PubMedCrossRef
38.
go back to reference Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9.PubMedCrossRef Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9.PubMedCrossRef
39.
go back to reference Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16:942–61.PubMedCrossRef Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16:942–61.PubMedCrossRef
40.
go back to reference Rasmussen, L., Poulsen, C. W., Kampmann, U., Smedegaard, S. B., Ovesen, P. G. & Fuglsang, J. Diet and Healthy Lifestyle in the Management of Gestational Diabetes Mellitus, Nutrients. 2020;12. Rasmussen, L., Poulsen, C. W., Kampmann, U., Smedegaard, S. B., Ovesen, P. G. & Fuglsang, J. Diet and Healthy Lifestyle in the Management of Gestational Diabetes Mellitus, Nutrients. 2020;12.
41.
go back to reference Joseph JJ, Echouffo-Tcheugui JB, Golden SH, Chen H, Jenny NS, Carnethon MR, Jacobs D, Burke GL, Vaidya D, Ouyang P, Bertoni AG. Physical activity, sedentary behaviors and the incidence of type 2 diabetes mellitus: the Multi-Ethnic Study of Atherosclerosis (MESA). BMJ Open Diabetes Res Care. 2016;4:e000185.PubMedPubMedCentralCrossRef Joseph JJ, Echouffo-Tcheugui JB, Golden SH, Chen H, Jenny NS, Carnethon MR, Jacobs D, Burke GL, Vaidya D, Ouyang P, Bertoni AG. Physical activity, sedentary behaviors and the incidence of type 2 diabetes mellitus: the Multi-Ethnic Study of Atherosclerosis (MESA). BMJ Open Diabetes Res Care. 2016;4:e000185.PubMedPubMedCentralCrossRef
42.
go back to reference Smith AD, Crippa A, Woodcock J, Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia. 2016;59:2527–45.PubMedPubMedCentralCrossRef Smith AD, Crippa A, Woodcock J, Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia. 2016;59:2527–45.PubMedPubMedCentralCrossRef
43.
go back to reference Moghetti P, Balducci S, Guidetti L, Mazzuca P, Rossi E, Schena F. Walking for subjects with type 2 diabetes: a systematic review and joint AMD/SID/SISMES evidence-based practical guideline. Nutr Metab Cardiovasc Dis. 2020;30:1882–98.PubMedCrossRef Moghetti P, Balducci S, Guidetti L, Mazzuca P, Rossi E, Schena F. Walking for subjects with type 2 diabetes: a systematic review and joint AMD/SID/SISMES evidence-based practical guideline. Nutr Metab Cardiovasc Dis. 2020;30:1882–98.PubMedCrossRef
44.
go back to reference Pan B, Ge L, Xun Y-Q, Chen Y-J, Gao C-Y, Han X, Zuo L-Q, Shan H-Q, Yang K-H, Ding G-W, Tian J-H. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:72.PubMedPubMedCentralCrossRef Pan B, Ge L, Xun Y-Q, Chen Y-J, Gao C-Y, Han X, Zuo L-Q, Shan H-Q, Yang K-H, Ding G-W, Tian J-H. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:72.PubMedPubMedCentralCrossRef
45.
go back to reference Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, Gundmi S, Jadhav R. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(2):98–103.PubMedCrossRef Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, Gundmi S, Jadhav R. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(2):98–103.PubMedCrossRef
46.
go back to reference Tomas-Carus P, Ortega-Alonso A, Pietilainen KH, Santos V, Goncalves H, Ramos J, Raimundo A. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients. J Sports Med Phys Fitness. 2016;56:572–8.PubMed Tomas-Carus P, Ortega-Alonso A, Pietilainen KH, Santos V, Goncalves H, Ramos J, Raimundo A. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients. J Sports Med Phys Fitness. 2016;56:572–8.PubMed
47.
go back to reference Kriska A, Delahanty L, Edelstein S, Amodei N, Chadwick J, Copeland K, Galvin B, El Ghormli L, Haymond M, Kelsey M, Lassiter C, Mayer-Davis E, Milaszewski K, Syme A. Sedentary behavior and physical activity in youth with recent onset of type 2 diabetes. Pediatrics. 2013;131:e850–6.PubMedPubMedCentralCrossRef Kriska A, Delahanty L, Edelstein S, Amodei N, Chadwick J, Copeland K, Galvin B, El Ghormli L, Haymond M, Kelsey M, Lassiter C, Mayer-Davis E, Milaszewski K, Syme A. Sedentary behavior and physical activity in youth with recent onset of type 2 diabetes. Pediatrics. 2013;131:e850–6.PubMedPubMedCentralCrossRef
48.
go back to reference Brown RE, Riddell MC, Macpherson AK, Canning KL, Kuk JL. All-cause and cardiovascular mortality risk in U.S. adults with and without type 2 diabetes: influence of physical activity, pharmacological treatment and glycemic control. J Diabetes Complications. 2014;28:311–5.PubMedCrossRef Brown RE, Riddell MC, Macpherson AK, Canning KL, Kuk JL. All-cause and cardiovascular mortality risk in U.S. adults with and without type 2 diabetes: influence of physical activity, pharmacological treatment and glycemic control. J Diabetes Complications. 2014;28:311–5.PubMedCrossRef
49.
go back to reference Saunders TJ, McIsaac T, Douillette K, Gaulton N, Hunter S, Rhodes RE, Prince SA, Carson V, Chaput J-P, Chastin S, Giangregorio L, Janssen I, Katzmarzyk PT, Kho ME, Poitras VJ, Powell KE, Ross R, Ross-White A, Tremblay MS, Healy GN. Sedentary behaviour and health in adults: an overview of systematic reviews. Appl Physiol Nutr Metab. 2020;45:S197–217.PubMedCrossRef Saunders TJ, McIsaac T, Douillette K, Gaulton N, Hunter S, Rhodes RE, Prince SA, Carson V, Chaput J-P, Chastin S, Giangregorio L, Janssen I, Katzmarzyk PT, Kho ME, Poitras VJ, Powell KE, Ross R, Ross-White A, Tremblay MS, Healy GN. Sedentary behaviour and health in adults: an overview of systematic reviews. Appl Physiol Nutr Metab. 2020;45:S197–217.PubMedCrossRef
50.
go back to reference Poppe L, De Bourdeaudhuij I, Verloigne M, Shadid S, Van Cauwenberg J, Compernolle S, Crombez G. Efficacy of a self-regulation-based electronic and mobile health intervention targeting an active lifestyle in adults having type 2 diabetes and in adults aged 50 years or older: two randomized controlled trials. J Med Internet Res. 2019;21:e13363.PubMedPubMedCentralCrossRef Poppe L, De Bourdeaudhuij I, Verloigne M, Shadid S, Van Cauwenberg J, Compernolle S, Crombez G. Efficacy of a self-regulation-based electronic and mobile health intervention targeting an active lifestyle in adults having type 2 diabetes and in adults aged 50 years or older: two randomized controlled trials. J Med Internet Res. 2019;21:e13363.PubMedPubMedCentralCrossRef
51.
go back to reference Deng M-G, Cui H-T, Lan Y-B, Nie J-Q, Liang Y-H, Chai C. Physical activity, sedentary behavior, and the risk of type 2 diabetes: a two-sample Mendelian randomization analysis in the European population. Front Endocrinol (Lausanne). 2022;13:964132.PubMedCrossRef Deng M-G, Cui H-T, Lan Y-B, Nie J-Q, Liang Y-H, Chai C. Physical activity, sedentary behavior, and the risk of type 2 diabetes: a two-sample Mendelian randomization analysis in the European population. Front Endocrinol (Lausanne). 2022;13:964132.PubMedCrossRef
52.
go back to reference Bao W, Tobias DK, Bowers K, Chavarro J, Vaag A, Grunnet LG, Strøm M, Mills J, Liu A, Kiely M, Zhang C. Physical activity and sedentary behaviors associated with risk of progression from gestational diabetes mellitus to type 2 diabetes mellitus: a prospective cohort study. JAMA Intern Med. 2014;174:1047–55.PubMedPubMedCentralCrossRef Bao W, Tobias DK, Bowers K, Chavarro J, Vaag A, Grunnet LG, Strøm M, Mills J, Liu A, Kiely M, Zhang C. Physical activity and sedentary behaviors associated with risk of progression from gestational diabetes mellitus to type 2 diabetes mellitus: a prospective cohort study. JAMA Intern Med. 2014;174:1047–55.PubMedPubMedCentralCrossRef
53.
go back to reference Ghosh S, Paul M, Mondal KK, Bhattacharjee S, Bhattacharjee P. Sedentary lifestyle with increased risk of obesity in urban adult academic professionals: an epidemiological study in West Bengal, India. Sci Rep. 2023;13:4895.PubMedPubMedCentralCrossRef Ghosh S, Paul M, Mondal KK, Bhattacharjee S, Bhattacharjee P. Sedentary lifestyle with increased risk of obesity in urban adult academic professionals: an epidemiological study in West Bengal, India. Sci Rep. 2023;13:4895.PubMedPubMedCentralCrossRef
54.
go back to reference Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.PubMedCrossRef Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.PubMedCrossRef
55.
go back to reference Pant T, Dhanasekaran A, Fang J, Bai X, Bosnjak ZJ, Liang M, Ge ZD. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord. 2018;18:197.PubMedPubMedCentralCrossRef Pant T, Dhanasekaran A, Fang J, Bai X, Bosnjak ZJ, Liang M, Ge ZD. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord. 2018;18:197.PubMedPubMedCentralCrossRef
56.
go back to reference Schutte JP, Manke MC, Hemmen K, Munzer P, Schorg BF, Ramos GC, Pogoda M, Dicenta V, Hoffmann SHL, Pinnecker J, Kollotzek F, Zdanyte M, Mueller KAL, Singh Y, Mack AF, Pichler B, Lang F, Nieswandt B, Gawaz M, Heinze KG, Casadei N, Borst O. Platelet-derived microRNAs regulate cardiac remodeling after myocardial ischemia. Circ Res. 2023;132:e96–113.PubMedCrossRef Schutte JP, Manke MC, Hemmen K, Munzer P, Schorg BF, Ramos GC, Pogoda M, Dicenta V, Hoffmann SHL, Pinnecker J, Kollotzek F, Zdanyte M, Mueller KAL, Singh Y, Mack AF, Pichler B, Lang F, Nieswandt B, Gawaz M, Heinze KG, Casadei N, Borst O. Platelet-derived microRNAs regulate cardiac remodeling after myocardial ischemia. Circ Res. 2023;132:e96–113.PubMedCrossRef
57.
go back to reference Zhang Y, Zhao J, Jin Q, Zhuang L. Transcriptomic analyses and experimental validation identified immune-related lncRNA-mRNA pair MIR210HG-BPIFC regulating the progression of hypertrophic cardiomyopathy. Int J Mol Sci. 2024;25(5):2816.PubMedPubMedCentralCrossRef Zhang Y, Zhao J, Jin Q, Zhuang L. Transcriptomic analyses and experimental validation identified immune-related lncRNA-mRNA pair MIR210HG-BPIFC regulating the progression of hypertrophic cardiomyopathy. Int J Mol Sci. 2024;25(5):2816.PubMedPubMedCentralCrossRef
58.
go back to reference Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: biogenesis, functions, and role in myocardial hypertrophy. Biochemistry (Mosc). 2024;89:S1–13.PubMedCrossRef Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: biogenesis, functions, and role in myocardial hypertrophy. Biochemistry (Mosc). 2024;89:S1–13.PubMedCrossRef
59.
go back to reference Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, González-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation. 2022;145:1218–33.PubMedPubMedCentralCrossRef Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, González-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation. 2022;145:1218–33.PubMedPubMedCentralCrossRef
60.
go back to reference Lin H, Zhu Y, Zheng C, Hu D, Ma S, Chen L, Wang Q, Chen Z, Xie J, Yan Y, Huang X, Liao W, Kitakaze M, Bin J, Liao Y. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation. 2021;143:2277–92.PubMedPubMedCentralCrossRef Lin H, Zhu Y, Zheng C, Hu D, Ma S, Chen L, Wang Q, Chen Z, Xie J, Yan Y, Huang X, Liao W, Kitakaze M, Bin J, Liao Y. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation. 2021;143:2277–92.PubMedPubMedCentralCrossRef
61.
go back to reference Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation. 2021;144:303–17.PubMedCrossRef Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation. 2021;144:303–17.PubMedCrossRef
62.
go back to reference Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J. 2018;52:335–9.PubMedCrossRef Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J. 2018;52:335–9.PubMedCrossRef
63.
go back to reference Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y, Wang L. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem. 2018;50:1230–44.PubMedCrossRef Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y, Wang L. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem. 2018;50:1230–44.PubMedCrossRef
64.
go back to reference Li Q, Li P, Su J, Liu S, Yang X, Yang Y, Niu S. LncRNA NKILA was upregulated in diabetic cardiomyopathy with early prediction values. Exp Ther Med. 2019;18:1221–5.PubMedPubMedCentral Li Q, Li P, Su J, Liu S, Yang X, Yang Y, Niu S. LncRNA NKILA was upregulated in diabetic cardiomyopathy with early prediction values. Exp Ther Med. 2019;18:1221–5.PubMedPubMedCentral
65.
go back to reference Ren S, Zhang Y, Li B, Bu K, Wu L, Lu Y, Lu Y, Qiu Y. Downregulation of lncRNA-SRA participates in the development of cardiovascular disease in type II diabetic patients. Exp Ther Med. 2019;17:3367–72.PubMedPubMedCentral Ren S, Zhang Y, Li B, Bu K, Wu L, Lu Y, Lu Y, Qiu Y. Downregulation of lncRNA-SRA participates in the development of cardiovascular disease in type II diabetic patients. Exp Ther Med. 2019;17:3367–72.PubMedPubMedCentral
66.
go back to reference Jia P, Wu N, Jia D, Sun Y. Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-kappaB axis. Diabetes Metab Syndr Obes. 2019;12:655–65.PubMedPubMedCentralCrossRef Jia P, Wu N, Jia D, Sun Y. Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-kappaB axis. Diabetes Metab Syndr Obes. 2019;12:655–65.PubMedPubMedCentralCrossRef
67.
go back to reference Qi K, Zhong J. LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway. Exp Ther Med. 2018;16:4817–23.PubMedPubMedCentral Qi K, Zhong J. LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway. Exp Ther Med. 2018;16:4817–23.PubMedPubMedCentral
68.
go back to reference Gao L, Wang X, Guo S, Xiao L, Liang C, Wang Z, Li Y, Liu Y, Yao R, Liu Y, Zhang Y. LncRNA HOTAIR functions as a competing endogenous RNA to upregulate SIRT1 by sponging miR-34a in diabetic cardiomyopathy. J Cell Physiol. 2019;234:4944–58.PubMedCrossRef Gao L, Wang X, Guo S, Xiao L, Liang C, Wang Z, Li Y, Liu Y, Yao R, Liu Y, Zhang Y. LncRNA HOTAIR functions as a competing endogenous RNA to upregulate SIRT1 by sponging miR-34a in diabetic cardiomyopathy. J Cell Physiol. 2019;234:4944–58.PubMedCrossRef
69.
go back to reference Yu W, Zhao G-Q, Cao R-J, Zhu Z-H, Li K. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav Neurol. 2017;2017:2941297.PubMedPubMedCentralCrossRef Yu W, Zhao G-Q, Cao R-J, Zhu Z-H, Li K. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav Neurol. 2017;2017:2941297.PubMedPubMedCentralCrossRef
70.
go back to reference Xu H, Liu C, Rao S, He L, Zhang T, Sun S, Wu B, Zou L, Wang S, Xue Y, Jia T, Zhao S, Li G, Liu S, Li G, Liang S. LncRNA NONRATT021972 siRNA rescued decreased heart rate variability in diabetic rats in superior cervical ganglia. Auton Neurosci. 2016;201:1–7.PubMedCrossRef Xu H, Liu C, Rao S, He L, Zhang T, Sun S, Wu B, Zou L, Wang S, Xue Y, Jia T, Zhao S, Li G, Liu S, Li G, Liang S. LncRNA NONRATT021972 siRNA rescued decreased heart rate variability in diabetic rats in superior cervical ganglia. Auton Neurosci. 2016;201:1–7.PubMedCrossRef
71.
go back to reference Zhao SF, Ye YX, Xu JD, He Y, Zhang DW, Xia ZY, Wang S. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy. Acta Diabetol. 2021;58:1251–67.PubMedCrossRef Zhao SF, Ye YX, Xu JD, He Y, Zhang DW, Xia ZY, Wang S. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy. Acta Diabetol. 2021;58:1251–67.PubMedCrossRef
72.
go back to reference Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9:1000.PubMedPubMedCentralCrossRef Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9:1000.PubMedPubMedCentralCrossRef
73.
go back to reference Tang H, Zhong H, Liu W, Wang Y, Wang Y, Wang L, Tang S, Zhu H. Melatonin alleviates hyperglycemia-induced cardiomyocyte apoptosis via regulation of long non-coding RNA H19/miR-29c/MAPK axis in diabetic cardiomyopathy. Pharmaceuticals (Basel). 2022;15(7):821.PubMedCrossRef Tang H, Zhong H, Liu W, Wang Y, Wang Y, Wang L, Tang S, Zhu H. Melatonin alleviates hyperglycemia-induced cardiomyocyte apoptosis via regulation of long non-coding RNA H19/miR-29c/MAPK axis in diabetic cardiomyopathy. Pharmaceuticals (Basel). 2022;15(7):821.PubMedCrossRef
74.
go back to reference Zhuo C, Jiang R, Lin X, Shao M. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget. 2017;8:1429–37.PubMedCrossRef Zhuo C, Jiang R, Lin X, Shao M. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget. 2017;8:1429–37.PubMedCrossRef
75.
go back to reference Wang S, Duan J, Liao J, Wang Y, Xiao X, Li L, Liu Y, Gu H, Yang P, Fu D, Du J, Li X, Shao M. LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY). 2022;14:6809–28.PubMedCrossRef Wang S, Duan J, Liao J, Wang Y, Xiao X, Li L, Liu Y, Gu H, Yang P, Fu D, Du J, Li X, Shao M. LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY). 2022;14:6809–28.PubMedCrossRef
76.
go back to reference Xue Y, Zhang J, Ke J, Zeng L, Cheng K, Han X, Chen F, Chen F. LncGBP9 knockdown alleviates myocardial inflammation and apoptosis in mice with acute viral myocarditis via suppressing NF-kappaB signaling pathway. Inflamm Res. 2022;71:1559–76.PubMedCrossRef Xue Y, Zhang J, Ke J, Zeng L, Cheng K, Han X, Chen F, Chen F. LncGBP9 knockdown alleviates myocardial inflammation and apoptosis in mice with acute viral myocarditis via suppressing NF-kappaB signaling pathway. Inflamm Res. 2022;71:1559–76.PubMedCrossRef
77.
go back to reference Wu H, Liu J, Li W, Liu G, Li Z. LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun. 2016;471:240–6.PubMedCrossRef Wu H, Liu J, Li W, Liu G, Li Z. LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun. 2016;471:240–6.PubMedCrossRef
78.
go back to reference Ji L, Han H, Shan X, Zhao P, Chen H, Zhang C, Xu M, Lu R, Guo W. Ginsenoside Rb1 ameliorates lipotoxicity-induced myocardial injury in diabetes mellitus by regulating Mfn2. Eur J Pharmacol. 2024;974:176609.PubMedCrossRef Ji L, Han H, Shan X, Zhao P, Chen H, Zhang C, Xu M, Lu R, Guo W. Ginsenoside Rb1 ameliorates lipotoxicity-induced myocardial injury in diabetes mellitus by regulating Mfn2. Eur J Pharmacol. 2024;974:176609.PubMedCrossRef
79.
go back to reference Yue Q, Zhao C, Wang Y, Zhao L, Zhu Q, Li G, Wu N, Jia D, Ma C. Downregulation of growth arrest-specific transcript 5 alleviates palmitic acid-induced myocardial inflammatory injury through the miR-26a/HMGB1/NF-kappaB axis. Mol Med Rep. 2018;18:5742–50.PubMed Yue Q, Zhao C, Wang Y, Zhao L, Zhu Q, Li G, Wu N, Jia D, Ma C. Downregulation of growth arrest-specific transcript 5 alleviates palmitic acid-induced myocardial inflammatory injury through the miR-26a/HMGB1/NF-kappaB axis. Mol Med Rep. 2018;18:5742–50.PubMed
80.
go back to reference Li Y, Song B, Liu J, Li Y, Wang J, Liu N, Cui W. The interplay between HIF-1alpha and long noncoding GAS5 regulates the JAK1/STAT3 signalling pathway in hypoxia-induced injury in myocardial cells. Cardiovasc Diagn Ther. 2021;11:422–34.PubMedPubMedCentralCrossRef Li Y, Song B, Liu J, Li Y, Wang J, Liu N, Cui W. The interplay between HIF-1alpha and long noncoding GAS5 regulates the JAK1/STAT3 signalling pathway in hypoxia-induced injury in myocardial cells. Cardiovasc Diagn Ther. 2021;11:422–34.PubMedPubMedCentralCrossRef
81.
go back to reference Zhang L, Wang YM. Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. J Chin Med Assoc. 2019;82:685–92.PubMedCrossRef Zhang L, Wang YM. Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. J Chin Med Assoc. 2019;82:685–92.PubMedCrossRef
82.
go back to reference Dai W, Lee D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. J Cell Biochem. 2019;120:18446–56.PubMedCrossRef Dai W, Lee D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. J Cell Biochem. 2019;120:18446–56.PubMedCrossRef
84.
go back to reference Ma X, Mei S, Wuyun Q, Zhou L, Cai Z, Ding H, Yan J. Super-enhancer-driven LncRNA PPARalpha-seRNA exacerbates glucolipid metabolism and diabetic cardiomyopathy via recruiting KDM4B. Mol Metab. 2024;86:101978.PubMedPubMedCentralCrossRef Ma X, Mei S, Wuyun Q, Zhou L, Cai Z, Ding H, Yan J. Super-enhancer-driven LncRNA PPARalpha-seRNA exacerbates glucolipid metabolism and diabetic cardiomyopathy via recruiting KDM4B. Mol Metab. 2024;86:101978.PubMedPubMedCentralCrossRef
85.
go back to reference Luo Y, Jiang Y, Zhong T, Li Z, He J, Li X, Cui K. LncRNA HCG18 affects diabetic cardiomyopathy and its association with miR-9-5p/IGF2R axis. Heliyon. 2024;10:e24604.PubMedPubMedCentralCrossRef Luo Y, Jiang Y, Zhong T, Li Z, He J, Li X, Cui K. LncRNA HCG18 affects diabetic cardiomyopathy and its association with miR-9-5p/IGF2R axis. Heliyon. 2024;10:e24604.PubMedPubMedCentralCrossRef
86.
go back to reference Xie R, Fan J, Wen J, Jin K, Zhan J, Yuan S, Tang Y, Nie X, Wen Z, Li H, Chen C, Wang DW. LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. Mol Ther Nucleic Acids. 2023;32:689–703.PubMedPubMedCentralCrossRef Xie R, Fan J, Wen J, Jin K, Zhan J, Yuan S, Tang Y, Nie X, Wen Z, Li H, Chen C, Wang DW. LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. Mol Ther Nucleic Acids. 2023;32:689–703.PubMedPubMedCentralCrossRef
87.
go back to reference Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, Kowalski A, Rabasa-Lhoret R, McCrimmon RJ, Hume C, Annan F, Fournier PA, Graham C, Bode B, Galassetti P, Jones TW, Millán IS, Heise T, Peters AL, Petz A, Laffel LM. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–90.PubMedCrossRef Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, Kowalski A, Rabasa-Lhoret R, McCrimmon RJ, Hume C, Annan F, Fournier PA, Graham C, Bode B, Galassetti P, Jones TW, Millán IS, Heise T, Peters AL, Petz A, Laffel LM. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–90.PubMedCrossRef
88.
go back to reference Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nat Rev Endocrinol. 2023;19(2):98–111.PubMedCrossRef Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nat Rev Endocrinol. 2023;19(2):98–111.PubMedCrossRef
89.
go back to reference Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, Xiao X. Physical exercise and its protective effects on diabetic cardiomyopathy: what is the evidence? Front Endocrinol (Lausanne). 2018;9:729.PubMedCrossRef Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, Xiao X. Physical exercise and its protective effects on diabetic cardiomyopathy: what is the evidence? Front Endocrinol (Lausanne). 2018;9:729.PubMedCrossRef
90.
go back to reference Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19:143–57.PubMedCrossRef Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19:143–57.PubMedCrossRef
91.
go back to reference Yang Q, Chen S, Wang X, Yang X, Chen L, Huang T, Zheng Y, Zheng X, Wu X, Sun Y, Wu J. Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-methyladenosine modifications. Arterioscler Thromb Vasc Biol. 2023;43:910–26.PubMedCrossRef Yang Q, Chen S, Wang X, Yang X, Chen L, Huang T, Zheng Y, Zheng X, Wu X, Sun Y, Wu J. Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-methyladenosine modifications. Arterioscler Thromb Vasc Biol. 2023;43:910–26.PubMedCrossRef
92.
go back to reference Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep. 2022;12:5370.PubMedPubMedCentralCrossRef Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep. 2022;12:5370.PubMedPubMedCentralCrossRef
93.
go back to reference Yue Y, Yue Y, Fan Z, Meng Y, Wen C, An Y, Yao Y, Li X. The long noncoding RNA lnc-H19 is important for endurance exercise by maintaining slow muscle fiber types. J Biol Chem. 2023;299:105281.PubMedPubMedCentralCrossRef Yue Y, Yue Y, Fan Z, Meng Y, Wen C, An Y, Yao Y, Li X. The long noncoding RNA lnc-H19 is important for endurance exercise by maintaining slow muscle fiber types. J Biol Chem. 2023;299:105281.PubMedPubMedCentralCrossRef
94.
go back to reference Yang Q, Fang D, Chen J, Hu S, Chen N, Jiang J, Zeng M, Luo M. LncRNAs associated with oxidative stress in diabetic wound healing: regulatory mechanisms and application prospects. Theranostics. 2023;13:3655–74.PubMedPubMedCentralCrossRef Yang Q, Fang D, Chen J, Hu S, Chen N, Jiang J, Zeng M, Luo M. LncRNAs associated with oxidative stress in diabetic wound healing: regulatory mechanisms and application prospects. Theranostics. 2023;13:3655–74.PubMedPubMedCentralCrossRef
95.
go back to reference Wang K, Lin Y, Shen H, Yu S, Xu J. LncRNA TUG1 Exacerbates myocardial fibrosis in diabetic cardiomyopathy by modulating the microRNA-145a-5p/Cfl2 Axis. J Cardiovasc Pharmacol. 2023;81:192–202.PubMedCrossRef Wang K, Lin Y, Shen H, Yu S, Xu J. LncRNA TUG1 Exacerbates myocardial fibrosis in diabetic cardiomyopathy by modulating the microRNA-145a-5p/Cfl2 Axis. J Cardiovasc Pharmacol. 2023;81:192–202.PubMedCrossRef
96.
go back to reference Zhu C, Zhang H, Wei D, Sun Z. Silencing lncRNA GAS5 alleviates apoptosis and fibrosis in diabetic cardiomyopathy by targeting miR-26a/b-5p. Acta Diabetol. 2021;58:1491–501.PubMedCrossRef Zhu C, Zhang H, Wei D, Sun Z. Silencing lncRNA GAS5 alleviates apoptosis and fibrosis in diabetic cardiomyopathy by targeting miR-26a/b-5p. Acta Diabetol. 2021;58:1491–501.PubMedCrossRef
97.
go back to reference Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics. 2019;9:4558–66.PubMedPubMedCentralCrossRef Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics. 2019;9:4558–66.PubMedPubMedCentralCrossRef
98.
go back to reference Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116:1143–56.PubMedCrossRef Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116:1143–56.PubMedCrossRef
99.
go back to reference Shi C, Wu L, Li L. LncRNA-MALAT 1 regulates cardiomyocyte scorching in diabetic cardiomyopathy by targeting NLRP3. Cell Mol Biol (Noisy-le-grand). 2022;67:213–9.PubMedCrossRef Shi C, Wu L, Li L. LncRNA-MALAT 1 regulates cardiomyocyte scorching in diabetic cardiomyopathy by targeting NLRP3. Cell Mol Biol (Noisy-le-grand). 2022;67:213–9.PubMedCrossRef
100.
go back to reference Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res. 2016;111:56–65.PubMedCrossRef Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res. 2016;111:56–65.PubMedCrossRef
101.
go back to reference Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T. Long noncoding RNA chast promotes cardiac remodeling. Sci Transl Med. 2016;8:326ra22.PubMedCrossRef Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T. Long noncoding RNA chast promotes cardiac remodeling. Sci Transl Med. 2016;8:326ra22.PubMedCrossRef
102.
go back to reference Qian Y, Zhang M, Zhou N, Xu X, Zhang J, Ding Q, Wang J. A long noncoding RNA CHAIR protects the heart from pathological stress. Clin Sci (Lond). 2020;134:1843–57.PubMedCrossRef Qian Y, Zhang M, Zhou N, Xu X, Zhang J, Ding Q, Wang J. A long noncoding RNA CHAIR protects the heart from pathological stress. Clin Sci (Lond). 2020;134:1843–57.PubMedCrossRef
103.
go back to reference Viereck J, Buhrke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, Cebotari S, Gueler F, Beyer AM, Schmitz J, Brasen JH, Schmitto JD, Gyongyosi M, Loser A, Hirt MN, Eschenhagen T, Engelhardt S, Bar C, Thum T. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J. 2020;41:3462–74.PubMedPubMedCentralCrossRef Viereck J, Buhrke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, Cebotari S, Gueler F, Beyer AM, Schmitz J, Brasen JH, Schmitto JD, Gyongyosi M, Loser A, Hirt MN, Eschenhagen T, Engelhardt S, Bar C, Thum T. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J. 2020;41:3462–74.PubMedPubMedCentralCrossRef
105.
go back to reference Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One. 2024;19:e0297848.PubMedPubMedCentralCrossRef Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One. 2024;19:e0297848.PubMedPubMedCentralCrossRef
106.
go back to reference Lin X, Qu J, Yin L, Wang R, Wang X. Aerobic exercise-induced decrease of chemerin improved glucose and lipid metabolism and fatty liver of diabetes mice through key metabolism enzymes and proteins. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868:159409.PubMedCrossRef Lin X, Qu J, Yin L, Wang R, Wang X. Aerobic exercise-induced decrease of chemerin improved glucose and lipid metabolism and fatty liver of diabetes mice through key metabolism enzymes and proteins. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868:159409.PubMedCrossRef
107.
go back to reference Liu S-X, Zheng F, Xie K-L, Xie M-R, Jiang L-J, Cai Y. Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/MicroRNA-382-3p/Resistin axis. Mol Ther Nucleic Acids. 2019;18:34–44.PubMedPubMedCentralCrossRef Liu S-X, Zheng F, Xie K-L, Xie M-R, Jiang L-J, Cai Y. Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/MicroRNA-382-3p/Resistin axis. Mol Ther Nucleic Acids. 2019;18:34–44.PubMedPubMedCentralCrossRef
108.
go back to reference Wang M, Xie K, Zhao S, Jia N, Zong Y, Gu W, Cai Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol Med. 2023;29:130.PubMedPubMedCentralCrossRef Wang M, Xie K, Zhao S, Jia N, Zong Y, Gu W, Cai Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol Med. 2023;29:130.PubMedPubMedCentralCrossRef
109.
go back to reference An T, He Z-C, Zhang X-Q, Li J, Chen A-L, Tan F, Chen H-D, Lv B-H, Lian J, Gao S-H, Jiang G-J. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin Med. 2019;14:3.PubMedPubMedCentralCrossRef An T, He Z-C, Zhang X-Q, Li J, Chen A-L, Tan F, Chen H-D, Lv B-H, Lian J, Gao S-H, Jiang G-J. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin Med. 2019;14:3.PubMedPubMedCentralCrossRef
110.
go back to reference Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13:133–48.PubMedCrossRef Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13:133–48.PubMedCrossRef
111.
go back to reference Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf). 2008;192:127–35.PubMedCrossRef Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf). 2008;192:127–35.PubMedCrossRef
112.
go back to reference Trewin AJ, Silver J, Dillon HT, Della Gatta PA, Parker L, Hiam DS, Lee YP, Richardson M, Wadley GD, Lamon S. Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biol. 2022;20:164.PubMedPubMedCentralCrossRef Trewin AJ, Silver J, Dillon HT, Della Gatta PA, Parker L, Hiam DS, Lee YP, Richardson M, Wadley GD, Lamon S. Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biol. 2022;20:164.PubMedPubMedCentralCrossRef
113.
go back to reference Costa-Júnior JM, Ferreira SM, Kurauti MA, Bernstein DL, Ruano EG, Kameswaran V, Schug J, Freitas-Dias R, Zoppi CC, Boschero AC, Oliveira CAMD, Santos GJ, Carneiro EM, Kaestner KH. Paternal exercise improves the metabolic health of offspring via epigenetic modulation of the germline. Int J Mol Sci. 2021;23(1):1.PubMedPubMedCentralCrossRef Costa-Júnior JM, Ferreira SM, Kurauti MA, Bernstein DL, Ruano EG, Kameswaran V, Schug J, Freitas-Dias R, Zoppi CC, Boschero AC, Oliveira CAMD, Santos GJ, Carneiro EM, Kaestner KH. Paternal exercise improves the metabolic health of offspring via epigenetic modulation of the germline. Int J Mol Sci. 2021;23(1):1.PubMedPubMedCentralCrossRef
114.
go back to reference Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK, Hollander JM. Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol. 2022;322:C482–95.PubMedPubMedCentralCrossRef Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK, Hollander JM. Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol. 2022;322:C482–95.PubMedPubMedCentralCrossRef
115.
go back to reference Zhang Q, Li D, Dong X, Zhang X, Liu J, Peng L, Meng B, Hua Q, Pei X, Zhao L, Hu X, Zhang Y, Pan Z, Lu Y, Yang B. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci China Life Sci. 2022;65:1198–212.PubMedCrossRef Zhang Q, Li D, Dong X, Zhang X, Liu J, Peng L, Meng B, Hua Q, Pei X, Zhao L, Hu X, Zhang Y, Pan Z, Lu Y, Yang B. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci China Life Sci. 2022;65:1198–212.PubMedCrossRef
116.
go back to reference Xiao W, Zheng D, Chen X, Yu B, Deng K, Ma J, Wen X, Hu Y, Hou J. Long non-coding RNA MIAT is involved in the regulation of pyroptosis in diabetic cardiomyopathy via targeting miR-214–3p. iScience. 2021;24:103518.PubMedPubMedCentralCrossRef Xiao W, Zheng D, Chen X, Yu B, Deng K, Ma J, Wen X, Hu Y, Hou J. Long non-coding RNA MIAT is involved in the regulation of pyroptosis in diabetic cardiomyopathy via targeting miR-214–3p. iScience. 2021;24:103518.PubMedPubMedCentralCrossRef
117.
go back to reference Liu Y, Zhu Y, Liu S, Liu J, Li X. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res. 2021;70:1113–27.PubMedCrossRef Liu Y, Zhu Y, Liu S, Liu J, Li X. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res. 2021;70:1113–27.PubMedCrossRef
118.
go back to reference Xu Y, Fang H, Xu Q, Xu C, Yang L, Huang C. LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle. 2020;19:3054–65.PubMedPubMedCentralCrossRef Xu Y, Fang H, Xu Q, Xu C, Yang L, Huang C. LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle. 2020;19:3054–65.PubMedPubMedCentralCrossRef
119.
go back to reference Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol. 2023;14:1166653.PubMedPubMedCentralCrossRef Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol. 2023;14:1166653.PubMedPubMedCentralCrossRef
120.
go back to reference Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep. 2016;6:36340.PubMedPubMedCentralCrossRef Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep. 2016;6:36340.PubMedPubMedCentralCrossRef
121.
go back to reference Sun H, Wang C, Zhou Y, Cheng X. Long noncoding RNA OIP5-AS1 overexpression promotes viability and inhibits high glucose-induced oxidative stress of cardiomyocytes by targeting microRNA-34a/SIRT1 axis in diabetic cardiomyopathy. Endocr Metab Immune Disord Drug Targets. 2021;21:2017–27.PubMedCrossRef Sun H, Wang C, Zhou Y, Cheng X. Long noncoding RNA OIP5-AS1 overexpression promotes viability and inhibits high glucose-induced oxidative stress of cardiomyocytes by targeting microRNA-34a/SIRT1 axis in diabetic cardiomyopathy. Endocr Metab Immune Disord Drug Targets. 2021;21:2017–27.PubMedCrossRef
122.
go back to reference Hu L, Xu Y-N, Wang Q, Liu M-J, Zhang P, Zhao L-T, Liu F, Zhao D-Y, Pei H-N, Yao X-B, Hu H-G. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Ann Transl Med. 2021;9:340.PubMedPubMedCentralCrossRef Hu L, Xu Y-N, Wang Q, Liu M-J, Zhang P, Zhao L-T, Liu F, Zhao D-Y, Pei H-N, Yao X-B, Hu H-G. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Ann Transl Med. 2021;9:340.PubMedPubMedCentralCrossRef
123.
go back to reference Farsangi SJ, Rostamzadeh F, Sheikholeslami M, Jafari E, Karimzadeh M. Modulation of the expression of long non-coding RNAs H19, GAS5, and MIAT by endurance exercise in the hearts of rats with myocardial infarction. Cardiovasc Toxicol. 2021;21:162–8.PubMedCrossRef Farsangi SJ, Rostamzadeh F, Sheikholeslami M, Jafari E, Karimzadeh M. Modulation of the expression of long non-coding RNAs H19, GAS5, and MIAT by endurance exercise in the hearts of rats with myocardial infarction. Cardiovasc Toxicol. 2021;21:162–8.PubMedCrossRef
124.
go back to reference He Y, Qiang Y. Mechanism of autonomic exercise improving cognitive function of Alzheimer’s disease by regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen. 2021;36:15333175211027680.PubMedPubMedCentralCrossRef He Y, Qiang Y. Mechanism of autonomic exercise improving cognitive function of Alzheimer’s disease by regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen. 2021;36:15333175211027680.PubMedPubMedCentralCrossRef
125.
go back to reference Chen W, Ye Q, Dong Y. Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis. Nanomedicine. 2023;55:102717.PubMedCrossRef Chen W, Ye Q, Dong Y. Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis. Nanomedicine. 2023;55:102717.PubMedCrossRef
126.
go back to reference Lu J, Liu L, Chen J, Zhi J, Li J, Li L, Jiang Z. LncRNA HOTAIR in exercise-induced neuro-protective function in Alzheimer’s disease. Folia Neuropathol. 2022;60:414–20.PubMedCrossRef Lu J, Liu L, Chen J, Zhi J, Li J, Li L, Jiang Z. LncRNA HOTAIR in exercise-induced neuro-protective function in Alzheimer’s disease. Folia Neuropathol. 2022;60:414–20.PubMedCrossRef
127.
go back to reference Lu J, Liu L, Chen J, Zhi J, Li J, Li L, Jiang Z. The involvement of lncRNA HOTAIR/miR-130a-3p axis in the regulation of voluntary exercise on cognition and inflammation of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2022;37:15333175221091424.PubMedPubMedCentralCrossRef Lu J, Liu L, Chen J, Zhi J, Li J, Li L, Jiang Z. The involvement of lncRNA HOTAIR/miR-130a-3p axis in the regulation of voluntary exercise on cognition and inflammation of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2022;37:15333175221091424.PubMedPubMedCentralCrossRef
128.
go back to reference Wu B, Ding J, Chen A, Song Y, Xu C, Tian F, Zhao J. Aerobic exercise improves adipogenesis in diet-induced obese mice via the lncSRA/p38/JNK/PPARgamma pathway. Nutr Res. 2022;105:20–32.PubMedCrossRef Wu B, Ding J, Chen A, Song Y, Xu C, Tian F, Zhao J. Aerobic exercise improves adipogenesis in diet-induced obese mice via the lncSRA/p38/JNK/PPARgamma pathway. Nutr Res. 2022;105:20–32.PubMedCrossRef
129.
go back to reference Mayega RW, Guwatudde D, Makumbi FE, Nakwagala FN, Peterson S, Tomson G, Ostenson C-G. Comparison of fasting plasma glucose and haemoglobin A1c point-of-care tests in screening for diabetes and abnormal glucose regulation in a rural low income setting. Diabetes Res Clin Pract. 2014;104:112–20.PubMedCrossRef Mayega RW, Guwatudde D, Makumbi FE, Nakwagala FN, Peterson S, Tomson G, Ostenson C-G. Comparison of fasting plasma glucose and haemoglobin A1c point-of-care tests in screening for diabetes and abnormal glucose regulation in a rural low income setting. Diabetes Res Clin Pract. 2014;104:112–20.PubMedCrossRef
130.
go back to reference Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J-F. LncRNAs-circRNAs as rising epigenetic binary superstars in regulating lipid metabolic reprogramming of cancers. Adv Sci (Weinh). 2024;11:e2303570.PubMedCrossRef Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J-F. LncRNAs-circRNAs as rising epigenetic binary superstars in regulating lipid metabolic reprogramming of cancers. Adv Sci (Weinh). 2024;11:e2303570.PubMedCrossRef
131.
go back to reference Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet. 2024;25(8):578–95.PubMedCrossRef Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet. 2024;25(8):578–95.PubMedCrossRef
132.
go back to reference Li T, Hu D, Gong Y. Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing. J Matern Fetal Neona. 2022;35:5125–39.CrossRef Li T, Hu D, Gong Y. Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing. J Matern Fetal Neona. 2022;35:5125–39.CrossRef
133.
go back to reference Li X, Zhu J, Zhong Y, Liu C, Yao M, Sun Y, Yao W, Ni X, Zhou F, Yao J, Jiang Q. Targeting long noncoding RNA-AQP4-AS1 for the treatment of retinal neurovascular dysfunction in diabetes mellitus. EBioMedicine. 2022;77:103857.PubMedPubMedCentralCrossRef Li X, Zhu J, Zhong Y, Liu C, Yao M, Sun Y, Yao W, Ni X, Zhou F, Yao J, Jiang Q. Targeting long noncoding RNA-AQP4-AS1 for the treatment of retinal neurovascular dysfunction in diabetes mellitus. EBioMedicine. 2022;77:103857.PubMedPubMedCentralCrossRef
134.
go back to reference Alrefai AA, Khader HF, Elbasuony HA, Elzorkany KM, Saleh AA. Evaluation of the expression levels of lncRNAs H19 and MEG3 in patients with type 2 diabetes mellitus. Mol Biol Rep. 2023;50:6075–85.PubMedCrossRef Alrefai AA, Khader HF, Elbasuony HA, Elzorkany KM, Saleh AA. Evaluation of the expression levels of lncRNAs H19 and MEG3 in patients with type 2 diabetes mellitus. Mol Biol Rep. 2023;50:6075–85.PubMedCrossRef
135.
go back to reference Jiang W, Sun X, Liu F, Cheng G, Li S, Xu M, Wu Y, Wang L. Circulating lncRNAs NONHSAT054669.2 and ENST00000525337 can be used as early biomarkers of gestational diabetes mellitus. Exp Biol Med (Maywood). 2023;248:508–18.PubMedCrossRef Jiang W, Sun X, Liu F, Cheng G, Li S, Xu M, Wu Y, Wang L. Circulating lncRNAs NONHSAT054669.2 and ENST00000525337 can be used as early biomarkers of gestational diabetes mellitus. Exp Biol Med (Maywood). 2023;248:508–18.PubMedCrossRef
136.
go back to reference Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F, Shao Z. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 2022;343:107–17.PubMedCrossRef Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F, Shao Z. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 2022;343:107–17.PubMedCrossRef
137.
go back to reference Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J, Yuan J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 2021;17:2606–21.PubMedPubMedCentralCrossRef Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J, Yuan J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 2021;17:2606–21.PubMedPubMedCentralCrossRef
138.
go back to reference Li Y, Lou S, Zhang J, Zhao S, Lou G. m6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway. J Transl Med. 2024;22:113.PubMedPubMedCentralCrossRef Li Y, Lou S, Zhang J, Zhao S, Lou G. m6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway. J Transl Med. 2024;22:113.PubMedPubMedCentralCrossRef
139.
go back to reference Hope C, Robertshaw A, Cheung KL, Idris I, English E. Relationship between HbA1c and cancer in people with or without diabetes: a systematic review. Diabet Med. 2016;33:1013–25.PubMedCrossRef Hope C, Robertshaw A, Cheung KL, Idris I, English E. Relationship between HbA1c and cancer in people with or without diabetes: a systematic review. Diabet Med. 2016;33:1013–25.PubMedCrossRef
140.
go back to reference Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30:529–42.PubMedCrossRef Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30:529–42.PubMedCrossRef
141.
go back to reference Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103:491–7.PubMedCrossRef Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103:491–7.PubMedCrossRef
142.
go back to reference Mosaad H, Shalaby SM, Mahmoud NM, Ahmed MM, Fayed A, Ashour HR, Sarhan W. LncRNA ANRIL promotes glucose metabolism and proliferation of colon cancer in a high-glucose environment and is associated with worse outcome in diabetic colon cancer patients. Asian Pac J Cancer Prev. 2024;25:1371–81.PubMedPubMedCentralCrossRef Mosaad H, Shalaby SM, Mahmoud NM, Ahmed MM, Fayed A, Ashour HR, Sarhan W. LncRNA ANRIL promotes glucose metabolism and proliferation of colon cancer in a high-glucose environment and is associated with worse outcome in diabetic colon cancer patients. Asian Pac J Cancer Prev. 2024;25:1371–81.PubMedPubMedCentralCrossRef
143.
go back to reference Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30:88.PubMedPubMedCentralCrossRef Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30:88.PubMedPubMedCentralCrossRef
144.
go back to reference Jiang M, Song Y, Ren MX, He RC, Dong XH, Li XH, Lu ZF, Li S, Wu J, Bei YR, Liu F, Long Y, Wu SG, Liu XH, Wu LM, Yang HL, McVey DG, Dai XY, Ye S, Hu YW. LncRNA NIPA1-SO confers atherosclerotic protection by suppressing the transmembrane protein NIPA1. J Adv Res. 2023;54:29–42.PubMedPubMedCentralCrossRef Jiang M, Song Y, Ren MX, He RC, Dong XH, Li XH, Lu ZF, Li S, Wu J, Bei YR, Liu F, Long Y, Wu SG, Liu XH, Wu LM, Yang HL, McVey DG, Dai XY, Ye S, Hu YW. LncRNA NIPA1-SO confers atherosclerotic protection by suppressing the transmembrane protein NIPA1. J Adv Res. 2023;54:29–42.PubMedPubMedCentralCrossRef
145.
go back to reference Morelli E, Biamonte L, Federico C, Amodio N, Di Martino MT, Gallo Cantafio ME, Manzoni M, Scionti F, Samur MK, Gulla A, Stamato MA, Pitari MR, Caracciolo D, Sesti S, Frandsen NM, Rossi M, Neri A, Fulciniti M, Munshi NC, Tagliaferri P, Tassone P. Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood. 2018;132:1050–63.PubMedPubMedCentralCrossRef Morelli E, Biamonte L, Federico C, Amodio N, Di Martino MT, Gallo Cantafio ME, Manzoni M, Scionti F, Samur MK, Gulla A, Stamato MA, Pitari MR, Caracciolo D, Sesti S, Frandsen NM, Rossi M, Neri A, Fulciniti M, Munshi NC, Tagliaferri P, Tassone P. Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood. 2018;132:1050–63.PubMedPubMedCentralCrossRef
147.
go back to reference Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia. 2018;32:1948–57.PubMedPubMedCentralCrossRef Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia. 2018;32:1948–57.PubMedPubMedCentralCrossRef
148.
go back to reference Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: experimental and machine learning approaches. Semin Cancer Biol. 2022;86:325–45.PubMedCrossRef Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: experimental and machine learning approaches. Semin Cancer Biol. 2022;86:325–45.PubMedCrossRef
149.
go back to reference Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–19.PubMedPubMedCentralCrossRef Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–19.PubMedPubMedCentralCrossRef
150.
go back to reference Yang H, Jiang Y, Zhang Y, Xu Y, Zhang C, Han J, Su F, Liu X, Mi K, Liu B, Shang D. System level characterization of small molecule drugs and their affected long noncoding RNAs. Aging (Albany NY). 2019;11:12428–51.PubMedCrossRef Yang H, Jiang Y, Zhang Y, Xu Y, Zhang C, Han J, Su F, Liu X, Mi K, Liu B, Shang D. System level characterization of small molecule drugs and their affected long noncoding RNAs. Aging (Albany NY). 2019;11:12428–51.PubMedCrossRef
151.
go back to reference Pedram Fatemi R, Salah-Uddin S, Modarresi F, Khoury N, Wahlestedt C, Faghihi MA. Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen. J Biomol Screen. 2015;20:1132–41.PubMedPubMedCentralCrossRef Pedram Fatemi R, Salah-Uddin S, Modarresi F, Khoury N, Wahlestedt C, Faghihi MA. Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen. J Biomol Screen. 2015;20:1132–41.PubMedPubMedCentralCrossRef
152.
go back to reference Chen L, Zheng X, Liu W, Sun Y, Zhao S, Tian L, Tian W, Xue F, Kang C, Wang Y. Compound AC1Q3QWB upregulates CDKN1A and SOX17 by interrupting the HOTAIR-EZH2 interaction and enhances the efficacy of tazemetostat in endometrial cancer. Cancer Lett. 2023;578:216445.PubMedCrossRef Chen L, Zheng X, Liu W, Sun Y, Zhao S, Tian L, Tian W, Xue F, Kang C, Wang Y. Compound AC1Q3QWB upregulates CDKN1A and SOX17 by interrupting the HOTAIR-EZH2 interaction and enhances the efficacy of tazemetostat in endometrial cancer. Cancer Lett. 2023;578:216445.PubMedCrossRef
153.
go back to reference Yang E, Hong B, Wang Y, Wang Q, Zhao J, Cui X, Wu Y, Yang S, Su D, Liu X, Kang C. EPIC-0628 abrogates HOTAIR/EZH2 interaction and enhances the temozolomide efficacy via promoting ATF3 expression and inhibiting DNA damage repair in glioblastoma. Cancer Lett. 2024;588:216812.PubMedCrossRef Yang E, Hong B, Wang Y, Wang Q, Zhao J, Cui X, Wu Y, Yang S, Su D, Liu X, Kang C. EPIC-0628 abrogates HOTAIR/EZH2 interaction and enhances the temozolomide efficacy via promoting ATF3 expression and inhibiting DNA damage repair in glioblastoma. Cancer Lett. 2024;588:216812.PubMedCrossRef
154.
go back to reference Li C-H, Xiao Z, Tong JH-M, To K-F, Fang X, Cheng AS, Chen Y. EZH2 coupled with HOTAIR to silence MicroRNA-34a by the induction of heterochromatin formation in human pancreatic ductal adenocarcinoma. Int J Cancer. 2017;140:120–9.PubMedCrossRef Li C-H, Xiao Z, Tong JH-M, To K-F, Fang X, Cheng AS, Chen Y. EZH2 coupled with HOTAIR to silence MicroRNA-34a by the induction of heterochromatin formation in human pancreatic ductal adenocarcinoma. Int J Cancer. 2017;140:120–9.PubMedCrossRef
155.
go back to reference Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, Izquierdo M, Ruilope LM, Lucia A. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15:731–43.PubMedCrossRef Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, Izquierdo M, Ruilope LM, Lucia A. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15:731–43.PubMedCrossRef
156.
go back to reference Schroeder EC, Franke WD, Sharp RL, Lee DC. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: a randomized controlled trial. PLoS One. 2019;14:e0210292.PubMedPubMedCentralCrossRef Schroeder EC, Franke WD, Sharp RL, Lee DC. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: a randomized controlled trial. PLoS One. 2019;14:e0210292.PubMedPubMedCentralCrossRef
157.
go back to reference Marzolini S, Oh PI, Brooks D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: a meta-analysis. Eur J Prev Cardiol. 2012;19:81–94.PubMedCrossRef Marzolini S, Oh PI, Brooks D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: a meta-analysis. Eur J Prev Cardiol. 2012;19:81–94.PubMedCrossRef
158.
159.
go back to reference Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther. 2022;7:306.PubMedPubMedCentralCrossRef Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther. 2022;7:306.PubMedPubMedCentralCrossRef
160.
go back to reference Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation. 2022;146:1537–57.PubMedCrossRef Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation. 2022;146:1537–57.PubMedCrossRef
161.
go back to reference Moraes-Silva IC, Rodrigues B, Coelho-Junior HJ, Feriani DJ, Irigoyen MC. Myocardial infarction and exercise training: evidence from basic science. Adv Exp Med Biol. 2017;999:139–53.PubMedCrossRef Moraes-Silva IC, Rodrigues B, Coelho-Junior HJ, Feriani DJ, Irigoyen MC. Myocardial infarction and exercise training: evidence from basic science. Adv Exp Med Biol. 2017;999:139–53.PubMedCrossRef
162.
go back to reference Sacre JW, Jellis CL, Jenkins C, Haluska BA, Baumert M, Coombes JS, Marwick TH. A six-month exercise intervention in subclinical diabetic heart disease: effects on exercise capacity, autonomic and myocardial function. Metabolism. 2014;63:1104–14.PubMedCrossRef Sacre JW, Jellis CL, Jenkins C, Haluska BA, Baumert M, Coombes JS, Marwick TH. A six-month exercise intervention in subclinical diabetic heart disease: effects on exercise capacity, autonomic and myocardial function. Metabolism. 2014;63:1104–14.PubMedCrossRef
163.
go back to reference Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.PubMedCrossRef Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.PubMedCrossRef
164.
go back to reference Mably JD, Wang D-Z. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol. 2024;21:326–45.PubMedCrossRef Mably JD, Wang D-Z. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol. 2024;21:326–45.PubMedCrossRef
165.
go back to reference Huang S-F, Zhao G, Peng X-F, Ye W-C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front Cardiovasc Med. 2021;8:770163.PubMedPubMedCentralCrossRef Huang S-F, Zhao G, Peng X-F, Ye W-C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front Cardiovasc Med. 2021;8:770163.PubMedPubMedCentralCrossRef
166.
go back to reference Liu Z-Z, Lin W-J, Feng Y, Huang C-L, Yan Y-F, Guo W-Y, Zhang H, Lei Z, Lu Q-L, Liu P, Lin X-M, Wu S-D. Plasma lncRNA LIPCAR expression levels associated with neurological impairment and stroke subtypes in patients with acute cerebral infarction: a prospective observational study with a control group. Neurol Ther. 2023;12:1385–98.PubMedPubMedCentralCrossRef Liu Z-Z, Lin W-J, Feng Y, Huang C-L, Yan Y-F, Guo W-Y, Zhang H, Lei Z, Lu Q-L, Liu P, Lin X-M, Wu S-D. Plasma lncRNA LIPCAR expression levels associated with neurological impairment and stroke subtypes in patients with acute cerebral infarction: a prospective observational study with a control group. Neurol Ther. 2023;12:1385–98.PubMedPubMedCentralCrossRef
167.
go back to reference Leisegang MS, Warwick T, Stötzel J, Brandes RP. RNA-DNA triplexes: molecular mechanisms and functional relevance. Trends Biochem Sci. 2024;49:532–44.PubMedCrossRef Leisegang MS, Warwick T, Stötzel J, Brandes RP. RNA-DNA triplexes: molecular mechanisms and functional relevance. Trends Biochem Sci. 2024;49:532–44.PubMedCrossRef
168.
go back to reference Matboli M, Kamel MM, Essawy N, Bekhit MM, Abdulrahman B, Mohamed GF, Eissa S. Identification of novel insulin resistance related ceRNA network in T2DM and its potential editing by CRISPR/Cas9. Int J Mol Sci. 2021;22(15):8129.PubMedPubMedCentralCrossRef Matboli M, Kamel MM, Essawy N, Bekhit MM, Abdulrahman B, Mohamed GF, Eissa S. Identification of novel insulin resistance related ceRNA network in T2DM and its potential editing by CRISPR/Cas9. Int J Mol Sci. 2021;22(15):8129.PubMedPubMedCentralCrossRef
169.
go back to reference Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.PubMedCrossRef Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.PubMedCrossRef
170.
go back to reference Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. Nanoscale. 2024;16:3881–914.PubMedCrossRef Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. Nanoscale. 2024;16:3881–914.PubMedCrossRef
171.
go back to reference Chen J, Jamaiyar A, Wu W, Hu Y, Zhuang R, Sausen G, Cheng HS, de Oliveira Vaz C, Pérez-Cremades D, Tzani A, McCoy MG, Assa C, Eley S, Randhawa V, Lee K, Plutzky J, Hamburg NM, Sabatine MS, Feinberg MW. Deficiency of lncRNA MERRICAL abrogates macrophage chemotaxis and diabetes-associated atherosclerosis. Cell Rep. 2024;43:113815.PubMedPubMedCentralCrossRef Chen J, Jamaiyar A, Wu W, Hu Y, Zhuang R, Sausen G, Cheng HS, de Oliveira Vaz C, Pérez-Cremades D, Tzani A, McCoy MG, Assa C, Eley S, Randhawa V, Lee K, Plutzky J, Hamburg NM, Sabatine MS, Feinberg MW. Deficiency of lncRNA MERRICAL abrogates macrophage chemotaxis and diabetes-associated atherosclerosis. Cell Rep. 2024;43:113815.PubMedPubMedCentralCrossRef
172.
go back to reference Su X, Huang H, Lai J, Lin S, Huang Y. Long noncoding RNAs as potential diagnostic biomarkers for diabetes mellitus and complications: a systematic review and meta-analysis. J Diabetes. 2023;16(2):e13510.PubMedPubMedCentralCrossRef Su X, Huang H, Lai J, Lin S, Huang Y. Long noncoding RNAs as potential diagnostic biomarkers for diabetes mellitus and complications: a systematic review and meta-analysis. J Diabetes. 2023;16(2):e13510.PubMedPubMedCentralCrossRef
Metadata
Title
Long Non-Coding RNAs in Diabetic Cardiomyopathy: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training
Authors
Jie Hu
Xinwen Miao
Li-Hua Yu
Publication date
09-01-2025
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-024-10586-8

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now