Skip to main content
Top

03-01-2025 | Diabetes | Review Free for a limited time

Neuroendocrine tumors and diabetes mellitus: which treatment and which effect

Authors: Rossella Mazzilli, Virginia Zamponi, Camilla Mancini, Beatrice Giorgini, Bianca Golisano, Nevena Mikovic, Giulia Pecora, Flaminia Russo, Maurizio Martiradonna, Piero Paravani, Daniela Prosperi, Antongiulio Faggiano

Published in: Endocrine

Login to get access

Abstract

Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET. The majority of NET treatments appear to impair glycaemic control, both inducing hypoglycemic or, more commonly, hyperglycemia and even new-onset DM. However, glucose metabolism imbalance can be effectively managed by modulating anti-diabetic therapy and adopting an appropriate nutritional approach. On the other hand, the effects of anti-diabetic treatment, like insulin, sulfonylureas, thiazolidinediones, ipeptidyl‐peptidase‐4 inhibitors, Glucagon‐like peptide‐1 receptor agonists, and Sodium-glucose cotransporter-2 inhibitors on NET are unclear. Recently, metformin has been investigated in patients with gastroenteropancreatic NET resulting in improved progression free survival suggesting a potential antineoplastic role. Finally, the management of DM in patients with NET is of great clinical relevance to correctly perform radiological procedures and even more functional imaging procedures, as well as to optimize the therapy and avoid treatment withdrawal or discontinuation. In conclusion, understanding the mechanisms underlying therapy-induced DM and implementing appropriate monitoring and management strategies of DM are essential for optimizing NET patient outcome and quality of life.
Literature
1.
go back to reference A. Dasari, C. Shen, D. Halperin, B. Zhao, S. Zhou et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335 (2017)PubMedPubMedCentralCrossRef A. Dasari, C. Shen, D. Halperin, B. Zhao, S. Zhou et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335 (2017)PubMedPubMedCentralCrossRef
2.
go back to reference R. Garcia-Carbonero, H. Sorbye, E. Baudin, E. Raymond, B. Wiedenmann et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology 103, 186–194 (2016)PubMedCrossRef R. Garcia-Carbonero, H. Sorbye, E. Baudin, E. Raymond, B. Wiedenmann et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology 103, 186–194 (2016)PubMedCrossRef
3.
go back to reference Addendum, 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care 43, S98–S110 (2020). Addendum, 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care 43, S98–S110 (2020).
4.
go back to reference N. Silvestris, T. Franchina, M. Gallo, A. Argentiero, A. Avogaro et al. Diabetes management in cancer patients. An Italian Association of Medical Oncology, Italian Association of Medical Diabetologists, Italian Society of Diabetology, Italian Society of Endocrinology and Italian Society of Pharmacology multidisciplinary consensus position paper. ESMO Open 8, 102062 (2023)PubMedPubMedCentralCrossRef N. Silvestris, T. Franchina, M. Gallo, A. Argentiero, A. Avogaro et al. Diabetes management in cancer patients. An Italian Association of Medical Oncology, Italian Association of Medical Diabetologists, Italian Society of Diabetology, Italian Society of Endocrinology and Italian Society of Pharmacology multidisciplinary consensus position paper. ESMO Open 8, 102062 (2023)PubMedPubMedCentralCrossRef
5.
go back to reference A. Faggiano, R. Mazzilli, A. Natalicchio, V. Adinolfi, A. Argentiero et al. Corticosteroids in oncology: use, overuse, indications, contraindications. An Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit. Rev. Oncol. Hematol. 180, 103826 (2022)PubMedCrossRef A. Faggiano, R. Mazzilli, A. Natalicchio, V. Adinolfi, A. Argentiero et al. Corticosteroids in oncology: use, overuse, indications, contraindications. An Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit. Rev. Oncol. Hematol. 180, 103826 (2022)PubMedCrossRef
6.
go back to reference G. Capurso, M. Falconi, F. Panzuto, M. Rinzivillo, L. Boninsegna et al. Risk factors for sporadic pancreatic endocrine tumors. Am. J. Gastroenterol. 104, 3034–3041 (2009)PubMedCrossRef G. Capurso, M. Falconi, F. Panzuto, M. Rinzivillo, L. Boninsegna et al. Risk factors for sporadic pancreatic endocrine tumors. Am. J. Gastroenterol. 104, 3034–3041 (2009)PubMedCrossRef
7.
go back to reference M. Gallo, G. Muscogiuri, G. Pizza, R.M. Ruggeri, L. Barrea et al. The management of neuroendocrine tumours: a nutritional viewpoint. Crit. Rev. Food Sci. Nutr. 59, 1046–1057 (2019)PubMedCrossRef M. Gallo, G. Muscogiuri, G. Pizza, R.M. Ruggeri, L. Barrea et al. The management of neuroendocrine tumours: a nutritional viewpoint. Crit. Rev. Food Sci. Nutr. 59, 1046–1057 (2019)PubMedCrossRef
8.
go back to reference E. Leoncini, G. Carioli, C. La Vecchia, S. Boccia, G. Rindi, Risk factors for neuroendocrine neoplasms: a systematic review and meta-analysis. Ann. Oncol. 27, 68–81 (2016)PubMedCrossRef E. Leoncini, G. Carioli, C. La Vecchia, S. Boccia, G. Rindi, Risk factors for neuroendocrine neoplasms: a systematic review and meta-analysis. Ann. Oncol. 27, 68–81 (2016)PubMedCrossRef
9.
go back to reference M. Gallo, R.M. Ruggeri, G. Muscogiuri, G. Pizza, A. Faggiano et al. Diabetes and pancreatic neuroendocrine tumours: which interplays, if any? Cancer Treat. Rev. 67, 1–9 (2018)PubMedCrossRef M. Gallo, R.M. Ruggeri, G. Muscogiuri, G. Pizza, A. Faggiano et al. Diabetes and pancreatic neuroendocrine tumours: which interplays, if any? Cancer Treat. Rev. 67, 1–9 (2018)PubMedCrossRef
10.
go back to reference L.-L. Wei, X. Ren, Y.-Y. Zhao, L. Wang, Y.-F. Zhao, [Facilitative glucose transporters: expression, distribution and the relationship to diseases]. Sheng Li Xue Bao 71, 350–360 (2019)PubMed L.-L. Wei, X. Ren, Y.-Y. Zhao, L. Wang, Y.-F. Zhao, [Facilitative glucose transporters: expression, distribution and the relationship to diseases]. Sheng Li Xue Bao 71, 350–360 (2019)PubMed
11.
go back to reference A. Natalicchio, A. Faggiano, M.C. Zatelli, A. Argentiero, S. D’Oronzo et al. Metabolic disorders and gastroenteropancreatic-neuroendocrine tumors (GEP-NETs): how do they influence each other? An Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit. Rev. Oncol. Hematol. 169, 103572 (2022)PubMedCrossRef A. Natalicchio, A. Faggiano, M.C. Zatelli, A. Argentiero, S. D’Oronzo et al. Metabolic disorders and gastroenteropancreatic-neuroendocrine tumors (GEP-NETs): how do they influence each other? An Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit. Rev. Oncol. Hematol. 169, 103572 (2022)PubMedCrossRef
12.
13.
go back to reference B. Vergès, Effects of anti-somatostatin agents on glucose metabolism. Diabetes Metab. 43, 411–415 (2017)PubMedCrossRef B. Vergès, Effects of anti-somatostatin agents on glucose metabolism. Diabetes Metab. 43, 411–415 (2017)PubMedCrossRef
15.
go back to reference V. Singh, M.D. Brendel, S. Zacharias, S. Mergler, H. Jahr et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J. Clin. Endocrinol. Metab. 92, 673–680 (2007)PubMedCrossRef V. Singh, M.D. Brendel, S. Zacharias, S. Mergler, H. Jahr et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J. Clin. Endocrinol. Metab. 92, 673–680 (2007)PubMedCrossRef
16.
go back to reference R.R. Henry, T.P. Ciaraldi, D. Armstrong, P. Burke, M. Ligueros-Saylan et al. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J. Clin. Endocrinol. Metab. 98, 3446–3453 (2013)PubMedCrossRef R.R. Henry, T.P. Ciaraldi, D. Armstrong, P. Burke, M. Ligueros-Saylan et al. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J. Clin. Endocrinol. Metab. 98, 3446–3453 (2013)PubMedCrossRef
17.
go back to reference M. Cives, P.L. Kunz, B. Morse, D. Coppola, M.J. Schell et al. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr. Relat. Cancer 22, 1–9 (2015)PubMedCrossRef M. Cives, P.L. Kunz, B. Morse, D. Coppola, M.J. Schell et al. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr. Relat. Cancer 22, 1–9 (2015)PubMedCrossRef
18.
go back to reference L.K. Kvols, K.E. Oberg, T.M. O’Dorisio, P. Mohideen, W.W. de Herder et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr. Relat. Cancer 19, 657–666 (2012)PubMedCrossRef L.K. Kvols, K.E. Oberg, T.M. O’Dorisio, P. Mohideen, W.W. de Herder et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr. Relat. Cancer 19, 657–666 (2012)PubMedCrossRef
19.
go back to reference E. Wolin, B. Jarzab, B. Eriksson, T. Walter, C. Toumpanakis et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Devel. Ther. 9, 5075–5086 (2015) E. Wolin, B. Jarzab, B. Eriksson, T. Walter, C. Toumpanakis et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Devel. Ther. 9, 5075–5086 (2015)
20.
go back to reference K. Ni, J.Y. Yang, K. Baeg, A.C. Leiter, G. Mhango et al. Association between somatostatin analogues and diabetes mellitus in gastroenteropancreatic neuroendocrine tumor patients: a surveillance, epidemiology, and end results–medicare analysis of 5235 patients. Cancer Rep. 4, e1387 (2021) K. Ni, J.Y. Yang, K. Baeg, A.C. Leiter, G. Mhango et al. Association between somatostatin analogues and diabetes mellitus in gastroenteropancreatic neuroendocrine tumor patients: a surveillance, epidemiology, and end results–medicare analysis of 5235 patients. Cancer Rep. 4, e1387 (2021)
21.
go back to reference K.R. Patel, A. Nahar, Y.S. Elhassan, S. Shetty, S. Smith et al. The effects of somatostatin analogues on glycaemia in the treatment of neuroendocrine tumours. J. Neuroendocrinol. 34, e13064 (2022) K.R. Patel, A. Nahar, Y.S. Elhassan, S. Shetty, S. Smith et al. The effects of somatostatin analogues on glycaemia in the treatment of neuroendocrine tumours. J. Neuroendocrinol. 34, e13064 (2022)
22.
go back to reference M. Boscaro, J. Bertherat, J. Findling, M. Fleseriu, A.B. Atkinson et al. Extended treatment of Cushing’s disease with pasireotide: results from a 2-year, Phase II study. Pituitary 17, 320–326 (2014)PubMedCrossRef M. Boscaro, J. Bertherat, J. Findling, M. Fleseriu, A.B. Atkinson et al. Extended treatment of Cushing’s disease with pasireotide: results from a 2-year, Phase II study. Pituitary 17, 320–326 (2014)PubMedCrossRef
23.
go back to reference A. Colao, S. Petersenn, J. Newell-Price, J.W. Findling, F. Gu et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366, 914–924 (2012)PubMedCrossRef A. Colao, S. Petersenn, J. Newell-Price, J.W. Findling, F. Gu et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366, 914–924 (2012)PubMedCrossRef
24.
go back to reference M. Sheppard, M.D. Bronstein, P. Freda, O. Serri, L. De Marinis et al. Pasireotide LAR maintains inhibition of GH and IGF-1 in patients with acromegaly for up to 25 months: results from the blinded extension phase of a randomized, double-blind, multicenter, phase III study. Pituitary 18, 385–394 (2015)PubMedCrossRef M. Sheppard, M.D. Bronstein, P. Freda, O. Serri, L. De Marinis et al. Pasireotide LAR maintains inhibition of GH and IGF-1 in patients with acromegaly for up to 25 months: results from the blinded extension phase of a randomized, double-blind, multicenter, phase III study. Pituitary 18, 385–394 (2015)PubMedCrossRef
25.
go back to reference J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao et al. Phase 3 trial of 177 lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017)PubMedPubMedCentralCrossRef J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao et al. Phase 3 trial of 177 lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017)PubMedPubMedCentralCrossRef
26.
go back to reference U. Hennrich, K. Kopka, Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 12, 114 (2019)PubMedPubMedCentralCrossRef U. Hennrich, K. Kopka, Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 12, 114 (2019)PubMedPubMedCentralCrossRef
27.
go back to reference J.R. Strosberg, M.E. Caplin, P.L. Kunz, P.B. Ruszniewski, L. Bodei et al. 177 lu-dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 1752–1763 (2021)PubMedCrossRef J.R. Strosberg, M.E. Caplin, P.L. Kunz, P.B. Ruszniewski, L. Bodei et al. 177 lu-dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 1752–1763 (2021)PubMedCrossRef
28.
go back to reference M. Umlauft, P. Radojewski, P.-M. Spanjol, R. Dumont, N. Marincek et al. Diabetes mellitus and its effects on all-cause mortality after radiopeptide therapy for neuroendocrine tumors. J. Nucl. Med. 58, 97–102 (2017)PubMedCrossRef M. Umlauft, P. Radojewski, P.-M. Spanjol, R. Dumont, N. Marincek et al. Diabetes mellitus and its effects on all-cause mortality after radiopeptide therapy for neuroendocrine tumors. J. Nucl. Med. 58, 97–102 (2017)PubMedCrossRef
29.
go back to reference J.J.M. Teunissen, E.P. Krenning, F.H. de Jong, Y.B. de Rijke, R.A. Feelders et al. Effects of therapy with [>177Lu-DOTA0, Tyr3] octreotate on endocrine function. Eur. J. Nucl. Med. Mol. Imaging 36, 1758–1766 (2009)PubMedPubMedCentralCrossRef J.J.M. Teunissen, E.P. Krenning, F.H. de Jong, Y.B. de Rijke, R.A. Feelders et al. Effects of therapy with [>177Lu-DOTA0, Tyr3] octreotate on endocrine function. Eur. J. Nucl. Med. Mol. Imaging 36, 1758–1766 (2009)PubMedPubMedCentralCrossRef
30.
go back to reference R. Valkema, S.A. Pauwels, L.K. Kvols, D.J. Kwekkeboom, F. Jamar et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J. Nucl. Med. 46(Suppl 1), 83S–91S (2005)PubMed R. Valkema, S.A. Pauwels, L.K. Kvols, D.J. Kwekkeboom, F. Jamar et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J. Nucl. Med. 46(Suppl 1), 83S–91S (2005)PubMed
31.
go back to reference J.C. Yao, M.H. Shah, T. Ito, C.L. Bohas, E.M. Wolin et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011)PubMedPubMedCentralCrossRef J.C. Yao, M.H. Shah, T. Ito, C.L. Bohas, E.M. Wolin et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011)PubMedPubMedCentralCrossRef
32.
go back to reference J.C. Yao, N. Fazio, S. Singh, R. Buzzoni, C. Carnaghi et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. The Lancet 387, 968–977 (2016)CrossRef J.C. Yao, N. Fazio, S. Singh, R. Buzzoni, C. Carnaghi et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. The Lancet 387, 968–977 (2016)CrossRef
33.
go back to reference E. Raymond, L. Dahan, J.-L. Raoul, Y.-J. Bang, I. Borbath et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011)PubMedCrossRef E. Raymond, L. Dahan, J.-L. Raoul, Y.-J. Bang, I. Borbath et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011)PubMedCrossRef
34.
go back to reference B. Vergès, T. Walter, B. Cariou, Endocrine side effects of anti-cancer drugs: effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur. J. Endocrinol. 170, R43–R55 (2014)PubMedCrossRef B. Vergès, T. Walter, B. Cariou, Endocrine side effects of anti-cancer drugs: effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur. J. Endocrinol. 170, R43–R55 (2014)PubMedCrossRef
36.
go back to reference M. Blandino-Rosano, R. Barbaresso, M. Jimenez-Palomares, N. Bozadjieva, J.P. Werneck-de-Castro et al. Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nat. Commun. 8, 16014 (2017)PubMedPubMedCentralCrossRef M. Blandino-Rosano, R. Barbaresso, M. Jimenez-Palomares, N. Bozadjieva, J.P. Werneck-de-Castro et al. Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nat. Commun. 8, 16014 (2017)PubMedPubMedCentralCrossRef
38.
go back to reference M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca et al. mTOR inhibition by rapamycin prevents β-Cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945–957 (2008)PubMedCrossRef M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca et al. mTOR inhibition by rapamycin prevents β-Cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945–957 (2008)PubMedCrossRef
39.
go back to reference J. Xie, T.P. Herbert, The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cell. Mol. Life Sci. 69, 1289–1304 (2012)PubMedCrossRef J. Xie, T.P. Herbert, The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cell. Mol. Life Sci. 69, 1289–1304 (2012)PubMedCrossRef
41.
go back to reference R.A. Saxton, D.M. Sabatini, mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017)PubMedCrossRef R.A. Saxton, D.M. Sabatini, mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017)PubMedCrossRef
42.
go back to reference G. Chang, P. Hou, C. Wang, C. Wu, H. Su et al. Chronic everolimus treatment of high‐fat diet mice leads to a reduction in obesity but impaired glucose tolerance. Pharmacol. Res. Perspect. 9, e00732 (2021) G. Chang, P. Hou, C. Wang, C. Wu, H. Su et al. Chronic everolimus treatment of high‐fat diet mice leads to a reduction in obesity but impaired glucose tolerance. Pharmacol. Res. Perspect. 9, e00732 (2021)
43.
go back to reference R.J. Motzer, B. Escudier, S. Oudard, T.E. Hutson, C. Porta et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. The Lancet 372, 449–456 (2008)CrossRef R.J. Motzer, B. Escudier, S. Oudard, T.E. Hutson, C. Porta et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. The Lancet 372, 449–456 (2008)CrossRef
44.
go back to reference J. Baselga, M. Campone, M. Piccart, H.A. Burris, H.S. Rugo et al. Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012)PubMedCrossRef J. Baselga, M. Campone, M. Piccart, H.A. Burris, H.S. Rugo et al. Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012)PubMedCrossRef
45.
go back to reference M.E. Pavel, J.D. Hainsworth, E. Baudin, M. Peeters, D. Hörsch et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. The Lancet 378, 2005–2012 (2011)CrossRef M.E. Pavel, J.D. Hainsworth, E. Baudin, M. Peeters, D. Hörsch et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. The Lancet 378, 2005–2012 (2011)CrossRef
46.
go back to reference S.A. Hurvitz, F. Andre, Z. Jiang, Z. Shao, M.S. Mano et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 16, 816–829 (2015)PubMedCrossRef S.A. Hurvitz, F. Andre, Z. Jiang, Z. Shao, M.S. Mano et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 16, 816–829 (2015)PubMedCrossRef
47.
go back to reference B. Vergès, B. Cariou, mTOR inhibitors and diabetes. Diabetes Res. Clin. Pract. 110, 101–108 (2015)PubMedCrossRef B. Vergès, B. Cariou, mTOR inhibitors and diabetes. Diabetes Res. Clin. Pract. 110, 101–108 (2015)PubMedCrossRef
48.
go back to reference M.H. Kulke, E.K. Bergsland, J.C. Yao, Glycemic control in patients with insulinoma treated with everolimus. N. Engl. J. Med. 360, 195–197 (2009)PubMedCrossRef M.H. Kulke, E.K. Bergsland, J.C. Yao, Glycemic control in patients with insulinoma treated with everolimus. N. Engl. J. Med. 360, 195–197 (2009)PubMedCrossRef
49.
go back to reference V. Bernard, C. Lombard-Bohas, M.-C. Taquet, F.-X. Caroli-Bosc, P. Ruszniewski et al. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur. J. Endocrinol. 168, 665–674 (2013)PubMedCrossRef V. Bernard, C. Lombard-Bohas, M.-C. Taquet, F.-X. Caroli-Bosc, P. Ruszniewski et al. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur. J. Endocrinol. 168, 665–674 (2013)PubMedCrossRef
50.
go back to reference S. Yanagiya, K.Y. Cho, A. Nakamura, H. Nomoto, Y. Kawamoto et al. The effect of everolimus on refractory hypoglycemia in a patient with inoperable metastatic insulinoma evaluated by continuous glucose monitoring. Int. Med. 57, 2527–2531 (2018)CrossRef S. Yanagiya, K.Y. Cho, A. Nakamura, H. Nomoto, Y. Kawamoto et al. The effect of everolimus on refractory hypoglycemia in a patient with inoperable metastatic insulinoma evaluated by continuous glucose monitoring. Int. Med. 57, 2527–2531 (2018)CrossRef
51.
go back to reference J. Tanimura, H. Nakagawa, T. Tanaka, A. Kikuchi, S. Osada et al. The clinical course and potential underlying mechanisms of everolimus-induced hyperglycemia. Endocr. J. 66, 615–620 (2019)PubMedCrossRef J. Tanimura, H. Nakagawa, T. Tanaka, A. Kikuchi, S. Osada et al. The clinical course and potential underlying mechanisms of everolimus-induced hyperglycemia. Endocr. J. 66, 615–620 (2019)PubMedCrossRef
52.
go back to reference S.Z. Lutz, A. Ullrich, H.-U. Häring, S. Ullrich, F. Gerst, Sunitinib specifically augments glucose-induced insulin secretion. Cell Signal. 36, 91–97 (2017)PubMedCrossRef S.Z. Lutz, A. Ullrich, H.-U. Häring, S. Ullrich, F. Gerst, Sunitinib specifically augments glucose-induced insulin secretion. Cell Signal. 36, 91–97 (2017)PubMedCrossRef
53.
go back to reference R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25, 287–296 (2016)PubMedCrossRef R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25, 287–296 (2016)PubMedCrossRef
54.
go back to reference N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17, 197–202 (2011)PubMedCrossRef N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17, 197–202 (2011)PubMedCrossRef
55.
go back to reference Y. Lee, H.S. Jung, H.J. Choi, M.J. Kim, T.M. Kim et al. Life-threatening hypoglycemia induced by a tyrosine kinase inhibitor in a patient with neuroendocrine tumor: a case report. Diabetes Res. Clin. Pract. 93, e68–e70 (2011)PubMedCrossRef Y. Lee, H.S. Jung, H.J. Choi, M.J. Kim, T.M. Kim et al. Life-threatening hypoglycemia induced by a tyrosine kinase inhibitor in a patient with neuroendocrine tumor: a case report. Diabetes Res. Clin. Pract. 93, e68–e70 (2011)PubMedCrossRef
56.
go back to reference A. Demirci, Ö. Bal, A. Durnali, A.Ş. Ekinci, O. Eşbah et al. Sunitinib-induced severe hypoglycemia in a diabetic patient. J. Oncol. Pharm. Pract. 20, 469–472 (2014)PubMedCrossRef A. Demirci, Ö. Bal, A. Durnali, A.Ş. Ekinci, O. Eşbah et al. Sunitinib-induced severe hypoglycemia in a diabetic patient. J. Oncol. Pharm. Pract. 20, 469–472 (2014)PubMedCrossRef
57.
go back to reference A. Fountas, S. Tigas, Z. Giotaki, D. Petrakis, G. Pentheroudakis et al. Severe resistant hypoglycemia in a patient with a pancreatic neuroendocrine tumor on sunitinib treatment. Hormones 14, 438–441 (2014) A. Fountas, S. Tigas, Z. Giotaki, D. Petrakis, G. Pentheroudakis et al. Severe resistant hypoglycemia in a patient with a pancreatic neuroendocrine tumor on sunitinib treatment. Hormones 14, 438–441 (2014)
58.
go back to reference J.W. Valle, I. Borbath, B. Rosbrook, K. Fernandez, E. Raymond, Sunitinib in patients with pancreatic neuroendocrine tumors: update of safety data. Future Oncol. 15, 1219–1230 (2019)PubMedCrossRef J.W. Valle, I. Borbath, B. Rosbrook, K. Fernandez, E. Raymond, Sunitinib in patients with pancreatic neuroendocrine tumors: update of safety data. Future Oncol. 15, 1219–1230 (2019)PubMedCrossRef
59.
go back to reference Z.-Y. Ma, Y.-F. Gong, H.-K. Zhuang, Z.-X. Zhou, S.-Z. Huang et al. Pancreatic neuroendocrine tumors: a review of serum biomarkers, staging, and management. World J Gastroenterol 26, 2305–2322 (2020)PubMedPubMedCentralCrossRef Z.-Y. Ma, Y.-F. Gong, H.-K. Zhuang, Z.-X. Zhou, S.-Z. Huang et al. Pancreatic neuroendocrine tumors: a review of serum biomarkers, staging, and management. World J Gastroenterol 26, 2305–2322 (2020)PubMedPubMedCentralCrossRef
60.
go back to reference A. Canakis, L.S. Lee, Current updates and future directions in diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms. World J. Gastrointest. Endosc. 14, 267–290 (2022)PubMedPubMedCentralCrossRef A. Canakis, L.S. Lee, Current updates and future directions in diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms. World J. Gastrointest. Endosc. 14, 267–290 (2022)PubMedPubMedCentralCrossRef
61.
go back to reference M. Cives, E. Pelle’, D. Quaresmini, B. Mandriani, M. Tucci et al. The role of cytotoxic chemotherapy in well-differentiated gastroenteropancreatic and lung neuroendocrine tumors. Curr. Treat Options Oncol. 20, 72 (2019)PubMedCrossRef M. Cives, E. Pelle’, D. Quaresmini, B. Mandriani, M. Tucci et al. The role of cytotoxic chemotherapy in well-differentiated gastroenteropancreatic and lung neuroendocrine tumors. Curr. Treat Options Oncol. 20, 72 (2019)PubMedCrossRef
62.
go back to reference P. Espinosa-Olarte, A. La Salvia, M.C. Riesco-Martinez, B. Anton-Pascual, R. Garcia-Carbonero, Chemotherapy in NEN: still has a role? Rev. Endocr. Metab. Disord. 22, 595–614 (2021)PubMedPubMedCentralCrossRef P. Espinosa-Olarte, A. La Salvia, M.C. Riesco-Martinez, B. Anton-Pascual, R. Garcia-Carbonero, Chemotherapy in NEN: still has a role? Rev. Endocr. Metab. Disord. 22, 595–614 (2021)PubMedPubMedCentralCrossRef
63.
go back to reference D.S. Hershey, A.L. Bryant, J. Olausson, E.D. Davis, V.J. Brady et al. Hyperglycemic-inducing neoadjuvant agents used in treatment of solid tumors: a review of the literature. Oncol. Nurs. Forum 41, E343–E354 (2014)PubMedCrossRef D.S. Hershey, A.L. Bryant, J. Olausson, E.D. Davis, V.J. Brady et al. Hyperglycemic-inducing neoadjuvant agents used in treatment of solid tumors: a review of the literature. Oncol. Nurs. Forum 41, E343–E354 (2014)PubMedCrossRef
64.
go back to reference A. Athavale, J. Morris, M. Jardine, M. Gallagher, S. Sen et al. Acute interstitial nephritis and nephrogenic diabetes insipidus following treatment with sulfamethoxazole-trimethoprim and temozolomide. Nephrology 26, 12–14 (2021)PubMedCrossRef A. Athavale, J. Morris, M. Jardine, M. Gallagher, S. Sen et al. Acute interstitial nephritis and nephrogenic diabetes insipidus following treatment with sulfamethoxazole-trimethoprim and temozolomide. Nephrology 26, 12–14 (2021)PubMedCrossRef
65.
go back to reference A.T. Faje, L. Nachtigall, D. Wexler, K.K. Miller, A. Klibanski et al. Central diabetes insipidus: a previously unreported side effect of temozolomide. J. Clin. Endocrinol. Metab. 98, 3926–3931 (2013)PubMedPubMedCentralCrossRef A.T. Faje, L. Nachtigall, D. Wexler, K.K. Miller, A. Klibanski et al. Central diabetes insipidus: a previously unreported side effect of temozolomide. J. Clin. Endocrinol. Metab. 98, 3926–3931 (2013)PubMedPubMedCentralCrossRef
67.
go back to reference K.-I. Lee, C.-C. Su, C.-Y. Yang, D.-Z. Hung, C.-T. Lin et al. Etoposide induces pancreatic β-cells cytotoxicity via the JNK/ERK/GSK-3 signaling-mediated mitochondria-dependent apoptosis pathway. Toxicol. In Vitro 36, 142–152 (2016)PubMedCrossRef K.-I. Lee, C.-C. Su, C.-Y. Yang, D.-Z. Hung, C.-T. Lin et al. Etoposide induces pancreatic β-cells cytotoxicity via the JNK/ERK/GSK-3 signaling-mediated mitochondria-dependent apoptosis pathway. Toxicol. In Vitro 36, 142–152 (2016)PubMedCrossRef
68.
go back to reference R.S. Goldstein, G.H. Mayor, R.L. Gingerich, J.B. Hook, R.W. Rosenbaum et al. The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function. Toxicol. Appl. Pharmacol. 69, 432–441 (1983)PubMedCrossRef R.S. Goldstein, G.H. Mayor, R.L. Gingerich, J.B. Hook, R.W. Rosenbaum et al. The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function. Toxicol. Appl. Pharmacol. 69, 432–441 (1983)PubMedCrossRef
69.
go back to reference S. Ciftel, L. Tumkaya, S. Saral, T. Mercantepe, K. Akyildiz et al. The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study. Histochem. Cell Biol. 161, 391–408 (2024)PubMedCrossRef S. Ciftel, L. Tumkaya, S. Saral, T. Mercantepe, K. Akyildiz et al. The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study. Histochem. Cell Biol. 161, 391–408 (2024)PubMedCrossRef
70.
go back to reference D.M. Aboraya, A. El Baz, E.F. Risha, F.M. Abdelhamid, Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J. Biol. Sci. 29, 3157–3166 (2022)PubMedPubMedCentralCrossRef D.M. Aboraya, A. El Baz, E.F. Risha, F.M. Abdelhamid, Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J. Biol. Sci. 29, 3157–3166 (2022)PubMedPubMedCentralCrossRef
71.
go back to reference D.N. Nan, M. Fernández-Ayala, M.E. Vega Villegas, A. Garcia-Castaño, F. Rivera et al. Diabetes mellitus following cisplatin treatment. Acta Oncol. 42, 75–78 (2003)PubMedCrossRef D.N. Nan, M. Fernández-Ayala, M.E. Vega Villegas, A. Garcia-Castaño, F. Rivera et al. Diabetes mellitus following cisplatin treatment. Acta Oncol. 42, 75–78 (2003)PubMedCrossRef
72.
go back to reference S. Dasari, S. Njiki, A. Mbemi, C.G. Yedjou, P.B. Tchounwou, Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 23, 1532 (2022) S. Dasari, S. Njiki, A. Mbemi, C.G. Yedjou, P.B. Tchounwou, Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 23, 1532 (2022)
73.
go back to reference D. Smith, C. Lepage, E. Vicaut, S. Dominguez, R. Coriat et al. Observational study in a real-world setting of targeted therapy in the systemic treatment of progressive unresectable or metastatic well-differentiated pancreatic neuroendocrine tumors (pNETs) in France: OPALINE study. Adv. Ther. 39, 2731–2748 (2022)PubMedPubMedCentralCrossRef D. Smith, C. Lepage, E. Vicaut, S. Dominguez, R. Coriat et al. Observational study in a real-world setting of targeted therapy in the systemic treatment of progressive unresectable or metastatic well-differentiated pancreatic neuroendocrine tumors (pNETs) in France: OPALINE study. Adv. Ther. 39, 2731–2748 (2022)PubMedPubMedCentralCrossRef
74.
go back to reference N.A. ElSayed, G. Aleppo, V.R. Aroda, R.R. Bannuru, F.M. Brown et al. 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care 46, S68–S96 (2023)PubMedCrossRef N.A. ElSayed, G. Aleppo, V.R. Aroda, R.R. Bannuru, F.M. Brown et al. 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care 46, S68–S96 (2023)PubMedCrossRef
75.
go back to reference G. Muscogiuri, L. Barrea, M.C. Cantone, V. Guarnotta, R. Mazzilli et al. Neuroendocrine tumors: a comprehensive review on nutritional approaches. Cancers 14, 4402 (2022) G. Muscogiuri, L. Barrea, M.C. Cantone, V. Guarnotta, R. Mazzilli et al. Neuroendocrine tumors: a comprehensive review on nutritional approaches. Cancers 14, 4402 (2022)
76.
go back to reference J. Pobłocki, A. Jasińska, A. Syrenicz, E. Andrysiak-Mamos, M. Szczuko, The neuroendocrine neoplasms of the digestive tract: diagnosis, treatment and nutrition. Nutrients 12, 1437 (2020)PubMedPubMedCentralCrossRef J. Pobłocki, A. Jasińska, A. Syrenicz, E. Andrysiak-Mamos, M. Szczuko, The neuroendocrine neoplasms of the digestive tract: diagnosis, treatment and nutrition. Nutrients 12, 1437 (2020)PubMedPubMedCentralCrossRef
77.
go back to reference L. Barrea, G. Muscogiuri, R. Modica, B. Altieri, G. Pugliese et al. Cardio-metabolic indices and metabolic syndrome as predictors of clinical severity of gastroenteropancreatic neuroendocrine tumors. Front. Endocrinol. 12, 649496 (2021) L. Barrea, G. Muscogiuri, R. Modica, B. Altieri, G. Pugliese et al. Cardio-metabolic indices and metabolic syndrome as predictors of clinical severity of gastroenteropancreatic neuroendocrine tumors. Front. Endocrinol. 12, 649496 (2021)
78.
go back to reference M. C. Mentella, F. Scaldaferri, C. Ricci, A. Gasbarrini, G.A.D. Miggiano, Cancer and mediterranean diet: a review. Nutrients 11, 2059 (2019) M. C. Mentella, F. Scaldaferri, C. Ricci, A. Gasbarrini, G.A.D. Miggiano, Cancer and mediterranean diet: a review. Nutrients 11, 2059 (2019)
79.
go back to reference K. Esposito, Effects of a mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes. Ann. Intern. Med. 151, 306 (2009)PubMedCrossRef K. Esposito, Effects of a mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes. Ann. Intern. Med. 151, 306 (2009)PubMedCrossRef
80.
go back to reference R. Estruch, E. Ros, J. Salas-Salvadó, M.-I. Covas, D. Corella et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018)PubMedCrossRef R. Estruch, E. Ros, J. Salas-Salvadó, M.-I. Covas, D. Corella et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018)PubMedCrossRef
81.
82.
go back to reference L. Barrea, B. Altieri, G. Muscogiuri, D. Laudisio, G. Annunziata et al. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients 10, 1854 (2018)PubMedPubMedCentralCrossRef L. Barrea, B. Altieri, G. Muscogiuri, D. Laudisio, G. Annunziata et al. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients 10, 1854 (2018)PubMedPubMedCentralCrossRef
83.
go back to reference W. Masood, P. Annamaraju, M.Z. Khan Suheb, K.R. Uppaluri, Ketogenic Diet (StatPearls, Treasure Island (FL), 2024) W. Masood, P. Annamaraju, M.Z. Khan Suheb, K.R. Uppaluri, Ketogenic Diet (StatPearls, Treasure Island (FL), 2024)
84.
go back to reference A.B. Evert, M. Dennison, C.D. Gardner, W. Timothy Garvey, K.H. Karen Lau et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42, 731–754 (2019)PubMedPubMedCentralCrossRef A.B. Evert, M. Dennison, C.D. Gardner, W. Timothy Garvey, K.H. Karen Lau et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42, 731–754 (2019)PubMedPubMedCentralCrossRef
85.
go back to reference C. Zhou, M. Wang, J. Liang, G. He, N. Chen, Ketogenic diet benefits to weight loss, glycemic control, and lipid profiles in overweight patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trails. Int. J. Environ. Res. Public Health 19, 10429 (2022) C. Zhou, M. Wang, J. Liang, G. He, N. Chen, Ketogenic diet benefits to weight loss, glycemic control, and lipid profiles in overweight patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trails. Int. J. Environ. Res. Public Health 19, 10429 (2022)
86.
go back to reference C.D. Gardner, M.J. Landry, D. Perelman, C. Petlura, L.R. Durand et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional Keto-Med randomized crossover trial. Am. J. Clin. Nutr. 116, 640–652 (2022)PubMedPubMedCentralCrossRef C.D. Gardner, M.J. Landry, D. Perelman, C. Petlura, L.R. Durand et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional Keto-Med randomized crossover trial. Am. J. Clin. Nutr. 116, 640–652 (2022)PubMedPubMedCentralCrossRef
87.
go back to reference L.R. Saslow, J.J. Daubenmier, J.T. Moskowitz, S. Kim, E.J. Murphy et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes 7, 304 (2017)PubMedPubMedCentralCrossRef L.R. Saslow, J.J. Daubenmier, J.T. Moskowitz, S. Kim, E.J. Murphy et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes 7, 304 (2017)PubMedPubMedCentralCrossRef
88.
go back to reference C.M. Walton, K. Perry, R.H. Hart, S.L. Berry, B.T. Bikman, Improvement in glycemic and lipid profiles in type 2 diabetics with a 90-day ketogenic diet. J. Diabetes Res. 2019, 1–6 (2019)CrossRef C.M. Walton, K. Perry, R.H. Hart, S.L. Berry, B.T. Bikman, Improvement in glycemic and lipid profiles in type 2 diabetics with a 90-day ketogenic diet. J. Diabetes Res. 2019, 1–6 (2019)CrossRef
89.
go back to reference W.H. Talib, A.I. Mahmod, A. Kamal, H.M. Rashid, A.M.D. Alashqar et al. Ketogenic diet in cancer prevention and therapy: molecular targets and therapeutic opportunities. Curr. Issues Mol. Biol. 43, 558–589 (2021)PubMedPubMedCentralCrossRef W.H. Talib, A.I. Mahmod, A. Kamal, H.M. Rashid, A.M.D. Alashqar et al. Ketogenic diet in cancer prevention and therapy: molecular targets and therapeutic opportunities. Curr. Issues Mol. Biol. 43, 558–589 (2021)PubMedPubMedCentralCrossRef
90.
go back to reference L. Barrea, M. Caprio, D. Tuccinardi, E. Moriconi, L. Di Renzo et al. Could ketogenic diet “starve” cancer? Emerging evidence. Crit. Rev. Food Sci. Nutr. 62, 1800–1821 (2022)PubMedCrossRef L. Barrea, M. Caprio, D. Tuccinardi, E. Moriconi, L. Di Renzo et al. Could ketogenic diet “starve” cancer? Emerging evidence. Crit. Rev. Food Sci. Nutr. 62, 1800–1821 (2022)PubMedCrossRef
91.
92.
go back to reference V.A. Kobliakov, The mechanisms of regulation of aerobic glycolysis (Warburg effect) by oncoproteins in carcinogenesis. Biochemistry 84, 1117–1128 (2019)PubMed V.A. Kobliakov, The mechanisms of regulation of aerobic glycolysis (Warburg effect) by oncoproteins in carcinogenesis. Biochemistry 84, 1117–1128 (2019)PubMed
93.
go back to reference E.J. Fine, C.J. Segal-Isaacson, R.D. Feinman, S. Herszkopf, M.C. Romano et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 28, 1028–1035 (2012)PubMedCrossRef E.J. Fine, C.J. Segal-Isaacson, R.D. Feinman, S. Herszkopf, M.C. Romano et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 28, 1028–1035 (2012)PubMedCrossRef
94.
go back to reference M.M. Adeva-Andany, R. Funcasta-Calderón, C. Fernández-Fernández, E. Castro-Quintela, N. Carneiro-Freire, Metabolic effects of glucagon in humans. J. Clin. Transl. Endocrinol. 15, 45–53 (2019)PubMed M.M. Adeva-Andany, R. Funcasta-Calderón, C. Fernández-Fernández, E. Castro-Quintela, N. Carneiro-Freire, Metabolic effects of glucagon in humans. J. Clin. Transl. Endocrinol. 15, 45–53 (2019)PubMed
95.
go back to reference L. Gong, S. Goswami, K.M. Giacomini, R.B. Altman, T.E. Klein, Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genom. 22, 820–827 (2012)CrossRef L. Gong, S. Goswami, K.M. Giacomini, R.B. Altman, T.E. Klein, Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genom. 22, 820–827 (2012)CrossRef
96.
go back to reference Y. Hua, Y. Zheng, Y. Yao, R. Jia, S. Ge et al. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J. Transl. Med. 21, 403 (2023)PubMedPubMedCentralCrossRef Y. Hua, Y. Zheng, Y. Yao, R. Jia, S. Ge et al. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J. Transl. Med. 21, 403 (2023)PubMedPubMedCentralCrossRef
97.
go back to reference G. Vlotides, A. Tanyeri, M. Spampatti, K. Zitzmann, M. Chourdakis et al. Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones 13, 498–508 (2014)PubMed G. Vlotides, A. Tanyeri, M. Spampatti, K. Zitzmann, M. Chourdakis et al. Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones 13, 498–508 (2014)PubMed
98.
go back to reference E. Vitali, I. Boemi, G. Tarantola, S. Piccini, A. Zerbi et al. Metformin and everolimus: a promising combination for neuroendocrine tumors treatment. Cancers 12, 2143 (2020) E. Vitali, I. Boemi, G. Tarantola, S. Piccini, A. Zerbi et al. Metformin and everolimus: a promising combination for neuroendocrine tumors treatment. Cancers 12, 2143 (2020)
99.
go back to reference S. Pusceddu, C. Vernieri, M. Di Maio, N. Prinzi, M. Torchio et al. Impact of diabetes and metformin use on enteropancreatic neuroendocrine tumors: post hoc analysis of the CLARINET study. Cancers 14, 69 (2021) S. Pusceddu, C. Vernieri, M. Di Maio, N. Prinzi, M. Torchio et al. Impact of diabetes and metformin use on enteropancreatic neuroendocrine tumors: post hoc analysis of the CLARINET study. Cancers 14, 69 (2021)
100.
go back to reference S. Pusceddu, C. Vernieri, M. Di Maio, R. Marconcini, F. Spada et al. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology 155, 479–489.e7 (2018)PubMedCrossRef S. Pusceddu, C. Vernieri, M. Di Maio, R. Marconcini, F. Spada et al. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology 155, 479–489.e7 (2018)PubMedCrossRef
101.
go back to reference Y. Guan, C. Hao, D.R. Cha, R. Rao, W. Lu et al. Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat. Med. 11, 861–866 (2005)PubMedCrossRef Y. Guan, C. Hao, D.R. Cha, R. Rao, W. Lu et al. Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat. Med. 11, 861–866 (2005)PubMedCrossRef
102.
go back to reference A. Kermani, A. Garg, Thiazolidinedione-associated congestive heart failure and pulmonary edema. Mayo Clin. Proc. 78, 1088–1091 (2003)PubMedCrossRef A. Kermani, A. Garg, Thiazolidinedione-associated congestive heart failure and pulmonary edema. Mayo Clin. Proc. 78, 1088–1091 (2003)PubMedCrossRef
104.
go back to reference A.A. Ali, R.S. Weinstein, S.A. Stewart, A.M. Parfitt, S.C. Manolagas et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146, 1226–1235 (2005)PubMedCrossRef A.A. Ali, R.S. Weinstein, S.A. Stewart, A.M. Parfitt, S.C. Manolagas et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146, 1226–1235 (2005)PubMedCrossRef
105.
go back to reference C. Koro, S. Barrett, N. Qizilbash, Cancer risks in thiazolidinedione users compared to other anti‐diabetic agents. Pharmacoepidemiol. Drug Saf. 16, 485–492 (2007)PubMedCrossRef C. Koro, S. Barrett, N. Qizilbash, Cancer risks in thiazolidinedione users compared to other anti‐diabetic agents. Pharmacoepidemiol. Drug Saf. 16, 485–492 (2007)PubMedCrossRef
106.
go back to reference C. Bosetti, V. Rosato, D. Buniato, A. Zambon, C. La Vecchia et al. Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis. Oncologist 18, 148–156 (2013)PubMedPubMedCentralCrossRef C. Bosetti, V. Rosato, D. Buniato, A. Zambon, C. La Vecchia et al. Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis. Oncologist 18, 148–156 (2013)PubMedPubMedCentralCrossRef
107.
go back to reference J. Dormandy, M. Bhattacharya, A.-R. van Troostenburg de Bruyn, Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes. Drug Saf. 32, 187–202 (2009)PubMedCrossRef J. Dormandy, M. Bhattacharya, A.-R. van Troostenburg de Bruyn, Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes. Drug Saf. 32, 187–202 (2009)PubMedCrossRef
108.
go back to reference R. Mamtani, K. Haynes, W.B. Bilker, D.J. Vaughn, B.L. Strom et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. JNCI 104, 1411–1421 (2012)PubMedPubMedCentralCrossRef R. Mamtani, K. Haynes, W.B. Bilker, D.J. Vaughn, B.L. Strom et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. JNCI 104, 1411–1421 (2012)PubMedPubMedCentralCrossRef
109.
go back to reference R. Govindarajan, L. Ratnasinghe, D.L. Simmons, E.R. Siegel, M.V. Midathada et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J. Clin. Oncol. 25, 1476–1481 (2007)PubMedCrossRef R. Govindarajan, L. Ratnasinghe, D.L. Simmons, E.R. Siegel, M.V. Midathada et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J. Clin. Oncol. 25, 1476–1481 (2007)PubMedCrossRef
110.
go back to reference P.J. Mazzone, H. Rai, M. Beukemann, M. Xu, A. Jain et al. The effect of metformin and thiazolidinedione use on lung cancer in diabetics. BMC Cancer 12, 410 (2012)PubMedPubMedCentralCrossRef P.J. Mazzone, H. Rai, M. Beukemann, M. Xu, A. Jain et al. The effect of metformin and thiazolidinedione use on lung cancer in diabetics. BMC Cancer 12, 410 (2012)PubMedPubMedCentralCrossRef
111.
go back to reference A. Koechlin, P. Boyle, Lung cancer risk, diabetes, and diabetes treatments. J. Clin. Oncol. 34, 1577 (2016)CrossRef A. Koechlin, P. Boyle, Lung cancer risk, diabetes, and diabetes treatments. J. Clin. Oncol. 34, 1577 (2016)CrossRef
112.
go back to reference N. Dana, G. Vaseghi, S. Haghjooy javanmard, PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J. Pharm. Pharm. Sci. 22, 418–423 (2019)PubMedCrossRef N. Dana, G. Vaseghi, S. Haghjooy javanmard, PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J. Pharm. Pharm. Sci. 22, 418–423 (2019)PubMedCrossRef
113.
go back to reference T. Botton, A. Puissant, P. Bahadoran, J.-S. Annicotte, L. Fajas et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J. Investig. Dermatol. 129, 1208–1218 (2009)PubMedCrossRef T. Botton, A. Puissant, P. Bahadoran, J.-S. Annicotte, L. Fajas et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J. Investig. Dermatol. 129, 1208–1218 (2009)PubMedCrossRef
114.
go back to reference A.G. Smith, K.A. Beaumont, D.J. Smit, A.E. Thurber, A.L. Cook et al. PPARγ agonists attenuate proliferation and modulate Wnt/β-catenin signalling in melanoma cells. Int. J. Biochem. Cell Biol. 41, 844–852 (2009)PubMedCrossRef A.G. Smith, K.A. Beaumont, D.J. Smit, A.E. Thurber, A.L. Cook et al. PPARγ agonists attenuate proliferation and modulate Wnt/β-catenin signalling in melanoma cells. Int. J. Biochem. Cell Biol. 41, 844–852 (2009)PubMedCrossRef
115.
go back to reference P. Ferruzzi, E. Ceni, M. Tarocchi, C. Grappone, S. Milani et al. Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J. Clin. Endocrinol. Metab. 90, 1332–1339 (2005)PubMedCrossRef P. Ferruzzi, E. Ceni, M. Tarocchi, C. Grappone, S. Milani et al. Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J. Clin. Endocrinol. Metab. 90, 1332–1339 (2005)PubMedCrossRef
116.
go back to reference V.G. Keshamouni, R.C. Reddy, D.A. Arenberg, B. Joel, V.J. Thannickal et al. Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 23, 100–108 (2004)PubMedCrossRef V.G. Keshamouni, R.C. Reddy, D.A. Arenberg, B. Joel, V.J. Thannickal et al. Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 23, 100–108 (2004)PubMedCrossRef
117.
go back to reference D. Panigraphy, S. Huang, M.W. Kieran, A. Kaipainen, PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol. Ther. 4, 687–693 (2005)CrossRef D. Panigraphy, S. Huang, M.W. Kieran, A. Kaipainen, PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol. Ther. 4, 687–693 (2005)CrossRef
118.
go back to reference R. Göke, A. Göke, B. Göke, W.S. El-Deiry, Y. Chen, Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1. Digestion 64, 75–80 (2001)PubMedCrossRef R. Göke, A. Göke, B. Göke, W.S. El-Deiry, Y. Chen, Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1. Digestion 64, 75–80 (2001)PubMedCrossRef
119.
go back to reference B.A. Menge, H. Schrader, T.G.K. Breuer, Y. Dabrowski, W. Uhl et al. Metabolic consequences of a 50% partial pancreatectomy in humans. Diabetologia 52, 306–317 (2009)PubMedCrossRef B.A. Menge, H. Schrader, T.G.K. Breuer, Y. Dabrowski, W. Uhl et al. Metabolic consequences of a 50% partial pancreatectomy in humans. Diabetologia 52, 306–317 (2009)PubMedCrossRef
120.
go back to reference S.N. Duggan, N. Ewald, L. Kelleher, O. Griffin, J. Gibney et al. The nutritional management of type 3c (pancreatogenic) diabetes in chronic pancreatitis. Eur. J. Clin. Nutr. 71, 3–8 (2017)PubMedCrossRef S.N. Duggan, N. Ewald, L. Kelleher, O. Griffin, J. Gibney et al. The nutritional management of type 3c (pancreatogenic) diabetes in chronic pancreatitis. Eur. J. Clin. Nutr. 71, 3–8 (2017)PubMedCrossRef
121.
go back to reference S.K. Bhattamisra, T.C. Siang, C.Y. Rong, N.C. Annan, E.H.Y. Sean et al. Type-3c diabetes mellitus, diabetes of exocrine pancreas—an update. Curr. Diabetes Rev. 15, 382–394 (2019)PubMedCrossRef S.K. Bhattamisra, T.C. Siang, C.Y. Rong, N.C. Annan, E.H.Y. Sean et al. Type-3c diabetes mellitus, diabetes of exocrine pancreas—an update. Curr. Diabetes Rev. 15, 382–394 (2019)PubMedCrossRef
122.
go back to reference L. Hernandez-Rienda, M.I. del Olmo-García, J.F. Merino-Torres, Impact of diabetes mellitus in patients with pancreatic neuro-endocrine tumors: causes, consequences, and future perspectives. Metabolites 12, 1103 (2022)PubMedPubMedCentralCrossRef L. Hernandez-Rienda, M.I. del Olmo-García, J.F. Merino-Torres, Impact of diabetes mellitus in patients with pancreatic neuro-endocrine tumors: causes, consequences, and future perspectives. Metabolites 12, 1103 (2022)PubMedPubMedCentralCrossRef
123.
go back to reference V. Guarnotta, F. Emanuele, R. Salzillo, M. Bonsangue, C. Amato et al. Practical therapeutic approach in the management of diabetes mellitus secondary to Cushing’s syndrome, acromegaly and neuroendocrine tumours. Front. Endocrinol. 14, 1248985 (2023) V. Guarnotta, F. Emanuele, R. Salzillo, M. Bonsangue, C. Amato et al. Practical therapeutic approach in the management of diabetes mellitus secondary to Cushing’s syndrome, acromegaly and neuroendocrine tumours. Front. Endocrinol. 14, 1248985 (2023)
124.
go back to reference R.A. Wermers, V. Fatourechi, A.G. Wynne, L.K. Kvols, R.V. Lloyd, The glucagonoma syndrome clinical and pathologic features in 21 patients. Medicine 75, 53–63 (1996)PubMedCrossRef R.A. Wermers, V. Fatourechi, A.G. Wynne, L.K. Kvols, R.V. Lloyd, The glucagonoma syndrome clinical and pathologic features in 21 patients. Medicine 75, 53–63 (1996)PubMedCrossRef
125.
go back to reference T.V. Kourelis, R.D. Siegel, Metformin and cancer: new applications for an old drug. Med. Oncol. 29, 1314–1327 (2012)PubMedCrossRef T.V. Kourelis, R.D. Siegel, Metformin and cancer: new applications for an old drug. Med. Oncol. 29, 1314–1327 (2012)PubMedCrossRef
127.
go back to reference R. Vigneri, L. Sciacca, P. Vigneri, Rethinking the relationship between insulin and cancer. Trends Endocrinol. Metab. 31, 551–560 (2020)PubMedCrossRef R. Vigneri, L. Sciacca, P. Vigneri, Rethinking the relationship between insulin and cancer. Trends Endocrinol. Metab. 31, 551–560 (2020)PubMedCrossRef
129.
go back to reference C.F. Deacon, Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 642–653 (2020)PubMedCrossRef C.F. Deacon, Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 642–653 (2020)PubMedCrossRef
130.
go back to reference L.L. Baggio, D.J. Drucker, Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007)PubMedCrossRef L.L. Baggio, D.J. Drucker, Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007)PubMedCrossRef
131.
go back to reference M.A. Nauck, N. Kleine, C. Orskov, J.J. Holst, B. Willms et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993)PubMedCrossRef M.A. Nauck, N. Kleine, C. Orskov, J.J. Holst, B. Willms et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993)PubMedCrossRef
132.
go back to reference C.F. Deacon, T.E. Hughes, J.J. Holst, Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 47, 764–769 (1998)PubMedCrossRef C.F. Deacon, T.E. Hughes, J.J. Holst, Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 47, 764–769 (1998)PubMedCrossRef
133.
go back to reference R.A. Pederson, H.A. White, D. Schlenzig, R.P. Pauly, C.H. McIntosh et al. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 47, 1253–1258 (1998)PubMedCrossRef R.A. Pederson, H.A. White, D. Schlenzig, R.P. Pauly, C.H. McIntosh et al. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 47, 1253–1258 (1998)PubMedCrossRef
134.
go back to reference M.J. Davies, D.A. D’Alessio, J. Fradkin, W.N. Kernan, C. Mathieu et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61, 2461–2498 (2018)PubMedCrossRef M.J. Davies, D.A. D’Alessio, J. Fradkin, W.N. Kernan, C. Mathieu et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61, 2461–2498 (2018)PubMedCrossRef
135.
go back to reference R. Pradhan, O.H.Y. Yu, R.W. Platt, L. Azoulay, Dipeptidyl peptidase-4 inhibitors and the risk of skin cancer among patients with type 2 diabetes: a UK population-based cohort study. BMJ Open Diabetes Res. Care 11, e003550 (2023) R. Pradhan, O.H.Y. Yu, R.W. Platt, L. Azoulay, Dipeptidyl peptidase-4 inhibitors and the risk of skin cancer among patients with type 2 diabetes: a UK population-based cohort study. BMJ Open Diabetes Res. Care 11, e003550 (2023)
136.
go back to reference A.G. Almagthali, E.H. Alkhaldi, A.S. Alzahrani, A.K. Alghamdi, W.Y. Alghamdi et al. Dipeptidyl peptidase-4 inhibitors: anti-diabetic drugs with potential effects on cancer. Diabetes Metab. Syndr. 13, 36–39 (2019)PubMedCrossRef A.G. Almagthali, E.H. Alkhaldi, A.S. Alzahrani, A.K. Alghamdi, W.Y. Alghamdi et al. Dipeptidyl peptidase-4 inhibitors: anti-diabetic drugs with potential effects on cancer. Diabetes Metab. Syndr. 13, 36–39 (2019)PubMedCrossRef
137.
go back to reference X. Hu, S. Liu, X. Liu, J. Zhang, Y. Liang et al. DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation. Endocrine 55, 754–763 (2017)PubMedCrossRef X. Hu, S. Liu, X. Liu, J. Zhang, Y. Liang et al. DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation. Endocrine 55, 754–763 (2017)PubMedCrossRef
138.
go back to reference A.E. Butler, M. Campbell-Thompson, T. Gurlo, D.W. Dawson, M. Atkinson et al. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62, 2595–2604 (2013)PubMedPubMedCentralCrossRef A.E. Butler, M. Campbell-Thompson, T. Gurlo, D.W. Dawson, M. Atkinson et al. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62, 2595–2604 (2013)PubMedPubMedCentralCrossRef
139.
go back to reference E. Harja, J. Lord, J.S. Skyler, An analysis of characteristics of subjects examined for incretin effects on pancreatic pathology. Diabetes Technol. Ther. 15, 609–618 (2013)PubMedCrossRef E. Harja, J. Lord, J.S. Skyler, An analysis of characteristics of subjects examined for incretin effects on pancreatic pathology. Diabetes Technol. Ther. 15, 609–618 (2013)PubMedCrossRef
140.
go back to reference B. Soldevila, M. Puig-Domingo, [Safety and tolerability of GLP-1 receptor agonists]. Med. Clin. 143 (Suppl 2), 35–40 (2014). B. Soldevila, M. Puig-Domingo, [Safety and tolerability of GLP-1 receptor agonists]. Med. Clin. 143 (Suppl 2), 35–40 (2014).
141.
go back to reference J. Liu, L. Li, K. Deng, C. Xu, J.W. Busse et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 357, j2499 (2017)PubMedPubMedCentralCrossRef J. Liu, L. Li, K. Deng, C. Xu, J.W. Busse et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 357, j2499 (2017)PubMedPubMedCentralCrossRef
142.
go back to reference X. Ma, Z. Liu, I. Ilyas, P.J. Little, D. Kamato et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int. J. Biol. Sci. 17, 2050–2068 (2021)PubMedPubMedCentralCrossRef X. Ma, Z. Liu, I. Ilyas, P.J. Little, D. Kamato et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int. J. Biol. Sci. 17, 2050–2068 (2021)PubMedPubMedCentralCrossRef
143.
go back to reference B. Mesmar, S. Poola-Kella, R. Malek, The physiology behind diabetes mellitus in patients with pheochromocytoma: a review of the literature. Endocr. Pract. 23, 999–1005 (2017)PubMedCrossRef B. Mesmar, S. Poola-Kella, R. Malek, The physiology behind diabetes mellitus in patients with pheochromocytoma: a review of the literature. Endocr. Pract. 23, 999–1005 (2017)PubMedCrossRef
144.
go back to reference O. Petrák, J. Klímová, M. Mráz, D. Haluzíková, R.P. Doležalová et al. Pheochromocytoma with adrenergic biochemical phenotype shows decreased glp-1 secretion and impaired glucose tolerance. J. Clin. Endocrinol. Metab. 105, dgaa154 (2020) O. Petrák, J. Klímová, M. Mráz, D. Haluzíková, R.P. Doležalová et al. Pheochromocytoma with adrenergic biochemical phenotype shows decreased glp-1 secretion and impaired glucose tolerance. J. Clin. Endocrinol. Metab. 105, dgaa154 (2020)
145.
go back to reference A. Colao, C. De Block, M.S. Gaztambide, S. Kumar, J. Seufert et al. Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: medical expert recommendations. Pituitary 17, 180–186 (2014)PubMedCrossRef A. Colao, C. De Block, M.S. Gaztambide, S. Kumar, J. Seufert et al. Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: medical expert recommendations. Pituitary 17, 180–186 (2014)PubMedCrossRef
146.
go back to reference N. Ishikawa, T. Oguri, T. Isobe, K. Fujitaka, N. Kohno, SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn. J. Cancer Res. 92, 874–879 (2001)PubMedPubMedCentralCrossRef N. Ishikawa, T. Oguri, T. Isobe, K. Fujitaka, N. Kohno, SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn. J. Cancer Res. 92, 874–879 (2001)PubMedPubMedCentralCrossRef
147.
go back to reference C. Scafoglio, B.A. Hirayama, V. Kepe, J. Liu, C. Ghezzi et al. Functional expression of sodium-glucose transporters in cancer. Proc. Natl. Acad.Sci. USA 112, E4111–9 (2015) C. Scafoglio, B.A. Hirayama, V. Kepe, J. Liu, C. Ghezzi et al. Functional expression of sodium-glucose transporters in cancer. Proc. Natl. Acad.Sci. USA 112, E4111–9 (2015)
149.
go back to reference M.-H. Hung, Y.-L. Chen, L.-J. Chen, P.-Y. Chu, F.-S. Hsieh et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis. 10, 420 (2019)PubMedPubMedCentralCrossRef M.-H. Hung, Y.-L. Chen, L.-J. Chen, P.-Y. Chu, F.-S. Hsieh et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis. 10, 420 (2019)PubMedPubMedCentralCrossRef
150.
go back to reference S. Osataphan, C. Macchi, G. Singhal, J. Chimene-Weiss, V. Sales et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight 4, 5 (2019) S. Osataphan, C. Macchi, G. Singhal, J. Chimene-Weiss, V. Sales et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight 4, 5 (2019)
151.
go back to reference D. Nakano, T. Kawaguchi, H. Iwamoto, M. Hayakawa, H. Koga et al. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS ONE 15, e0232283 (2020)PubMedPubMedCentralCrossRef D. Nakano, T. Kawaguchi, H. Iwamoto, M. Hayakawa, H. Koga et al. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS ONE 15, e0232283 (2020)PubMedPubMedCentralCrossRef
152.
go back to reference D. Xu, Y. Zhou, X. Xie, L. He, J. Ding et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int. J. Oncol. 57, 1223–1233 (2020) D. Xu, Y. Zhou, X. Xie, L. He, J. Ding et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int. J. Oncol. 57, 1223–1233 (2020)
153.
go back to reference H. Li, CW-S. Tong, Y. Leung, M.-H. Wong, KK-W. To et al. Identification of clinically approved drugs indacaterol and canagliflozin for repurposing to treat epidermal growth factor tyrosine kinase inhibitor-resistant lung cancer. Front. Oncol. 7, 288 (2017) H. Li, CW-S. Tong, Y. Leung, M.-H. Wong, KK-W. To et al. Identification of clinically approved drugs indacaterol and canagliflozin for repurposing to treat epidermal growth factor tyrosine kinase inhibitor-resistant lung cancer. Front. Oncol. 7, 288 (2017)
154.
go back to reference D. Kim, G. Jang, J. Hwang, X. Wei, H. Kim et al. Combined therapy of low-dose angiotensin receptor–neprilysin inhibitor and sodium–glucose cotransporter-2 inhibitor prevents doxorubicin-induced cardiac dysfunction in rodent model with minimal adverse effects. Pharmaceutics 14, 2629 (2022)PubMedPubMedCentralCrossRef D. Kim, G. Jang, J. Hwang, X. Wei, H. Kim et al. Combined therapy of low-dose angiotensin receptor–neprilysin inhibitor and sodium–glucose cotransporter-2 inhibitor prevents doxorubicin-induced cardiac dysfunction in rodent model with minimal adverse effects. Pharmaceutics 14, 2629 (2022)PubMedPubMedCentralCrossRef
155.
go back to reference V. Quagliariello, M. De Laurentiis, D. Rea, A. Barbieri, M.G. Monti et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 20, 150 (2021)PubMedPubMedCentralCrossRef V. Quagliariello, M. De Laurentiis, D. Rea, A. Barbieri, M.G. Monti et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 20, 150 (2021)PubMedPubMedCentralCrossRef
156.
go back to reference S.G. Eliaa, A.A. Al-Karmalawy, R.M. Saleh, M.F. Elshal, Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via Interfering with the mTOR pathway and inhibition of calmodulin: in vitro and molecular docking studies. ACS Pharmacol. Transl. Sci. 3, 1330–1338 (2020)PubMedPubMedCentralCrossRef S.G. Eliaa, A.A. Al-Karmalawy, R.M. Saleh, M.F. Elshal, Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via Interfering with the mTOR pathway and inhibition of calmodulin: in vitro and molecular docking studies. ACS Pharmacol. Transl. Sci. 3, 1330–1338 (2020)PubMedPubMedCentralCrossRef
157.
go back to reference I. Dicembrini, B. Nreu, E. Mannucci, M. Monami, Sodium‐glucose co‐transporter‐2 (SGLT‐2) inhibitors and cancer: a meta‐analysis of randomized controlled trials. Diabetes Obes. Metab. 21, 1871–1877 (2019)PubMedCrossRef I. Dicembrini, B. Nreu, E. Mannucci, M. Monami, Sodium‐glucose co‐transporter‐2 (SGLT‐2) inhibitors and cancer: a meta‐analysis of randomized controlled trials. Diabetes Obes. Metab. 21, 1871–1877 (2019)PubMedCrossRef
158.
go back to reference A. Ptaszynska, S.M. Cohen, E.M. Messing, T.P. Reilly, E. Johnsson et al. Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a ‘Case Study’. Diabetes Ther. 6, 357–375 (2015)PubMedPubMedCentralCrossRef A. Ptaszynska, S.M. Cohen, E.M. Messing, T.P. Reilly, E. Johnsson et al. Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a ‘Case Study’. Diabetes Ther. 6, 357–375 (2015)PubMedPubMedCentralCrossRef
159.
go back to reference H. Tang, Q. Dai, W. Shi, S. Zhai, Y. Song et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 60, 1862–1872 (2017)PubMedCrossRef H. Tang, Q. Dai, W. Shi, S. Zhai, Y. Song et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 60, 1862–1872 (2017)PubMedCrossRef
160.
go back to reference M. Suissa, H. Yin, O.H.Y. Yu, S.M. Wong, L. Azoulay, Sodium–glucose cotransporter 2 inhibitors and the short-term risk of breast cancer among women with type 2 diabetes. Diabetes Care 44, e9–e11 (2021)PubMedCrossRef M. Suissa, H. Yin, O.H.Y. Yu, S.M. Wong, L. Azoulay, Sodium–glucose cotransporter 2 inhibitors and the short-term risk of breast cancer among women with type 2 diabetes. Diabetes Care 44, e9–e11 (2021)PubMedCrossRef
161.
go back to reference N. Shi, Y. Shi, J. Xu, Y. Si, T. Yang et al. SGLT-2i and risk of malignancy in type 2 diabetes: a meta-analysis of randomized controlled trials. Front. Public Health 9, 668368 (2021) N. Shi, Y. Shi, J. Xu, Y. Si, T. Yang et al. SGLT-2i and risk of malignancy in type 2 diabetes: a meta-analysis of randomized controlled trials. Front. Public Health 9, 668368 (2021)
162.
163.
go back to reference R. Benedetti, G. Benincasa, K. Glass, U. Chianese, M.T. Vietri et al. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol. Res. 175, 106039 (2022)PubMedCrossRef R. Benedetti, G. Benincasa, K. Glass, U. Chianese, M.T. Vietri et al. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol. Res. 175, 106039 (2022)PubMedCrossRef
165.
go back to reference S. Malla, P. Kumar, K.S. Madhusudhan, Radiology of the neuroendocrine neoplasms of the gastrointestinal tract: a comprehensive review. Abdom. Radiol. 46, 919–935 (2021)CrossRef S. Malla, P. Kumar, K.S. Madhusudhan, Radiology of the neuroendocrine neoplasms of the gastrointestinal tract: a comprehensive review. Abdom. Radiol. 46, 919–935 (2021)CrossRef
166.
go back to reference L. Asmundo, F. Rizzetto, M. Blake, M. Anderson, A. Mojtahed et al. Advancements in neuroendocrine neoplasms: imaging and future frontiers. J. Clin. Med. 13, 3281 (2024) L. Asmundo, F. Rizzetto, M. Blake, M. Anderson, A. Mojtahed et al. Advancements in neuroendocrine neoplasms: imaging and future frontiers. J. Clin. Med. 13, 3281 (2024)
167.
go back to reference T. Binderup, U. Knigge, A. Loft, B. Federspiel, A. Kjaer, 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010)PubMedCrossRef T. Binderup, U. Knigge, A. Loft, B. Federspiel, A. Kjaer, 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010)PubMedCrossRef
168.
go back to reference A. Niccoli-Asabella, F.I. Iuele, N. Merenda, A.R. Pisani, A. Notaristefano et al. 18F-FDGPET/CT: diabetes and hyperglycaemia. Nucl. Med. Rev. 16, 57–61 (2013)CrossRef A. Niccoli-Asabella, F.I. Iuele, N. Merenda, A.R. Pisani, A. Notaristefano et al. 18F-FDGPET/CT: diabetes and hyperglycaemia. Nucl. Med. Rev. 16, 57–61 (2013)CrossRef
169.
go back to reference R. Boellaard, R. Delgado-Bolton, W.J.G. Oyen, F. Giammarile, K. Tatsch et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015)PubMedCrossRef R. Boellaard, R. Delgado-Bolton, W.J.G. Oyen, F. Giammarile, K. Tatsch et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015)PubMedCrossRef
Metadata
Title
Neuroendocrine tumors and diabetes mellitus: which treatment and which effect
Authors
Rossella Mazzilli
Virginia Zamponi
Camilla Mancini
Beatrice Giorgini
Bianca Golisano
Nevena Mikovic
Giulia Pecora
Flaminia Russo
Maurizio Martiradonna
Piero Paravani
Daniela Prosperi
Antongiulio Faggiano
Publication date
03-01-2025
Publisher
Springer US
Published in
Endocrine
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-024-04149-9

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more