Skip to main content
Top
Published in:

Open Access 16-01-2024

Developing the Lung Graph-Based Machine Learning Model for Identification of Fibrotic Interstitial Lung Diseases

Authors: Haishuang Sun, Min Liu, Anqi Liu, Mei Deng, Xiaoyan Yang, Han Kang, Ling Zhao, Yanhong Ren, Bingbing Xie, Rongguo Zhang, Huaping Dai

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2024

Login to get access

Abstract

Accurate detection of fibrotic interstitial lung disease (f-ILD) is conducive to early intervention. Our aim was to develop a lung graph-based machine learning model to identify f-ILD. A total of 417 HRCTs from 279 patients with confirmed ILD (156 f-ILD and 123 non-f-ILD) were included in this study. A lung graph-based machine learning model based on HRCT was developed for aiding clinician to diagnose f-ILD. In this approach, local radiomics features were extracted from an automatically generated geometric atlas of the lung and used to build a series of specific lung graph models. Encoding these lung graphs, a lung descriptor was gained and became as a characterization of global radiomics feature distribution to diagnose f-ILD. The Weighted Ensemble model showed the best predictive performance in cross-validation. The classification accuracy of the model was significantly higher than that of the three radiologists at both the CT sequence level and the patient level. At the patient level, the diagnostic accuracy of the model versus radiologists A, B, and C was 0.986 (95% CI 0.959 to 1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 to 0.904), and 0.904 (95% CI 0.836 to 0.973), respectively. There was a statistically significant difference in AUC values between the model and 3 physicians (p < 0.05). The lung graph-based machine learning model could identify f-ILD, and the diagnostic performance exceeded radiologists which could aid clinicians to assess ILD objectively.

Graphical Abstract

Given a sequence of HRCT slices from a patient, the lung field is first automatically extracted. Next, this lung region is divided into 36 sub-regions using geometric rules, obtaining a lung atlas. And then, the lung graph is built based on 3D radiomics features of each sub-region of the lung atlas. Finally, the model’s predictions were compared to the physicians’ assessment results.
Literature
1.
go back to reference Travis W D, Costabel U, Hansell D M, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias[J]. Am J Respir Crit Care Med, 2013, 188(6):733-48.CrossRefPubMedPubMedCentral Travis W D, Costabel U, Hansell D M, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias[J]. Am J Respir Crit Care Med, 2013, 188(6):733-48.CrossRefPubMedPubMedCentral
2.
go back to reference Travis W, Costabel U, Hansell D, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias[J], 2013, 188(6):733–48. Travis W, Costabel U, Hansell D, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias[J], 2013, 188(6):733–48.
3.
go back to reference Hobbs S, Chung J H, Leb J, et al. Practical Imaging Interpretation in Patients Suspected of Having Idiopathic Pulmonary Fibrosis: Official Recommendations from the Radiology Working Group of the Pulmonary Fibrosis Foundation[J]. Radiol Cardiothorac Imaging, 2021, 3(1):e200279.CrossRefPubMedPubMedCentral Hobbs S, Chung J H, Leb J, et al. Practical Imaging Interpretation in Patients Suspected of Having Idiopathic Pulmonary Fibrosis: Official Recommendations from the Radiology Working Group of the Pulmonary Fibrosis Foundation[J]. Radiol Cardiothorac Imaging, 2021, 3(1):e200279.CrossRefPubMedPubMedCentral
4.
go back to reference Pitre T, Mah J, Helmeczi W, et al. Medical treatments for idiopathic pulmonary fibrosis: a systematic review and network meta-analysis[J]. Thorax, 2022, 77(12):1243-1250.CrossRefPubMed Pitre T, Mah J, Helmeczi W, et al. Medical treatments for idiopathic pulmonary fibrosis: a systematic review and network meta-analysis[J]. Thorax, 2022, 77(12):1243-1250.CrossRefPubMed
5.
go back to reference Raghu G, Remy-Jardin M, Myers J L, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2018, 198(5):e44-e68. Raghu G, Remy-Jardin M, Myers J L, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2018, 198(5):e44-e68.
6.
go back to reference Raghu G, Collard H R, Egan J J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183(6):788-824.CrossRefPubMedPubMedCentral Raghu G, Collard H R, Egan J J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183(6):788-824.CrossRefPubMedPubMedCentral
7.
go back to reference Pitre T, Mah J, Helmeczi W, et al. Medical treatments for idiopathic pulmonary fibrosis: a systematic review and network meta-analysis[J], 2022. Pitre T, Mah J, Helmeczi W, et al. Medical treatments for idiopathic pulmonary fibrosis: a systematic review and network meta-analysis[J], 2022.
8.
go back to reference Raghu G, Remy-Jardin M, Myers J, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J], 2018, 198(5):e44-e68. Raghu G, Remy-Jardin M, Myers J, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline[J], 2018, 198(5):e44-e68.
9.
go back to reference Raghu G, Collard H, Egan J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J], 2011, 183(6):788–824. Raghu G, Collard H, Egan J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J], 2011, 183(6):788–824.
10.
go back to reference Fischer A, Du Bois R. Interstitial lung disease in connective tissue disorders[J]. Lancet, 2012, 380(9842):689-98.CrossRefPubMed Fischer A, Du Bois R. Interstitial lung disease in connective tissue disorders[J]. Lancet, 2012, 380(9842):689-98.CrossRefPubMed
11.
go back to reference Romagnoli M, Nannini C, Piciucchi S, et al. Idiopathic nonspecific interstitial pneumonia: an interstitial lung disease associated with autoimmune disorders?[J]. Eur Respir J, 2011, 38(2):384-91.CrossRefPubMed Romagnoli M, Nannini C, Piciucchi S, et al. Idiopathic nonspecific interstitial pneumonia: an interstitial lung disease associated with autoimmune disorders?[J]. Eur Respir J, 2011, 38(2):384-91.CrossRefPubMed
12.
go back to reference Hobbs S, Chung J, Leb J, et al. Practical Imaging Interpretation in Patients Suspected of Having Idiopathic Pulmonary Fibrosis: Official Recommendations from the Radiology Working Group of the Pulmonary Fibrosis Foundation[J], 2021, 3(1):e200279. Hobbs S, Chung J, Leb J, et al. Practical Imaging Interpretation in Patients Suspected of Having Idiopathic Pulmonary Fibrosis: Official Recommendations from the Radiology Working Group of the Pulmonary Fibrosis Foundation[J], 2021, 3(1):e200279.
13.
14.
go back to reference Khor Y H, Gutman L, Abu Hussein N, et al. Incidence and Prognostic Significance of Hypoxemia in Fibrotic Interstitial Lung Disease: An International Cohort Study[J]. Chest, 2021, 160(3):994-1005.CrossRefPubMed Khor Y H, Gutman L, Abu Hussein N, et al. Incidence and Prognostic Significance of Hypoxemia in Fibrotic Interstitial Lung Disease: An International Cohort Study[J]. Chest, 2021, 160(3):994-1005.CrossRefPubMed
15.
go back to reference Fischer A, Du Bois R J L. Interstitial lung disease in connective tissue disorders[J], 2012, 380(9842):689–98. Fischer A, Du Bois R J L. Interstitial lung disease in connective tissue disorders[J], 2012, 380(9842):689–98.
16.
go back to reference Romagnoli M, Nannini C, Piciucchi S, et al. Idiopathic nonspecific interstitial pneumonia: an interstitial lung disease associated with autoimmune disorders?[J], 2011, 38(2):384–91. Romagnoli M, Nannini C, Piciucchi S, et al. Idiopathic nonspecific interstitial pneumonia: an interstitial lung disease associated with autoimmune disorders?[J], 2011, 38(2):384–91.
17.
go back to reference Guler S A, Hur S A, Stickland M K, et al. Survival after inpatient or outpatient pulmonary rehabilitation in patients with fibrotic interstitial lung disease: a multicentre retrospective cohort study[J]. Thorax, 2022, 77(6):589-595.CrossRefPubMed Guler S A, Hur S A, Stickland M K, et al. Survival after inpatient or outpatient pulmonary rehabilitation in patients with fibrotic interstitial lung disease: a multicentre retrospective cohort study[J]. Thorax, 2022, 77(6):589-595.CrossRefPubMed
18.
go back to reference Kwon B, Choe J, Chae E, et al. Progressive fibrosing interstitial lung disease: prevalence and clinical outcome[J], 2021, 22(1):282. Kwon B, Choe J, Chae E, et al. Progressive fibrosing interstitial lung disease: prevalence and clinical outcome[J], 2021, 22(1):282.
19.
go back to reference Nathan S D, Pastre J, Ksovreli I, et al. HRCT evaluation of patients with interstitial lung disease: comparison of the 2018 and 2011 diagnostic guidelines[J]. Ther Adv Respir Dis, 2020, 14:1753466620968496.CrossRefPubMedPubMedCentral Nathan S D, Pastre J, Ksovreli I, et al. HRCT evaluation of patients with interstitial lung disease: comparison of the 2018 and 2011 diagnostic guidelines[J]. Ther Adv Respir Dis, 2020, 14:1753466620968496.CrossRefPubMedPubMedCentral
20.
go back to reference Richiardi J, Eryilmaz H, Schwartz S, et al. Decoding brain states from fMRI connectivity graphs[J]. Neuroimage, 2011, 56(2):616-26.CrossRefPubMed Richiardi J, Eryilmaz H, Schwartz S, et al. Decoding brain states from fMRI connectivity graphs[J]. Neuroimage, 2011, 56(2):616-26.CrossRefPubMed
21.
go back to reference Khor Y, Gutman L, Abu Hussein N, et al. Incidence and Prognostic Significance of Hypoxemia in Fibrotic Interstitial Lung Disease: An International Cohort Study[J], 2021, 160(3):994–1005. Khor Y, Gutman L, Abu Hussein N, et al. Incidence and Prognostic Significance of Hypoxemia in Fibrotic Interstitial Lung Disease: An International Cohort Study[J], 2021, 160(3):994–1005.
22.
go back to reference Guler S, Hur S, Stickland M, et al. Survival after inpatient or outpatient pulmonary rehabilitation in patients with fibrotic interstitial lung disease: a multicentre retrospective cohort study[J], 2021. Guler S, Hur S, Stickland M, et al. Survival after inpatient or outpatient pulmonary rehabilitation in patients with fibrotic interstitial lung disease: a multicentre retrospective cohort study[J], 2021.
23.
go back to reference Dicente Cid Y, Jimenez-Del-Toro, O., Platon, A., M¨ Uller, H., Poletti, P.A. From Local to Global: A Holistic Lung Graph.[J]. In: Medical Image Computing and Computer–Assisted Intervention – MICCAI 2018 (2018). Dicente Cid Y, Jimenez-Del-Toro, O., Platon, A., M¨ Uller, H., Poletti, P.A. From Local to Global: A Holistic Lung Graph.[J]. In: Medical Image Computing and Computer–Assisted Intervention – MICCAI 2018 (2018).
24.
go back to reference Dicente Cid Y, Batmanghelich, K., M¨ Uller, H. Textured graph–based model of the lungs: Application on tuberculosis type classification and multi–drug resistance prediction.[J]. In: CLEF 2018. Springer LNCS (2018). Dicente Cid Y, Batmanghelich, K., M¨ Uller, H. Textured graph–based model of the lungs: Application on tuberculosis type classification and multi–drug resistance prediction.[J]. In: CLEF 2018. Springer LNCS (2018).
25.
go back to reference Wahidi M M, Argento A C, Mahmood K, et al. Comparison of Forceps, Cryoprobe, and Thoracoscopic Lung Biopsy for the Diagnosis of Interstitial Lung Disease - The CHILL Study[J]. Respiration, 2022, 101(4):394-400.CrossRefPubMed Wahidi M M, Argento A C, Mahmood K, et al. Comparison of Forceps, Cryoprobe, and Thoracoscopic Lung Biopsy for the Diagnosis of Interstitial Lung Disease - The CHILL Study[J]. Respiration, 2022, 101(4):394-400.CrossRefPubMed
26.
go back to reference Raghu G, Anstrom K J, King T E, Jr., et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis[J]. N Engl J Med, 2012, 366(21):1968-77.CrossRefPubMed Raghu G, Anstrom K J, King T E, Jr., et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis[J]. N Engl J Med, 2012, 366(21):1968-77.CrossRefPubMed
27.
go back to reference Tashkin D P, Roth M D, Clements P J, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial[J]. Lancet Respir Med, 2016, 4(9):708-719.CrossRefPubMedPubMedCentral Tashkin D P, Roth M D, Clements P J, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial[J]. Lancet Respir Med, 2016, 4(9):708-719.CrossRefPubMedPubMedCentral
28.
go back to reference Solomon J J, Ryu J H, Tazelaar H D, et al. Fibrosing interstitial pneumonia predicts survival in patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD)[J]. Respir Med, 2013, 107(8):1247-52.CrossRefPubMed Solomon J J, Ryu J H, Tazelaar H D, et al. Fibrosing interstitial pneumonia predicts survival in patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD)[J]. Respir Med, 2013, 107(8):1247-52.CrossRefPubMed
29.
go back to reference Refaee T, Bondue B, Van Simaeys G et al. A Handcrafted Radiomics-Based Model for the Diagnosis of Usual Interstitial Pneumonia in Patients with Idiopathic Pulmonary Fibrosis[J]. J Pers Med, 2022, 12(3). Refaee T, Bondue B, Van Simaeys G et al. A Handcrafted Radiomics-Based Model for the Diagnosis of Usual Interstitial Pneumonia in Patients with Idiopathic Pulmonary Fibrosis[J]. J Pers Med, 2022, 12(3).
30.
go back to reference Walsh S L F, Calandriello L, Silva M, et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study[J]. Lancet Respir Med, 2018, 6(11):837-845.CrossRefPubMed Walsh S L F, Calandriello L, Silva M, et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study[J]. Lancet Respir Med, 2018, 6(11):837-845.CrossRefPubMed
31.
go back to reference Anthimopoulos M, Christodoulidis S, Ebner L, et al. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks[J]. IEEE J Biomed Health Inform, 2019, 23(2):714-722.CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L, et al. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks[J]. IEEE J Biomed Health Inform, 2019, 23(2):714-722.CrossRefPubMed
32.
go back to reference Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network[J]. IEEE Trans Med Imaging, 2016, 35(5):1207-1216.CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network[J]. IEEE Trans Med Imaging, 2016, 35(5):1207-1216.CrossRefPubMed
33.
go back to reference Jimenez-Del-Toro O, Dicente Cid Y, Platon A, et al. A lung graph model for the radiological assessment of chronic thromboembolic pulmonary hypertension in CT[J]. Comput Biol Med, 2020, 125:103962.CrossRefPubMed Jimenez-Del-Toro O, Dicente Cid Y, Platon A, et al. A lung graph model for the radiological assessment of chronic thromboembolic pulmonary hypertension in CT[J]. Comput Biol Med, 2020, 125:103962.CrossRefPubMed
Metadata
Title
Developing the Lung Graph-Based Machine Learning Model for Identification of Fibrotic Interstitial Lung Diseases
Authors
Haishuang Sun
Min Liu
Anqi Liu
Mei Deng
Xiaoyan Yang
Han Kang
Ling Zhao
Yanhong Ren
Bingbing Xie
Rongguo Zhang
Huaping Dai
Publication date
16-01-2024
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2024
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00909-7

Other articles of this Issue 1/2024

Journal of Imaging Informatics in Medicine 1/2024 Go to the issue