Skip to main content
Top

Open Access 18-12-2024 | Original Article

Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse

Authors: Jing Yang, Guaiguai Ma, Xiaohui Du, Jinyi Xie, Mengmeng Wang, Wenting Wang, Baolin Guo, Shengxi Wu

Published in: Neuroscience Bulletin

Login to get access

Abstract

Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages. Our longitudinal analysis revealed that, while Shank3B KO mice displayed normal neuronal morphology at one week postnatal, significant impairments in dendritic growth and synaptic activity emerged by two to three weeks. These findings highlight the critical developmental window during which Shank3 is essential for neuronal and synaptic maturation in the ACC.
Appendix
Available only for authorised users
Literature
3.
go back to reference Höfer J, Hoffmann F, Kamp-Becker I, Poustka L, Roessner V, Stroth S. Pathways to a diagnosis of autism spectrum disorder in Germany: A survey of parents. Child Adolesc Psychiatry Ment Health 2019, 13: 16.PubMedPubMedCentralCrossRef Höfer J, Hoffmann F, Kamp-Becker I, Poustka L, Roessner V, Stroth S. Pathways to a diagnosis of autism spectrum disorder in Germany: A survey of parents. Child Adolesc Psychiatry Ment Health 2019, 13: 16.PubMedPubMedCentralCrossRef
5.
go back to reference Sanders SJ, Xin H, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 2015, 87: 1215–1233.PubMedPubMedCentralCrossRef Sanders SJ, Xin H, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 2015, 87: 1215–1233.PubMedPubMedCentralCrossRef
6.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007, 39: 25–27.PubMedCrossRef Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007, 39: 25–27.PubMedCrossRef
7.
go back to reference Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007, 81: 1289–1297.PubMedPubMedCentralCrossRef Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007, 81: 1289–1297.PubMedPubMedCentralCrossRef
8.
go back to reference Gauthier J, Spiegelman D, Piton A, Lafrenière RG, Laurent S, St-Onge J, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet Part B Neuropsychiatr Genet 2009, 150B: 421–424.CrossRef Gauthier J, Spiegelman D, Piton A, Lafrenière RG, Laurent S, St-Onge J, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet Part B Neuropsychiatr Genet 2009, 150B: 421–424.CrossRef
9.
go back to reference Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011, 20: 3093–3108.PubMedPubMedCentralCrossRef Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011, 20: 3093–3108.PubMedPubMedCentralCrossRef
10.
go back to reference Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 2013, 33: 18448–18468.PubMedPubMedCentralCrossRef Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 2013, 33: 18448–18468.PubMedPubMedCentralCrossRef
11.
go back to reference Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci 2015, 9: 94.PubMedPubMedCentralCrossRef Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci 2015, 9: 94.PubMedPubMedCentralCrossRef
12.
go back to reference Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472: 437–442.PubMedPubMedCentralCrossRef Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472: 437–442.PubMedPubMedCentralCrossRef
13.
go back to reference Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci 2019, 22: 1223–1234.PubMedCrossRef Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci 2019, 22: 1223–1234.PubMedCrossRef
14.
go back to reference Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999, 23: 569–582.PubMedCrossRef Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999, 23: 569–582.PubMedCrossRef
15.
16.
go back to reference Monteiro P, Feng G. SHANK proteins: Roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 2017, 18: 147–157.PubMedCrossRef Monteiro P, Feng G. SHANK proteins: Roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 2017, 18: 147–157.PubMedCrossRef
17.
go back to reference Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010, 1: 15.PubMedPubMedCentralCrossRef Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010, 1: 15.PubMedPubMedCentralCrossRef
18.
go back to reference Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 2018, 362: eaat8077.PubMedPubMedCentralCrossRef Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 2018, 362: eaat8077.PubMedPubMedCentralCrossRef
19.
go back to reference Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005, 25: 3560–3570.PubMedPubMedCentralCrossRef Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005, 25: 3560–3570.PubMedPubMedCentralCrossRef
20.
go back to reference Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, Schoen M, et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem 2011, 286: 34839–34850.PubMedPubMedCentralCrossRef Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, Schoen M, et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem 2011, 286: 34839–34850.PubMedPubMedCentralCrossRef
21.
go back to reference Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 2016, 352: aaf2669.PubMedPubMedCentralCrossRef Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 2016, 352: aaf2669.PubMedPubMedCentralCrossRef
22.
go back to reference Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022, 13: 5688.PubMedPubMedCentralCrossRef Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022, 13: 5688.PubMedPubMedCentralCrossRef
23.
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003, 467: 60–79.PubMedCrossRef Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003, 467: 60–79.PubMedCrossRef
24.
go back to reference He X, Li J, Zhou G, Yang J, McKenzie S, Li Y, et al. Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons. Neuron 2021, 109: 1013-1028.e9.PubMedPubMedCentralCrossRef He X, Li J, Zhou G, Yang J, McKenzie S, Li Y, et al. Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons. Neuron 2021, 109: 1013-1028.e9.PubMedPubMedCentralCrossRef
25.
go back to reference Guo B, Xi K, Mao H, Ren K, Xiao H, Hartley ND, et al. CB1R dysfunction of inhibitory synapses in the ACC drives chronic social isolation stress-induced social impairments in male mice. Neuron 2024, 112: 441–457.e6.PubMedCrossRef Guo B, Xi K, Mao H, Ren K, Xiao H, Hartley ND, et al. CB1R dysfunction of inhibitory synapses in the ACC drives chronic social isolation stress-induced social impairments in male mice. Neuron 2024, 112: 441–457.e6.PubMedCrossRef
26.
go back to reference Boeckers TM, Winter C, Smalla KH, Kreutz MR, Bockmann J, Seidenbecher C, et al. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun 1999, 264: 247–252.PubMedCrossRef Boeckers TM, Winter C, Smalla KH, Kreutz MR, Bockmann J, Seidenbecher C, et al. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun 1999, 264: 247–252.PubMedCrossRef
27.
go back to reference Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn Sci 2004, 8: 539–546.PubMedCrossRef Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn Sci 2004, 8: 539–546.PubMedCrossRef
28.
go back to reference Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 2011, 15: 85–93.PubMedCrossRef Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 2011, 15: 85–93.PubMedCrossRef
29.
go back to reference Haber SN, Behrens TEJ. The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron 2014, 83: 1019–1039.PubMedPubMedCentralCrossRef Haber SN, Behrens TEJ. The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron 2014, 83: 1019–1039.PubMedPubMedCentralCrossRef
30.
go back to reference Ren D, Li JN, Qiu XT, Wan FP, Wu ZY, Fan BY, et al. Anterior cingulate cortex mediates hyperalgesia and anxiety induced by chronic pancreatitis in rats. Neurosci Bull 2022, 38: 342–358.PubMedCrossRef Ren D, Li JN, Qiu XT, Wan FP, Wu ZY, Fan BY, et al. Anterior cingulate cortex mediates hyperalgesia and anxiety induced by chronic pancreatitis in rats. Neurosci Bull 2022, 38: 342–358.PubMedCrossRef
31.
32.
go back to reference Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 2020, 23: 520–532.PubMedPubMedCentralCrossRef Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 2020, 23: 520–532.PubMedPubMedCentralCrossRef
33.
go back to reference Wang X, Xu Q, Bey AL, Lee Y, Jiang YH. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism 2014, 5: 30.PubMedPubMedCentralCrossRef Wang X, Xu Q, Bey AL, Lee Y, Jiang YH. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism 2014, 5: 30.PubMedPubMedCentralCrossRef
34.
go back to reference Waga C, Asano H, Sanagi T, Suzuki E, Nakamura Y, Tsuchiya A, et al. Identification of two novel Shank3 transcripts in the developing mouse neocortex. J Neurochem 2014, 128: 280–293.PubMedCrossRef Waga C, Asano H, Sanagi T, Suzuki E, Nakamura Y, Tsuchiya A, et al. Identification of two novel Shank3 transcripts in the developing mouse neocortex. J Neurochem 2014, 128: 280–293.PubMedCrossRef
35.
go back to reference Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, et al. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023, 193: 13–19.PubMedCrossRef Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, et al. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023, 193: 13–19.PubMedCrossRef
36.
go back to reference Arabameri E, Sotoodeh MS. Early developmental delay in children with autism: A study from a developing country. Infant Behav Dev 2015, 39: 118–123.PubMedCrossRef Arabameri E, Sotoodeh MS. Early developmental delay in children with autism: A study from a developing country. Infant Behav Dev 2015, 39: 118–123.PubMedCrossRef
37.
go back to reference Sipes M, Matson JL. Factor structure for autism spectrum disorders with toddlers using DSM-IV and DSM-5 criteria. J Autism Dev Disord 2014, 44: 636–647.PubMedCrossRef Sipes M, Matson JL. Factor structure for autism spectrum disorders with toddlers using DSM-IV and DSM-5 criteria. J Autism Dev Disord 2014, 44: 636–647.PubMedCrossRef
38.
go back to reference Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B (-/-) mice. Nat Neurosci 2016, 19: 716–724.PubMedPubMedCentralCrossRef Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B (-/-) mice. Nat Neurosci 2016, 19: 716–724.PubMedPubMedCentralCrossRef
39.
go back to reference Cheng PL, Poo MM. Early events in axon/dendrite polarization. Annu Rev Neurosci 2012, 35: 181–201.PubMedCrossRef Cheng PL, Poo MM. Early events in axon/dendrite polarization. Annu Rev Neurosci 2012, 35: 181–201.PubMedCrossRef
40.
41.
go back to reference Miller M. Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol 1981, 10: 859–878.PubMedCrossRef Miller M. Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol 1981, 10: 859–878.PubMedCrossRef
42.
go back to reference Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci 2014, 8: 397.PubMedPubMedCentralCrossRef Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci 2014, 8: 397.PubMedPubMedCentralCrossRef
43.
44.
go back to reference Persico AM, Bourgeron T. Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends Neurosci 2006, 29: 349–358.PubMedCrossRef Persico AM, Bourgeron T. Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends Neurosci 2006, 29: 349–358.PubMedCrossRef
46.
go back to reference Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 1997, 36: 282–290.PubMedCrossRef Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 1997, 36: 282–290.PubMedCrossRef
47.
go back to reference Fombonne E, Rogé B, Claverie J, Courty S, Frémolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29: 113–119.PubMedCrossRef Fombonne E, Rogé B, Claverie J, Courty S, Frémolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29: 113–119.PubMedCrossRef
48.
50.
go back to reference Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 1998, 18: 10231–10240.PubMedPubMedCentralCrossRef Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 1998, 18: 10231–10240.PubMedPubMedCentralCrossRef
51.
go back to reference Rostami J, Holmqvist S, Lindström V, Sigvardson J, Westermark GT, Ingelsson M, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 2017, 37: 11835–11853.PubMedPubMedCentralCrossRef Rostami J, Holmqvist S, Lindström V, Sigvardson J, Westermark GT, Ingelsson M, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 2017, 37: 11835–11853.PubMedPubMedCentralCrossRef
52.
go back to reference Kharazia VN, Weinberg RJ. Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. Neurosci Lett 1997, 238: 41–44.PubMedCrossRef Kharazia VN, Weinberg RJ. Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. Neurosci Lett 1997, 238: 41–44.PubMedCrossRef
53.
go back to reference Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998, 21: 545–559.PubMedCrossRef Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998, 21: 545–559.PubMedCrossRef
54.
go back to reference Gomperts SN, Rao A, Craig AM, Malenka RC, Nicoll RA. Postsynaptically silent synapses in single neuron cultures. Neuron 1998, 21: 1443–1451.PubMedCrossRef Gomperts SN, Rao A, Craig AM, Malenka RC, Nicoll RA. Postsynaptically silent synapses in single neuron cultures. Neuron 1998, 21: 1443–1451.PubMedCrossRef
55.
go back to reference Chen LW, Tse YC, Li C, Guan ZL, Lai CH, Yung KK, et al. Differential expression of NMDA and AMPA/KA receptor subunits in the inferior olive of postnatal rats. Brain Res 2006, 1067: 103–114.PubMedCrossRef Chen LW, Tse YC, Li C, Guan ZL, Lai CH, Yung KK, et al. Differential expression of NMDA and AMPA/KA receptor subunits in the inferior olive of postnatal rats. Brain Res 2006, 1067: 103–114.PubMedCrossRef
56.
go back to reference Liao D, Zhang X, O’Brien R, Ehlers MD, Huganir RL. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 1999, 2: 37–43.PubMedCrossRef Liao D, Zhang X, O’Brien R, Ehlers MD, Huganir RL. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 1999, 2: 37–43.PubMedCrossRef
57.
go back to reference Liao D, Scannevin RH, Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J Neurosci 2001, 21: 6008–6017.PubMedPubMedCentralCrossRef Liao D, Scannevin RH, Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J Neurosci 2001, 21: 6008–6017.PubMedPubMedCentralCrossRef
59.
go back to reference Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: Implications for the expression of LTP. Neuron 1995, 15: 427–434.PubMedCrossRef Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: Implications for the expression of LTP. Neuron 1995, 15: 427–434.PubMedCrossRef
60.
go back to reference Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995, 375: 400–404.PubMedCrossRef Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995, 375: 400–404.PubMedCrossRef
61.
go back to reference Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996, 381: 71–75.PubMedCrossRef Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996, 381: 71–75.PubMedCrossRef
62.
go back to reference Petralia RS, Esteban JA, Wang YX, Partridge JG, Zhao HM, Wenthold RJ, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999, 2: 31–36.PubMedCrossRef Petralia RS, Esteban JA, Wang YX, Partridge JG, Zhao HM, Wenthold RJ, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999, 2: 31–36.PubMedCrossRef
63.
go back to reference Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, et al. Shank and zinc mediate an AMPA receptor subunit switch in developing neurons. Front Mol Neurosci 2018, 11: 405.PubMedPubMedCentralCrossRef Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, et al. Shank and zinc mediate an AMPA receptor subunit switch in developing neurons. Front Mol Neurosci 2018, 11: 405.PubMedPubMedCentralCrossRef
64.
go back to reference Bariselli S, Tzanoulinou S, Glangetas C, Prévost-Solié C, Pucci L, Viguié J, et al. SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci 2016, 19: 926–934.PubMedPubMedCentralCrossRef Bariselli S, Tzanoulinou S, Glangetas C, Prévost-Solié C, Pucci L, Viguié J, et al. SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci 2016, 19: 926–934.PubMedPubMedCentralCrossRef
65.
go back to reference Niescier RF, Lin YC. The potential role of AMPA receptor trafficking in autism and other neurodevelopmental conditions. Neuroscience 2021, 479: 180–191.PubMedCrossRef Niescier RF, Lin YC. The potential role of AMPA receptor trafficking in autism and other neurodevelopmental conditions. Neuroscience 2021, 479: 180–191.PubMedCrossRef
66.
go back to reference Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, 57: 1618–1628.PubMedCrossRef Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, 57: 1618–1628.PubMedCrossRef
67.
go back to reference Akhondzadeh S, Tajdar H, Mohammadi MR, Mohammadi M, Nouroozinejad GH, Shabstari OL, et al. A double-blind placebo controlled trial of piracetam added to risperidone in patients with autistic disorder. Child Psychiatry Hum Dev 2008, 39: 237–245.PubMedCrossRef Akhondzadeh S, Tajdar H, Mohammadi MR, Mohammadi M, Nouroozinejad GH, Shabstari OL, et al. A double-blind placebo controlled trial of piracetam added to risperidone in patients with autistic disorder. Child Psychiatry Hum Dev 2008, 39: 237–245.PubMedCrossRef
68.
go back to reference Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 2016, 530: 481–484.PubMedPubMedCentralCrossRef Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 2016, 530: 481–484.PubMedPubMedCentralCrossRef
Metadata
Title
Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse
Authors
Jing Yang
Guaiguai Ma
Xiaohui Du
Jinyi Xie
Mengmeng Wang
Wenting Wang
Baolin Guo
Shengxi Wu
Publication date
18-12-2024
Publisher
Springer Nature Singapore
Published in
Neuroscience Bulletin
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-024-01330-y

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more