Skip to main content
Top
Published in:

26-12-2023 | Cytokines | Original Articles

A Study on the Acquisition and Identification of Beige Adipocytes and Exosomes as Well as Their Inflammatory Regulation by Promoting Macrophage Polarization

Authors: Binsha Wu, Wei Cen, Chi Liu, Tianyu Wang, Junyan Wei, Shiqi Wang, Dan Zhang, Chichi Li

Published in: Aesthetic Plastic Surgery | Issue 3/2024

Login to get access

Abstract

Background

The fat retention rate is associated with postoperative inflammation. However, fat survival is still unpredictable even when supplemented with adipose-derived stem cells (ADSCs). Beige adipocytes play a role in regulating pathological inflammation. Thus, we assumed that exosomes may promote macrophage polarization to regulate inflammation when we simulated postgrafted inflammation by lipopolysaccharide (LPS) induction.

Methods

3T3-L1 preadipocytes were used to differentiate into beige adipocytes, which were stimulated by special culture media, and then, exosomes were isolated from the supernatant. We identified them by morphology, protein and gene expression, or size distribution. Next, we utilized exosomes to stimulate LPS-induced macrophages and evaluated the changes in inflammatory cytokines and macrophage polarization.

Results

The induced cells contained multilocular lipid droplets and expressed uncoupling protein 1 (UCP1) and beige adipocyte-specific gene. The exosomes, which were approximately 111.5 nm and cup-like, were positive for surface markers. Additionally, the levels of proinflammatory-related indicators in the LPS+exosomes (LPS+Exos) group were increased after inflammation was activated for 6 h. When inflammation lasted 16 h, exosomes decreased the expression of proinflammatory-related indicators and increased the expression of anti-inflammatory-related indicators compared with the group without exosomes.

Conclusion

The method described in this article can successfully obtain beige adipocytes and exosomes. The results suggest that beige adipocyte exosomes can promote inflammatory infiltration and polarize more macrophages to the M1 type in the early period of inflammation, accelerating the occurrence of the inflammation endpoint and the progression of macrophage switching from M1 to M2, while inflammation develops continuously.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.​springer.​com/​00266.
Literature
2.
go back to reference Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, Chi J, Cohen P, Koliwad SK, Kajimura S (2018) Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab 27(180–194):e186 Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, Chi J, Cohen P, Koliwad SK, Kajimura S (2018) Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab 27(180–194):e186
3.
go back to reference Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, Wu J, Gunawardana SC, Banks AS, Camporez JP, Jurczak MJ, Kajimura S, Piston DW, Mathis D, Cinti S, Shulman GI, Seale P, Spiegelman BM (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316CrossRefPubMedPubMedCentral Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, Wu J, Gunawardana SC, Banks AS, Camporez JP, Jurczak MJ, Kajimura S, Piston DW, Mathis D, Cinti S, Shulman GI, Seale P, Spiegelman BM (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316CrossRefPubMedPubMedCentral
4.
go back to reference Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 67:235–247CrossRefPubMed Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 67:235–247CrossRefPubMed
5.
go back to reference Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM (2021) Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun 12:4623ADSCrossRefPubMedPubMedCentral Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM (2021) Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun 12:4623ADSCrossRefPubMedPubMedCentral
6.
go back to reference Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H, Danial NN, Gygi SP, Lynch L, Chouchani ET (2021) UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab 3:604–617CrossRefPubMedPubMedCentral Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H, Danial NN, Gygi SP, Lynch L, Chouchani ET (2021) UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab 3:604–617CrossRefPubMedPubMedCentral
7.
go back to reference Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, Brown Z, Pradhan RN, Tajima K, Yoneshiro T, Ikeda K, Chen Y, Cheang RT, Tsujino K, Kim CR, Greiner VJ, Datta R, Yang CD, Atabai K, McManus MT, Koliwad SK, Spiegelman BM, Kajimura S (2020) CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182(563–577):e520 Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, Brown Z, Pradhan RN, Tajima K, Yoneshiro T, Ikeda K, Chen Y, Cheang RT, Tsujino K, Kim CR, Greiner VJ, Datta R, Yang CD, Atabai K, McManus MT, Koliwad SK, Spiegelman BM, Kajimura S (2020) CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182(563–577):e520
8.
go back to reference Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefPubMedPubMedCentral Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefPubMedPubMedCentral
9.
go back to reference Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B, Vekaria HJ, Harfmann B, Jones KA, Johnson ZR, Westgate PM, Alexander CM, Sullivan PG, Dupont-Versteegden EE, Kern PA (2018) Human adipose beiging in response to cold and mirabegron. JCI Insight 3(15) Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B, Vekaria HJ, Harfmann B, Jones KA, Johnson ZR, Westgate PM, Alexander CM, Sullivan PG, Dupont-Versteegden EE, Kern PA (2018) Human adipose beiging in response to cold and mirabegron. JCI Insight 3(15)
10.
go back to reference La Padula S, Ponzo M, Lombardi M, Iazzetta V, Errico C, Polverino G, Pensato R (2023) Nanofat in plastic reconstructive, regenerative, and aesthetic surgery: a review of advancements in face-focused applications. J Clin Med 12(13):4351CrossRefPubMedPubMedCentral La Padula S, Ponzo M, Lombardi M, Iazzetta V, Errico C, Polverino G, Pensato R (2023) Nanofat in plastic reconstructive, regenerative, and aesthetic surgery: a review of advancements in face-focused applications. J Clin Med 12(13):4351CrossRefPubMedPubMedCentral
11.
go back to reference Groen JW, Negenborn VL, Twisk JW, Ket JC, Mullender MG, Smit JM (2016) Autologous fat grafting in cosmetic breast augmentation: a systematic review on radiological safety, complications, volume retention, and patient/surgeon satisfaction. Aesthet Surg J 36:993–1007CrossRefPubMed Groen JW, Negenborn VL, Twisk JW, Ket JC, Mullender MG, Smit JM (2016) Autologous fat grafting in cosmetic breast augmentation: a systematic review on radiological safety, complications, volume retention, and patient/surgeon satisfaction. Aesthet Surg J 36:993–1007CrossRefPubMed
12.
go back to reference Mok H, Feng J, Hu W, Wang J, Cai J, Lu F (2018) Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy. Biochem Biophys Res Commun 501:266–272CrossRefPubMed Mok H, Feng J, Hu W, Wang J, Cai J, Lu F (2018) Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy. Biochem Biophys Res Commun 501:266–272CrossRefPubMed
13.
go back to reference Li Y, Mou S, Xiao P, Li G, Li J, Tong J, Wang J, Yang J, Sun J, Wang Z (2020) Delayed two steps PRP injection strategy for the improvement of fat graft survival with superior angiogenesis. Sci Rep 10:5231ADSCrossRefPubMedPubMedCentral Li Y, Mou S, Xiao P, Li G, Li J, Tong J, Wang J, Yang J, Sun J, Wang Z (2020) Delayed two steps PRP injection strategy for the improvement of fat graft survival with superior angiogenesis. Sci Rep 10:5231ADSCrossRefPubMedPubMedCentral
14.
go back to reference Zhang Y, Cai J, Zhou T, Yao Y, Dong Z, Lu F (2018) Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg 141:676e–686eCrossRefPubMed Zhang Y, Cai J, Zhou T, Yao Y, Dong Z, Lu F (2018) Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg 141:676e–686eCrossRefPubMed
15.
go back to reference Haarer J, Johnson CL, Soeder Y, Dahlke MH (2015) Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int 28:1–9CrossRefPubMed Haarer J, Johnson CL, Soeder Y, Dahlke MH (2015) Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int 28:1–9CrossRefPubMed
16.
go back to reference Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W (2019) Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 110:3173–3182CrossRefPubMedPubMedCentral Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W (2019) Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 110:3173–3182CrossRefPubMedPubMedCentral
18.
go back to reference Ikeda K, Yamada T (2020) UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol (Lausanne) 11:498CrossRefPubMed Ikeda K, Yamada T (2020) UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol (Lausanne) 11:498CrossRefPubMed
19.
21.
go back to reference Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE 10:e0145342CrossRefPubMedPubMedCentral Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE 10:e0145342CrossRefPubMedPubMedCentral
22.
go back to reference Lv R, Bao Q, Li Y (2017) Regulation of M1-type and M2-type macrophage polarization in RAW264.7 cells by galectin-9. Mol Med Rep 16:9111–9119CrossRefPubMed Lv R, Bao Q, Li Y (2017) Regulation of M1-type and M2-type macrophage polarization in RAW264.7 cells by galectin-9. Mol Med Rep 16:9111–9119CrossRefPubMed
23.
go back to reference Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26(672–685):e674 Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26(672–685):e674
24.
go back to reference Park J, Kim M, Sun K, An YA, Gu X, Scherer PE (2017) VEGF-A–expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4–independent metabolic improvements. Diabetes 66(6):1479–1490CrossRefPubMedPubMedCentral Park J, Kim M, Sun K, An YA, Gu X, Scherer PE (2017) VEGF-A–expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4–independent metabolic improvements. Diabetes 66(6):1479–1490CrossRefPubMedPubMedCentral
25.
go back to reference Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, Feng Y (2020) Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKalpha/STAT3 signaling in diet-induced obesity. Theranostics 10:11302–11323CrossRefPubMedPubMedCentral Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, Feng Y (2020) Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKalpha/STAT3 signaling in diet-induced obesity. Theranostics 10:11302–11323CrossRefPubMedPubMedCentral
26.
go back to reference Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15:507–524CrossRefPubMed Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15:507–524CrossRefPubMed
27.
go back to reference Guo L, Zhang P, Chen Z, Xia H, Li S, Zhang Y, Kobberup S, Zou W, Lin JD (2017) Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 127:4449–4461CrossRefPubMedPubMedCentral Guo L, Zhang P, Chen Z, Xia H, Li S, Zhang Y, Kobberup S, Zou W, Lin JD (2017) Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 127:4449–4461CrossRefPubMedPubMedCentral
28.
go back to reference Bae YC, Kim KH, Yun HJ, Oh CH, Chang JH, Yi CR, Lee JW, Bae SH (2020) A study on the effective ratio of fat to stromal vascular fraction for cell-assisted lipotransfer. Aesthet Plast Surg 44:162–167CrossRef Bae YC, Kim KH, Yun HJ, Oh CH, Chang JH, Yi CR, Lee JW, Bae SH (2020) A study on the effective ratio of fat to stromal vascular fraction for cell-assisted lipotransfer. Aesthet Plast Surg 44:162–167CrossRef
29.
go back to reference Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Li Q (2022) LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 26(11):3153–3168CrossRefPubMedPubMedCentral Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Li Q (2022) LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 26(11):3153–3168CrossRefPubMedPubMedCentral
30.
go back to reference Kato H, Mineda K, Eto H, Doi K, Kuno S, Kinoshita K, Kanayama K, Yoshimura K (2014) Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133:303e–313eCrossRefPubMed Kato H, Mineda K, Eto H, Doi K, Kuno S, Kinoshita K, Kanayama K, Yoshimura K (2014) Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133:303e–313eCrossRefPubMed
31.
go back to reference Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118CrossRefPubMed Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118CrossRefPubMed
32.
go back to reference Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973CrossRefPubMed Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973CrossRefPubMed
33.
go back to reference Chen B, Cai J, Wei Y, Jiang Z, Desjardins HE, Adams AE, Li S, Kao HK, Guo L (2019) Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg 144:816e–827eCrossRefPubMed Chen B, Cai J, Wei Y, Jiang Z, Desjardins HE, Adams AE, Li S, Kao HK, Guo L (2019) Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg 144:816e–827eCrossRefPubMed
Metadata
Title
A Study on the Acquisition and Identification of Beige Adipocytes and Exosomes as Well as Their Inflammatory Regulation by Promoting Macrophage Polarization
Authors
Binsha Wu
Wei Cen
Chi Liu
Tianyu Wang
Junyan Wei
Shiqi Wang
Dan Zhang
Chichi Li
Publication date
26-12-2023
Publisher
Springer US
Keyword
Cytokines
Published in
Aesthetic Plastic Surgery / Issue 3/2024
Print ISSN: 0364-216X
Electronic ISSN: 1432-5241
DOI
https://doi.org/10.1007/s00266-023-03782-5

Other articles of this Issue 3/2024

Aesthetic Plastic Surgery 3/2024 Go to the issue