Skip to main content
Top
Published in:

Open Access 01-12-2024 | Review

Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope

Authors: Xiaojie Zhang, Bufu Tang, Jinhua Luo, Yang Yang, Qiaoyou Weng, Shiji Fang, Zhongwei Zhao, Jianfei Tu, Minjiang Chen, Jiansong Ji

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Literature
1.
go back to reference Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef
2.
go back to reference Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.PubMedPubMedCentralCrossRef Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.PubMedPubMedCentralCrossRef
3.
go back to reference Hu J, Zhang R, Chang Q, Ji M, Zhang H, Geng R, et al. p53: a Regulator of Ferroptosis Induced by Galectin-1 derived peptide 3 in MH7A cells. Front Genet. 2022;13:920273.PubMedPubMedCentralCrossRef Hu J, Zhang R, Chang Q, Ji M, Zhang H, Geng R, et al. p53: a Regulator of Ferroptosis Induced by Galectin-1 derived peptide 3 in MH7A cells. Front Genet. 2022;13:920273.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Proskuryakov SY, Gabai VL. Mechanisms of tumor cell necrosis. Curr Pharm Design. 2010;16(1):56–68.CrossRef Proskuryakov SY, Gabai VL. Mechanisms of tumor cell necrosis. Curr Pharm Design. 2010;16(1):56–68.CrossRef
6.
go back to reference Morana O, Wood W, Gregory CD. The apoptosis Paradox in Cancer. Int J Mol Sci. 2022;23(3). Morana O, Wood W, Gregory CD. The apoptosis Paradox in Cancer. Int J Mol Sci. 2022;23(3).
10.
go back to reference Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv. 2014;32(6):1111–22.PubMedCrossRef Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv. 2014;32(6):1111–22.PubMedCrossRef
11.
go back to reference Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, et al. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 2023;42(1):142.PubMedPubMedCentralCrossRef Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, et al. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 2023;42(1):142.PubMedPubMedCentralCrossRef
13.
go back to reference Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci (New York NY). 2022;375(6586):1254–61.CrossRef Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci (New York NY). 2022;375(6586):1254–61.CrossRef
14.
go back to reference Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nutr. 2008;88(3):s851–4.CrossRef Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nutr. 2008;88(3):s851–4.CrossRef
15.
16.
go back to reference Wang Y, Hodgkinson V, Zhu S, Weisman GA, Petris MJ. Advances in the understanding of mammalian copper transporters. Advances in nutrition (Bethesda. Md). 2011;2(2):129–37. Wang Y, Hodgkinson V, Zhu S, Weisman GA, Petris MJ. Advances in the understanding of mammalian copper transporters. Advances in nutrition (Bethesda. Md). 2011;2(2):129–37.
17.
18.
go back to reference Narindrasorasak S, Zhang X, Roberts EA, Sarkar B. Comparative analysis of metal binding characteristics of copper chaperone proteins, Atx1 and ATOX1. Bioinorg Chem Appl. 2004;2(1–2):105–23.PubMedPubMedCentralCrossRef Narindrasorasak S, Zhang X, Roberts EA, Sarkar B. Comparative analysis of metal binding characteristics of copper chaperone proteins, Atx1 and ATOX1. Bioinorg Chem Appl. 2004;2(1–2):105–23.PubMedPubMedCentralCrossRef
19.
go back to reference Duan WJ, He RR. Cuproptosis: copper-induced regulated cell death. Sci China Life Sci. 2022;65(8):1680–2.PubMedCrossRef Duan WJ, He RR. Cuproptosis: copper-induced regulated cell death. Sci China Life Sci. 2022;65(8):1680–2.PubMedCrossRef
20.
go back to reference Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15(7):681–9.PubMedPubMedCentralCrossRef Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15(7):681–9.PubMedPubMedCentralCrossRef
21.
go back to reference Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 2008;7(8):2319–27.PubMedCrossRef Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 2008;7(8):2319–27.PubMedCrossRef
22.
go back to reference Babak MV, Ahn D. Modulation of intracellular copper levels as the mechanism of action of Anticancer Copper complexes: clinical relevance. Biomedicines. 2021;9(8). Babak MV, Ahn D. Modulation of intracellular copper levels as the mechanism of action of Anticancer Copper complexes: clinical relevance. Biomedicines. 2021;9(8).
23.
go back to reference Zhao G, Sun H, Zhang T, Liu JX. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Communication Signaling: CCS. 2020;18(1):45.PubMedPubMedCentralCrossRef Zhao G, Sun H, Zhang T, Liu JX. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Communication Signaling: CCS. 2020;18(1):45.PubMedPubMedCentralCrossRef
24.
go back to reference Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M et al. ATF3/SPI1/SLC31A1 signaling promotes Cuproptosis Induced by Advanced Glycosylation End products in Diabetic Myocardial Injury. Int J Mol Sci. 2023;24(2). Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M et al. ATF3/SPI1/SLC31A1 signaling promotes Cuproptosis Induced by Advanced Glycosylation End products in Diabetic Myocardial Injury. Int J Mol Sci. 2023;24(2).
25.
go back to reference Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA. 2000;97(6):2886–91.PubMedPubMedCentralCrossRef Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA. 2000;97(6):2886–91.PubMedPubMedCentralCrossRef
26.
go back to reference Aich A, Wang C, Chowdhury A, Ronsör C, Pacheu-Grau D, Richter-Dennerlein R et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife. 2018;7. Aich A, Wang C, Chowdhury A, Ronsör C, Pacheu-Grau D, Richter-Dennerlein R et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife. 2018;7.
27.
go back to reference Pacheu-Grau D, Bareth B, Dudek J, Juris L, Vögtle FN, Wissel M, et al. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metabol. 2015;21(6):823–33.CrossRef Pacheu-Grau D, Bareth B, Dudek J, Juris L, Vögtle FN, Wissel M, et al. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metabol. 2015;21(6):823–33.CrossRef
28.
go back to reference Scheiber I, Dringen R, Mercer JF. Copper: effects of deficiency and overload. Metal Ions Life Sci. 2013;13:359–87.CrossRef Scheiber I, Dringen R, Mercer JF. Copper: effects of deficiency and overload. Metal Ions Life Sci. 2013;13:359–87.CrossRef
29.
go back to reference Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13.PubMedCrossRef Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13.PubMedCrossRef
30.
go back to reference Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868(2):118893.PubMedCrossRef Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868(2):118893.PubMedCrossRef
31.
32.
go back to reference Santoro AM, Monaco I, Attanasio F, Lanza V, Pappalardo G, Tomasello MF, et al. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci Rep. 2016;6:33444.PubMedPubMedCentralCrossRef Santoro AM, Monaco I, Attanasio F, Lanza V, Pappalardo G, Tomasello MF, et al. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci Rep. 2016;6:33444.PubMedPubMedCentralCrossRef
33.
go back to reference Xiao Y, Chen DI, Zhang X, Cui Q, Fan Y, Bi C, et al. Molecular study on copper-mediated tumor proteasome inhibition and cell death. Int J Oncol. 2010;37(1):81–7.PubMed Xiao Y, Chen DI, Zhang X, Cui Q, Fan Y, Bi C, et al. Molecular study on copper-mediated tumor proteasome inhibition and cell death. Int J Oncol. 2010;37(1):81–7.PubMed
34.
go back to reference Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22(4):412–24.PubMedPubMedCentralCrossRef Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22(4):412–24.PubMedPubMedCentralCrossRef
35.
go back to reference Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71(5):1561–72.PubMedCrossRef Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71(5):1561–72.PubMedCrossRef
36.
go back to reference Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A, et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci USA. 2019;116(14):6836–41.PubMedPubMedCentralCrossRef Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A, et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci USA. 2019;116(14):6836–41.PubMedPubMedCentralCrossRef
37.
go back to reference Chen X, Clement M, Hicks MJ, Sarkar P, Gaber MW, Man TK. LOX upregulates FAK phosphorylation to promote metastasis in osteosarcoma. Genes Dis. 2023;10(1):254–66.PubMedCrossRef Chen X, Clement M, Hicks MJ, Sarkar P, Gaber MW, Man TK. LOX upregulates FAK phosphorylation to promote metastasis in osteosarcoma. Genes Dis. 2023;10(1):254–66.PubMedCrossRef
38.
go back to reference Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral Copper modulates PD-L1 expression and influences Tumor Immune Evasion. Cancer Res. 2020;80(19):4129–44.PubMedCrossRef Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral Copper modulates PD-L1 expression and influences Tumor Immune Evasion. Cancer Res. 2020;80(19):4129–44.PubMedCrossRef
39.
go back to reference Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.PubMedPubMedCentralCrossRef
40.
go back to reference Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in Vitro and in vivo shares features of ferroptosis and Necroptosis. Stroke. 2017;48(4):1033–43.PubMedPubMedCentralCrossRef Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in Vitro and in vivo shares features of ferroptosis and Necroptosis. Stroke. 2017;48(4):1033–43.PubMedPubMedCentralCrossRef
41.
go back to reference Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8.
43.
go back to reference Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Reviews Clin Oncol. 2021;18(5):280–96.CrossRef Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Reviews Clin Oncol. 2021;18(5):280–96.CrossRef
44.
go back to reference Imoto S, Kono M, Suzuki T, Shibuya Y, Sawamura T, Mizokoshi Y, et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus Apheresis Science: Official J World Apheresis Association : Official J Eur Soc Haemapheresis. 2018;57(4):524–31. Imoto S, Kono M, Suzuki T, Shibuya Y, Sawamura T, Mizokoshi Y, et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus Apheresis Science: Official J World Apheresis Association : Official J Eur Soc Haemapheresis. 2018;57(4):524–31.
45.
go back to reference Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.PubMedCrossRef Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.PubMedCrossRef
46.
49.
go back to reference Rink JS, Lin AY, McMahon KM, Calvert AE, Yang S, Taxter T, et al. Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. J Biol Chem. 2021;296:100100.PubMedCrossRef Rink JS, Lin AY, McMahon KM, Calvert AE, Yang S, Taxter T, et al. Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. J Biol Chem. 2021;296:100100.PubMedCrossRef
51.
go back to reference Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62.PubMedPubMedCentralCrossRef Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62.PubMedPubMedCentralCrossRef
52.
go back to reference Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21(5):579–91.PubMedPubMedCentralCrossRef Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21(5):579–91.PubMedPubMedCentralCrossRef
53.
go back to reference Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun QR, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 2019;20(7):e47563.PubMedPubMedCentralCrossRef Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun QR, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 2019;20(7):e47563.PubMedPubMedCentralCrossRef
54.
go back to reference Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20(7):1692–704.PubMedCrossRef Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20(7):1692–704.PubMedCrossRef
55.
go back to reference Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, et al. p53 suppresses metabolic stress-Induced ferroptosis in Cancer cells. Cell Rep. 2018;22(3):569–75.PubMedPubMedCentralCrossRef Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, et al. p53 suppresses metabolic stress-Induced ferroptosis in Cancer cells. Cell Rep. 2018;22(3):569–75.PubMedPubMedCentralCrossRef
56.
go back to reference Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA. 2016;113(44):E6806–12.PubMedPubMedCentralCrossRef Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA. 2016;113(44):E6806–12.PubMedPubMedCentralCrossRef
57.
go back to reference Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the african-centric S47 variant of p53. Proc Natl Acad Sci USA. 2019;116(17):8390–6.PubMedPubMedCentralCrossRef Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the african-centric S47 variant of p53. Proc Natl Acad Sci USA. 2019;116(17):8390–6.PubMedPubMedCentralCrossRef
58.
go back to reference Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149(6):1269–83.PubMedPubMedCentralCrossRef Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149(6):1269–83.PubMedPubMedCentralCrossRef
59.
go back to reference Kon N, Ou Y, Wang SJ, Li H, Rustgi AK, Gu W. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev. 2021;35(1–2):59–64.PubMedPubMedCentralCrossRef Kon N, Ou Y, Wang SJ, Li H, Rustgi AK, Gu W. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev. 2021;35(1–2):59–64.PubMedPubMedCentralCrossRef
60.
go back to reference Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019;572(7769):402–6.PubMedPubMedCentralCrossRef Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019;572(7769):402–6.PubMedPubMedCentralCrossRef
61.
go back to reference Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, et al. The Hippo Pathway Effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019;28(10):2501–e84.PubMedPubMedCentralCrossRef Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, et al. The Hippo Pathway Effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019;28(10):2501–e84.PubMedPubMedCentralCrossRef
62.
go back to reference Zheng Y, Li J, Liu B, Xie Z, He Y, Xue D, et al. Global trends in PANoptosis research: bibliometrics and knowledge graph analysis. Apoptosis: Int J Program cell Death. 2024;29(1–2):229–42.CrossRef Zheng Y, Li J, Liu B, Xie Z, He Y, Xue D, et al. Global trends in PANoptosis research: bibliometrics and knowledge graph analysis. Apoptosis: Int J Program cell Death. 2024;29(1–2):229–42.CrossRef
63.
go back to reference Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 2022;7(74):eabo6294.PubMedCrossRef Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 2022;7(74):eabo6294.PubMedCrossRef
64.
go back to reference Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597(7876):415–9.PubMedPubMedCentralCrossRef Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597(7876):415–9.PubMedPubMedCentralCrossRef
65.
go back to reference Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD. RIPK1 distinctly regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis. ImmunoHorizons. 2020;4(12):789–96.PubMedCrossRef Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD. RIPK1 distinctly regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis. ImmunoHorizons. 2020;4(12):789–96.PubMedCrossRef
66.
go back to reference Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. 2016;1(2). Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. 2016;1(2).
68.
go back to reference Mall R, Bynigeri RR, Karki R, Malireddi RKS, Sharma BR, Kanneganti TD. Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology. NAR cancer. 2022;4(4):zcac033.PubMedPubMedCentralCrossRef Mall R, Bynigeri RR, Karki R, Malireddi RKS, Sharma BR, Kanneganti TD. Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology. NAR cancer. 2022;4(4):zcac033.PubMedPubMedCentralCrossRef
69.
go back to reference Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 2021;37(3):109858.PubMedPubMedCentralCrossRef Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 2021;37(3):109858.PubMedPubMedCentralCrossRef
70.
go back to reference Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and Mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184(1):149–e6817.PubMedCrossRef Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and Mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184(1):149–e6817.PubMedCrossRef
71.
go back to reference Pandian N, Kanneganti TD. PANoptosis: a unique Innate Immune Inflammatory Cell Death Modality. J Immunol (Baltimore Md: 1950). 2022;209(9):1625–33.CrossRef Pandian N, Kanneganti TD. PANoptosis: a unique Innate Immune Inflammatory Cell Death Modality. J Immunol (Baltimore Md: 1950). 2022;209(9):1625–33.CrossRef
72.
73.
go back to reference Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.PubMedPubMedCentralCrossRef Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.PubMedPubMedCentralCrossRef
74.
go back to reference Li W, Shen MM. Prostate cancer cell heterogeneity and plasticity: insights from studies of genetically-engineered mouse models. Sem Cancer Biol. 2022;82:60–7.CrossRef Li W, Shen MM. Prostate cancer cell heterogeneity and plasticity: insights from studies of genetically-engineered mouse models. Sem Cancer Biol. 2022;82:60–7.CrossRef
76.
go back to reference Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Reviews Clin Oncol. 2020;17(7):395–417.CrossRef Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Reviews Clin Oncol. 2020;17(7):395–417.CrossRef
77.
78.
go back to reference Guo Y, Tan J, Miao Y, Sun Z, Zhang Q. Effects of Microvesicles on cell apoptosis under Hypoxia. Oxidative Med Cell Longev. 2019;2019:5972152.CrossRef Guo Y, Tan J, Miao Y, Sun Z, Zhang Q. Effects of Microvesicles on cell apoptosis under Hypoxia. Oxidative Med Cell Longev. 2019;2019:5972152.CrossRef
79.
go back to reference O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30(8):973–88.PubMedPubMedCentralCrossRef O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30(8):973–88.PubMedPubMedCentralCrossRef
80.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.PubMedCrossRef Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.PubMedCrossRef
81.
go back to reference Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022;41(2):e108690.PubMedCrossRef Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022;41(2):e108690.PubMedCrossRef
82.
go back to reference Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.PubMedCrossRef Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.PubMedCrossRef
83.
go back to reference Hu Q, Wu D, Chen W, Yan Z, Yan C, He T, et al. Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proc Natl Acad Sci USA. 2014;111(46):16254–61.PubMedPubMedCentralCrossRef Hu Q, Wu D, Chen W, Yan Z, Yan C, He T, et al. Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proc Natl Acad Sci USA. 2014;111(46):16254–61.PubMedPubMedCentralCrossRef
84.
go back to reference Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, et al. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev. 2015;29(22):2349–61.PubMedPubMedCentralCrossRef Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, et al. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev. 2015;29(22):2349–61.PubMedPubMedCentralCrossRef
86.
go back to reference Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000;103(6):839–42.PubMedCrossRef Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000;103(6):839–42.PubMedCrossRef
87.
go back to reference Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L et al. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther. 2024. Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L et al. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther. 2024.
88.
go back to reference Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods (San Diego Calif). 2013;61(2):117–29.PubMedCrossRef Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods (San Diego Calif). 2013;61(2):117–29.PubMedCrossRef
89.
go back to reference Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95.PubMedCrossRef Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95.PubMedCrossRef
90.
go back to reference Seo J, Nam YW, Kim S, Oh DB, Song J. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med. 2021;53(6):1007–17.PubMedPubMedCentralCrossRef Seo J, Nam YW, Kim S, Oh DB, Song J. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med. 2021;53(6):1007–17.PubMedPubMedCentralCrossRef
91.
go back to reference Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to Disease. Annu Rev Pathol. 2017;12:103–30.PubMedCrossRef Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to Disease. Annu Rev Pathol. 2017;12:103–30.PubMedCrossRef
94.
go back to reference Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61.PubMedCrossRef Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61.PubMedCrossRef
95.
go back to reference Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311–20.PubMedCrossRef Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311–20.PubMedCrossRef
96.
97.
98.
go back to reference Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem. 2020;295(52):18276–83.PubMedCrossRef Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem. 2020;295(52):18276–83.PubMedCrossRef
99.
go back to reference Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Master regulators of NLRP3 Inflammasome/Pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406.PubMedPubMedCentralCrossRef Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Master regulators of NLRP3 Inflammasome/Pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406.PubMedPubMedCentralCrossRef
100.
go back to reference Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regeneration Res. 2022;17(8):1761–8.CrossRef Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regeneration Res. 2022;17(8):1761–8.CrossRef
101.
go back to reference Wang Y, Pandian N, Han JH, Sundaram B, Lee S, Karki R, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci. 2022;79(10):531.PubMedCrossRef Wang Y, Pandian N, Han JH, Sundaram B, Lee S, Karki R, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci. 2022;79(10):531.PubMedCrossRef
102.
go back to reference Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.PubMedPubMedCentralCrossRef Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.PubMedPubMedCentralCrossRef
103.
go back to reference Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237.PubMedPubMedCentralCrossRef Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237.PubMedPubMedCentralCrossRef
104.
go back to reference Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell. 2023;186(13):2783–e80120.PubMedPubMedCentralCrossRef Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell. 2023;186(13):2783–e80120.PubMedPubMedCentralCrossRef
105.
go back to reference Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and regulation of PANoptosis: prospects in disease treatment. Front Immunol. 2023;14:1120034.PubMedPubMedCentralCrossRef Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and regulation of PANoptosis: prospects in disease treatment. Front Immunol. 2023;14:1120034.PubMedPubMedCentralCrossRef
106.
go back to reference Liu Z, Sun L, Peng X, Zhu J, Wu C, Zhu W, et al. PANoptosis subtypes predict prognosis and immune efficacy in gastric cancer. Apoptosis: Int J Program cell Death. 2024;29(5–6):799–815.CrossRef Liu Z, Sun L, Peng X, Zhu J, Wu C, Zhu W, et al. PANoptosis subtypes predict prognosis and immune efficacy in gastric cancer. Apoptosis: Int J Program cell Death. 2024;29(5–6):799–815.CrossRef
107.
go back to reference Zhong L, Qian W, Gong W, Zhu L, Wang X. Molecular subtypes based on PANoptosis genes and characteristics of Immune Infiltration in Cutaneous Melanoma. Cellular and molecular biology. France). 2023;69(8):1–8. (Noisy-le-Grand. Zhong L, Qian W, Gong W, Zhu L, Wang X. Molecular subtypes based on PANoptosis genes and characteristics of Immune Infiltration in Cutaneous Melanoma. Cellular and molecular biology. France). 2023;69(8):1–8. (Noisy-le-Grand.
108.
go back to reference Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight. 2020;5(12). Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight. 2020;5(12).
109.
go back to reference Lou Y, Chen D, Gu Q, Zhu Q, Sun H. PANoptosis-related molecule CASP2 affects the immune microenvironment and immunotherapy response of hepatocellular carcinoma. Heliyon. 2024;10(6):e27302.PubMedPubMedCentralCrossRef Lou Y, Chen D, Gu Q, Zhu Q, Sun H. PANoptosis-related molecule CASP2 affects the immune microenvironment and immunotherapy response of hepatocellular carcinoma. Heliyon. 2024;10(6):e27302.PubMedPubMedCentralCrossRef
110.
go back to reference Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT, et al. Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther. 2002;1(1):65–9.PubMedCrossRef Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT, et al. Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther. 2002;1(1):65–9.PubMedCrossRef
111.
112.
go back to reference Heidaryan F, Bamehr H, Babaabasi B, Emamvirdizadeh A, Mohammadzadeh N, Khalili A. The Trend of ripk1/ripk3 and mlkl mediated necroptosis pathway in patients with different stages of prostate Cancer as promising progression biomarkers. Clin Lab. 2020;66(3). Heidaryan F, Bamehr H, Babaabasi B, Emamvirdizadeh A, Mohammadzadeh N, Khalili A. The Trend of ripk1/ripk3 and mlkl mediated necroptosis pathway in patients with different stages of prostate Cancer as promising progression biomarkers. Clin Lab. 2020;66(3).
113.
go back to reference Ren L, Yang Y, Li W, Zheng X, Liu J, Li S, et al. CDK1 serves as a therapeutic target of adrenocortical carcinoma via regulating epithelial-mesenchymal transition, G2/M phase transition, and PANoptosis. J Translational Med. 2022;20(1):444.CrossRef Ren L, Yang Y, Li W, Zheng X, Liu J, Li S, et al. CDK1 serves as a therapeutic target of adrenocortical carcinoma via regulating epithelial-mesenchymal transition, G2/M phase transition, and PANoptosis. J Translational Med. 2022;20(1):444.CrossRef
114.
go back to reference Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82.PubMedCrossRef Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82.PubMedCrossRef
115.
go back to reference Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in Colon cancer. Gastroenterology. 2017;152(5):964–79.PubMedCrossRef Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in Colon cancer. Gastroenterology. 2017;152(5):964–79.PubMedCrossRef
116.
go back to reference López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32(2):135–54.PubMedCrossRef López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32(2):135–54.PubMedCrossRef
117.
go back to reference Garber K. Cancer’s copper connections. Sci (New York NY). 2015;349(6244):129.CrossRef Garber K. Cancer’s copper connections. Sci (New York NY). 2015;349(6244):129.CrossRef
118.
go back to reference De Sousa Linhares A, Battin C, Jutz S, Leitner J, Hafner C, Tobias J, et al. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep. 2019;9(1):11472.PubMedPubMedCentralCrossRef De Sousa Linhares A, Battin C, Jutz S, Leitner J, Hafner C, Tobias J, et al. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep. 2019;9(1):11472.PubMedPubMedCentralCrossRef
120.
go back to reference Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, et al. Relationship between copper and immunity: the potential role of copper in tumor immunity. Front Oncol. 2022;12:1019153.PubMedPubMedCentralCrossRef Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, et al. Relationship between copper and immunity: the potential role of copper in tumor immunity. Front Oncol. 2022;12:1019153.PubMedPubMedCentralCrossRef
121.
go back to reference Xu S, Dong K, Gao R, Yang Y, Zhou Y, Luo C, et al. Cuproptosis-related signature for clinical prognosis and immunotherapy sensitivity in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149(13):12249–63.PubMedCrossRef Xu S, Dong K, Gao R, Yang Y, Zhou Y, Luo C, et al. Cuproptosis-related signature for clinical prognosis and immunotherapy sensitivity in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149(13):12249–63.PubMedCrossRef
122.
go back to reference Tian X, Zhu S, Liu W, Wu X, Wei G, Zhang J, et al. Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol. 2023;149(19):17451–66.PubMedCrossRef Tian X, Zhu S, Liu W, Wu X, Wei G, Zhang J, et al. Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol. 2023;149(19):17451–66.PubMedCrossRef
123.
go back to reference Huang Y, Gong P, Su L, Zhang M. Cuproptosis-related lncRNA scoring system to predict the clinical outcome and immune landscape in pancreatic adenocarcinoma. Sci Rep. 2023;13(1):20870.PubMedPubMedCentralCrossRef Huang Y, Gong P, Su L, Zhang M. Cuproptosis-related lncRNA scoring system to predict the clinical outcome and immune landscape in pancreatic adenocarcinoma. Sci Rep. 2023;13(1):20870.PubMedPubMedCentralCrossRef
124.
go back to reference Mi J, Luo J, Zeng H, Zhang H, Jamil M, Abdel-Maksoud MA, et al. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic values in cancer. Am J Translational Res. 2023;15(10):6026–41. Mi J, Luo J, Zeng H, Zhang H, Jamil M, Abdel-Maksoud MA, et al. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic values in cancer. Am J Translational Res. 2023;15(10):6026–41.
125.
go back to reference Wang J, Li S, Guo Y, Zhao C, Chen Y, Ning W, et al. Cuproptosis-related gene SLC31A1 expression correlates with the prognosis and tumor immune microenvironment in glioma. Funct Integr Genom. 2023;23(3):279.CrossRef Wang J, Li S, Guo Y, Zhao C, Chen Y, Ning W, et al. Cuproptosis-related gene SLC31A1 expression correlates with the prognosis and tumor immune microenvironment in glioma. Funct Integr Genom. 2023;23(3):279.CrossRef
126.
go back to reference Gángó A, Bátai B, Varga M, Kapczár D, Papp G, Marschalkó M, et al. Concomitant 1p36 deletion and TNFRSF14 mutations in primary cutaneous follicle center lymphoma frequently expressing high levels of EZH2 protein. Virchows Archiv: Int J Pathol. 2018;473(4):453–62.CrossRef Gángó A, Bátai B, Varga M, Kapczár D, Papp G, Marschalkó M, et al. Concomitant 1p36 deletion and TNFRSF14 mutations in primary cutaneous follicle center lymphoma frequently expressing high levels of EZH2 protein. Virchows Archiv: Int J Pathol. 2018;473(4):453–62.CrossRef
127.
go back to reference Zhu YD, Lu MY. Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol Med Rep. 2018;18(3):3403–10.PubMed Zhu YD, Lu MY. Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol Med Rep. 2018;18(3):3403–10.PubMed
128.
go back to reference Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score predicts prognosis and characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022;13:925618.PubMedPubMedCentralCrossRef Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score predicts prognosis and characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022;13:925618.PubMedPubMedCentralCrossRef
129.
go back to reference Li H, Zu X, Hu J, Xiao Z, Cai Z, Gao N, et al. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front Immunol. 2022;13:964393.PubMedPubMedCentralCrossRef Li H, Zu X, Hu J, Xiao Z, Cai Z, Gao N, et al. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front Immunol. 2022;13:964393.PubMedPubMedCentralCrossRef
130.
go back to reference Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep. 2023;13(1):18390.PubMedPubMedCentralCrossRef Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep. 2023;13(1):18390.PubMedPubMedCentralCrossRef
131.
go back to reference Ran XM, Xiao H, Tang YX, Jin X, Tang X, Zhang J, et al. The effect of cuproptosis-relevant genes on the immune infiltration and metabolism of gynecological oncology by multiply analysis and experiments validation. Sci Rep. 2023;13(1):19474.PubMedPubMedCentralCrossRef Ran XM, Xiao H, Tang YX, Jin X, Tang X, Zhang J, et al. The effect of cuproptosis-relevant genes on the immune infiltration and metabolism of gynecological oncology by multiply analysis and experiments validation. Sci Rep. 2023;13(1):19474.PubMedPubMedCentralCrossRef
132.
go back to reference Quan Y, Li W, Yan R, Cheng J, Xu H, Chen L. Tumor cuproptosis and immune infiltration improve survival of patients with hepatocellular carcinoma with a high expression of ferredoxin 1. Front Oncol. 2023;13:1168769.PubMedPubMedCentralCrossRef Quan Y, Li W, Yan R, Cheng J, Xu H, Chen L. Tumor cuproptosis and immune infiltration improve survival of patients with hepatocellular carcinoma with a high expression of ferredoxin 1. Front Oncol. 2023;13:1168769.PubMedPubMedCentralCrossRef
133.
go back to reference Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–e786.PubMedPubMedCentralCrossRef Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–e786.PubMedPubMedCentralCrossRef
134.
go back to reference Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef
135.
go back to reference Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T cells abrogate stroma-mediated Chemoresistance in Ovarian Cancer. Cell. 2016;165(5):1092–105.PubMedPubMedCentralCrossRef Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T cells abrogate stroma-mediated Chemoresistance in Ovarian Cancer. Cell. 2016;165(5):1092–105.PubMedPubMedCentralCrossRef
136.
go back to reference Yu B, Choi B, Li W, Kim DH. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat Commun. 2020;11(1):3637.PubMedPubMedCentralCrossRef Yu B, Choi B, Li W, Kim DH. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat Commun. 2020;11(1):3637.PubMedPubMedCentralCrossRef
137.
go back to reference Li K, Xu K, He Y, Yang Y, Tan M, Mao Y, et al. Oxygen Self-Generating Nanoreactor mediated ferroptosis activation and immunotherapy in Triple-negative breast Cancer. ACS Nano. 2023;17(5):4667–87.PubMedCrossRef Li K, Xu K, He Y, Yang Y, Tan M, Mao Y, et al. Oxygen Self-Generating Nanoreactor mediated ferroptosis activation and immunotherapy in Triple-negative breast Cancer. ACS Nano. 2023;17(5):4667–87.PubMedCrossRef
138.
go back to reference Xie L, Li J, Wang G, Sang W, Xu M, Li W, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97.PubMedCrossRef Xie L, Li J, Wang G, Sang W, Xu M, Li W, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97.PubMedCrossRef
139.
go back to reference Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med. 2015;212(4):555–68.PubMedPubMedCentralCrossRef Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med. 2015;212(4):555–68.PubMedPubMedCentralCrossRef
140.
go back to reference Drijvers JM, Gillis JE, Muijlwijk T, Nguyen TH, Gaudiano EF, Harris IS, et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8(+) T cells. Cancer Immunol Res. 2021;9(2):184–99.PubMedCrossRef Drijvers JM, Gillis JE, Muijlwijk T, Nguyen TH, Gaudiano EF, Harris IS, et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8(+) T cells. Cancer Immunol Res. 2021;9(2):184–99.PubMedCrossRef
141.
go back to reference Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W et al. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2023;10(2):e2203973. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W et al. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2023;10(2):e2203973.
142.
go back to reference Zhang B, Tang B, Lv J, Gao J, Qin L. Systematic analyses to explore immune gene sets-based signature in hepatocellular carcinoma, in which IGF2BP3 contributes to tumor progression. Clin Immunol (Orlando Fla). 2022;241:109073.CrossRef Zhang B, Tang B, Lv J, Gao J, Qin L. Systematic analyses to explore immune gene sets-based signature in hepatocellular carcinoma, in which IGF2BP3 contributes to tumor progression. Clin Immunol (Orlando Fla). 2022;241:109073.CrossRef
143.
go back to reference Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, et al. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis. Free Radic Biol Med. 2021;172:312–29.PubMedCrossRef Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, et al. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis. Free Radic Biol Med. 2021;172:312–29.PubMedCrossRef
144.
go back to reference Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Communication Signaling: CCS. 2020;18(1):174.PubMedPubMedCentralCrossRef Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Communication Signaling: CCS. 2020;18(1):174.PubMedPubMedCentralCrossRef
145.
go back to reference Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, et al. Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and Neuro-Oncology. Int J Biol Sci. 2022;18(10):4260–74.PubMedPubMedCentralCrossRef Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, et al. Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and Neuro-Oncology. Int J Biol Sci. 2022;18(10):4260–74.PubMedPubMedCentralCrossRef
146.
go back to reference Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278–90.PubMedPubMedCentralCrossRef Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278–90.PubMedPubMedCentralCrossRef
147.
go back to reference Luo X, Gong HB, Gao HY, Wu YP, Sun WY, Li ZQ, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef Luo X, Gong HB, Gao HY, Wu YP, Sun WY, Li ZQ, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef
148.
go back to reference Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 2010;40(3):824–35.PubMedCrossRef Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 2010;40(3):824–35.PubMedCrossRef
149.
go back to reference Jiang Z, Lim SO, Yan M, Hsu JL, Yao J, Wei Y et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Investig. 2021;131(8). Jiang Z, Lim SO, Yan M, Hsu JL, Yao J, Wei Y et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Investig. 2021;131(8).
150.
go back to reference Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore MD). 2016;63(1):173–84.PubMedCrossRef Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore MD). 2016;63(1):173–84.PubMedCrossRef
151.
go back to reference Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metabol. 2021;33(6):1205–e205.CrossRef Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metabol. 2021;33(6):1205–e205.CrossRef
152.
go back to reference Alsalman A, Al-Mterin MA, Murshed K, Alloush F, Al-Shouli ST, Toor SM et al. Circulating and Tumor-infiltrating Immune checkpoint-expressing CD8(+) Treg/T cell subsets and their associations with Disease-Free Survival in Colorectal Cancer patients. Cancers (Basel). 2022;14(13). Alsalman A, Al-Mterin MA, Murshed K, Alloush F, Al-Shouli ST, Toor SM et al. Circulating and Tumor-infiltrating Immune checkpoint-expressing CD8(+) Treg/T cell subsets and their associations with Disease-Free Survival in Colorectal Cancer patients. Cancers (Basel). 2022;14(13).
153.
go back to reference Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35(11):109235.PubMedCrossRef Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35(11):109235.PubMedCrossRef
154.
go back to reference Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M. Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol. 2014;33(11):1557–64.PubMedCrossRef Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M. Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol. 2014;33(11):1557–64.PubMedCrossRef
155.
go back to reference Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun. 2022;13(1):676.PubMedPubMedCentralCrossRef Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun. 2022;13(1):676.PubMedPubMedCentralCrossRef
156.
go back to reference Marmonti E, Oliva-Ramirez J, Haymaker C. Dendritic cells: the Long and Evolving Road towards successful targetability in Cancer. Cells. 2022;11:19.CrossRef Marmonti E, Oliva-Ramirez J, Haymaker C. Dendritic cells: the Long and Evolving Road towards successful targetability in Cancer. Cells. 2022;11:19.CrossRef
157.
go back to reference Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.PubMedPubMedCentralCrossRef Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.PubMedPubMedCentralCrossRef
158.
go back to reference Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8(2). Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8(2).
159.
go back to reference Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1). Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1).
160.
go back to reference Yee PP, Wei Y, Kim SY, Lu T, Chih SY, Lawson C, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun. 2020;11(1):5424.PubMedPubMedCentralCrossRef Yee PP, Wei Y, Kim SY, Lu T, Chih SY, Lawson C, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun. 2020;11(1):5424.PubMedPubMedCentralCrossRef
161.
162.
go back to reference Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and Necroptosis-Oh my! The many ways a cell can die. J Mol Biol. 2022;434(4):167378.PubMedCrossRef Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and Necroptosis-Oh my! The many ways a cell can die. J Mol Biol. 2022;434(4):167378.PubMedCrossRef
163.
go back to reference White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549–62.PubMedPubMedCentralCrossRef White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549–62.PubMedPubMedCentralCrossRef
164.
go back to reference Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19(9):1116–29.PubMedPubMedCentralCrossRef Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19(9):1116–29.PubMedPubMedCentralCrossRef
165.
go back to reference Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8⁺ T cells. Volume 350. New York, NY: Science; 2015. pp. 328–34. 6258. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8⁺ T cells. Volume 350. New York, NY: Science; 2015. pp. 328–34. 6258.
166.
go back to reference Schmidt SV, Seibert S, Walch-Rückheim B, Vicinus B, Kamionka EM, Pahne-Zeppenfeld J, et al. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation. Oncotarget. 2015;6(11):8635–47.PubMedPubMedCentralCrossRef Schmidt SV, Seibert S, Walch-Rückheim B, Vicinus B, Kamionka EM, Pahne-Zeppenfeld J, et al. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation. Oncotarget. 2015;6(11):8635–47.PubMedPubMedCentralCrossRef
167.
go back to reference Yang Y, Wu M, Cao D, Yang C, Jin J, Wu L, et al. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Sci Adv. 2021;7(41):eabf6290.PubMedPubMedCentralCrossRef Yang Y, Wu M, Cao D, Yang C, Jin J, Wu L, et al. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Sci Adv. 2021;7(41):eabf6290.PubMedPubMedCentralCrossRef
168.
go back to reference Zhang X, Wu J, Liu Q, Li X, Li S, Chen J, et al. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion. Cell Death Dis. 2020;11(12):1050.PubMedPubMedCentralCrossRef Zhang X, Wu J, Liu Q, Li X, Li S, Chen J, et al. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion. Cell Death Dis. 2020;11(12):1050.PubMedPubMedCentralCrossRef
169.
go back to reference Lladser A, Mougiakakos D, Tufvesson H, Ligtenberg MA, Quest AF, Kiessling R, et al. DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity. Mol Therapy: J Am Soc Gene Therapy. 2011;19(3):594–601.CrossRef Lladser A, Mougiakakos D, Tufvesson H, Ligtenberg MA, Quest AF, Kiessling R, et al. DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity. Mol Therapy: J Am Soc Gene Therapy. 2011;19(3):594–601.CrossRef
170.
go back to reference Yi X, Li J, Zheng X, Xu H, Liao D, Zhang T, et al. Construction of PANoptosis signature: novel target discovery for prostate cancer immunotherapy. Mol Therapy Nucleic Acids. 2023;33:376–90.CrossRef Yi X, Li J, Zheng X, Xu H, Liao D, Zhang T, et al. Construction of PANoptosis signature: novel target discovery for prostate cancer immunotherapy. Mol Therapy Nucleic Acids. 2023;33:376–90.CrossRef
171.
go back to reference Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, et al. Inflammatory cell death, PANoptosis, mediated by cytokines in Diverse Cancer lineages inhibits Tumor Growth. ImmunoHorizons. 2021;5(7):568–80.PubMedCrossRef Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, et al. Inflammatory cell death, PANoptosis, mediated by cytokines in Diverse Cancer lineages inhibits Tumor Growth. ImmunoHorizons. 2021;5(7):568–80.PubMedCrossRef
173.
go back to reference Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025–36.PubMedCrossRef Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025–36.PubMedCrossRef
174.
go back to reference Shi X, Gao X, Liu W, Tang X, Liu J, Pan D, et al. Construction of the panoptosis-related gene model and characterization of tumor microenvironment infiltration in hepatocellular carcinoma. Oncol Res. 2023;31(4):569–90.PubMedPubMedCentralCrossRef Shi X, Gao X, Liu W, Tang X, Liu J, Pan D, et al. Construction of the panoptosis-related gene model and characterization of tumor microenvironment infiltration in hepatocellular carcinoma. Oncol Res. 2023;31(4):569–90.PubMedPubMedCentralCrossRef
175.
go back to reference Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: updated review. Immun Inflamm Dis. 2023;11(9):e997.PubMedPubMedCentralCrossRef Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: updated review. Immun Inflamm Dis. 2023;11(9):e997.PubMedPubMedCentralCrossRef
176.
go back to reference Kang S, Fernandes-Alnemri T, Rogers C, Mayes L, Wang Y, Dillon C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun. 2015;6:7515.PubMedCrossRef Kang S, Fernandes-Alnemri T, Rogers C, Mayes L, Wang Y, Dillon C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun. 2015;6:7515.PubMedCrossRef
177.
go back to reference Babamale AO, Chen ST. Nod-like receptors: critical intracellular sensors for host protection and cell death in Microbial and parasitic infections. Int J Mol Sci. 2021;22(21). Babamale AO, Chen ST. Nod-like receptors: critical intracellular sensors for host protection and cell death in Microbial and parasitic infections. Int J Mol Sci. 2021;22(21).
178.
go back to reference Zhou L, Lyu J, Liu F, Su Y, Feng L, Zhang X. Immunogenic PANoptosis-Initiated Cancer Sono-Immune Reediting Nanotherapy by Iteratively Boosting Cancer Immunity cycle. Advanced materials (Deerfield Beach. Fla). 2024;36(2):e2305361. Zhou L, Lyu J, Liu F, Su Y, Feng L, Zhang X. Immunogenic PANoptosis-Initiated Cancer Sono-Immune Reediting Nanotherapy by Iteratively Boosting Cancer Immunity cycle. Advanced materials (Deerfield Beach. Fla). 2024;36(2):e2305361.
179.
go back to reference Qiao L, Zhu G, Jiang T, Qian Y, Sun Q, Zhao G, et al. Self-destructive copper carriers induce pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy against Dormant and Recurrent Tumors. Advanced materials (Deerfield Beach. Fla). 2024;36(8):e2308241. Qiao L, Zhu G, Jiang T, Qian Y, Sun Q, Zhao G, et al. Self-destructive copper carriers induce pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy against Dormant and Recurrent Tumors. Advanced materials (Deerfield Beach. Fla). 2024;36(8):e2308241.
180.
go back to reference Zhang J, Han M, Zhang J, Abdalla M, Sun P, Yang Z, et al. Syphilis mimetic nanoparticles for cuproptosis-based synergistic cancer therapy via reprogramming copper metabolism. Int J Pharm. 2023;640:123025.PubMedCrossRef Zhang J, Han M, Zhang J, Abdalla M, Sun P, Yang Z, et al. Syphilis mimetic nanoparticles for cuproptosis-based synergistic cancer therapy via reprogramming copper metabolism. Int J Pharm. 2023;640:123025.PubMedCrossRef
181.
go back to reference Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis Induced by ROS responsive nanoparticles with Elesclomol and Copper Combined with αPD-L1 for enhanced Cancer Immunotherapy. Advanced materials (Deerfield Beach. Fla). 2023;35(22):e2212267. Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis Induced by ROS responsive nanoparticles with Elesclomol and Copper Combined with αPD-L1 for enhanced Cancer Immunotherapy. Advanced materials (Deerfield Beach. Fla). 2023;35(22):e2212267.
182.
go back to reference Qi F, Chang Y, Zheng R, Wu X, Wu Y, Li B, et al. Copper Phosphide Nanoparticles used for combined Photothermal and photodynamic tumor therapy. ACS Biomaterials Sci Eng. 2021;7(6):2745–54.CrossRef Qi F, Chang Y, Zheng R, Wu X, Wu Y, Li B, et al. Copper Phosphide Nanoparticles used for combined Photothermal and photodynamic tumor therapy. ACS Biomaterials Sci Eng. 2021;7(6):2745–54.CrossRef
183.
go back to reference Deng H, Yang Y, Zuo T, Fang T, Xu Y, Yang J, et al. Multifunctional ZnO@CuS nanoparticles cluster synergize chemotherapy and photothermal therapy for tumor metastasis. Nanomedicine: Nanatechnol Biology Med. 2021;34:102399.CrossRef Deng H, Yang Y, Zuo T, Fang T, Xu Y, Yang J, et al. Multifunctional ZnO@CuS nanoparticles cluster synergize chemotherapy and photothermal therapy for tumor metastasis. Nanomedicine: Nanatechnol Biology Med. 2021;34:102399.CrossRef
184.
go back to reference Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022;289(22):7038–50.PubMedCrossRef Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022;289(22):7038–50.PubMedCrossRef
185.
go back to reference Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted Cascade Nanoreactor based on Metal-Organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano. 2020;14(9):11017–28.PubMedCrossRef Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted Cascade Nanoreactor based on Metal-Organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano. 2020;14(9):11017–28.PubMedCrossRef
186.
go back to reference Zheng J, Conrad M. The metabolic underpinnings of Ferroptosis. Cell Metabol. 2020;32(6):920–37.CrossRef Zheng J, Conrad M. The metabolic underpinnings of Ferroptosis. Cell Metabol. 2020;32(6):920–37.CrossRef
187.
go back to reference Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, et al. pH-Sensitive Molecular-switch-containing polymer nanoparticle for breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune activation. Adv Healthc Mater. 2021;10(21):e2100683.PubMedCrossRef Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, et al. pH-Sensitive Molecular-switch-containing polymer nanoparticle for breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune activation. Adv Healthc Mater. 2021;10(21):e2100683.PubMedCrossRef
188.
go back to reference Tu H, Tang LJ, Luo XJ, Ai KL, Peng J. Insights into the novel function of system Xc- in regulated cell death. Eur Rev Med Pharmacol Sci. 2021;25(3):1650–62.PubMed Tu H, Tang LJ, Luo XJ, Ai KL, Peng J. Insights into the novel function of system Xc- in regulated cell death. Eur Rev Med Pharmacol Sci. 2021;25(3):1650–62.PubMed
189.
go back to reference Xin H, Huang Y, Tang H, Chen Y, Xia H, Zhang F, et al. Delivery of a system x(c)(-) inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy. J Mater Chem B. 2021;9(35):7172–81.PubMedCrossRef Xin H, Huang Y, Tang H, Chen Y, Xia H, Zhang F, et al. Delivery of a system x(c)(-) inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy. J Mater Chem B. 2021;9(35):7172–81.PubMedCrossRef
190.
go back to reference Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, et al. Switching apoptosis to ferroptosis: metal-Organic Network for High-Efficiency Anticancer Therapy. Nano Lett. 2017;17(1):284–91.PubMedCrossRef Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, et al. Switching apoptosis to ferroptosis: metal-Organic Network for High-Efficiency Anticancer Therapy. Nano Lett. 2017;17(1):284–91.PubMedCrossRef
191.
go back to reference Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of Orthotopic Brain tumors. ACS Nano. 2018;12(11):11355–65.PubMedCrossRef Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of Orthotopic Brain tumors. ACS Nano. 2018;12(11):11355–65.PubMedCrossRef
192.
go back to reference Liu J, Zhan J, Zhang Y, Huang L, Yang J, Feng J, et al. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and Cancer immunotherapy. Advanced materials (Deerfield Beach. Fla). 2024;36(9):e2309562. Liu J, Zhan J, Zhang Y, Huang L, Yang J, Feng J, et al. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and Cancer immunotherapy. Advanced materials (Deerfield Beach. Fla). 2024;36(9):e2309562.
193.
go back to reference Song M, Xia W, Tao Z, Zhu B, Zhang W, Liu C, et al. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Delivery. 2021;28(1):594–606.PubMedPubMedCentralCrossRef Song M, Xia W, Tao Z, Zhu B, Zhang W, Liu C, et al. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Delivery. 2021;28(1):594–606.PubMedPubMedCentralCrossRef
194.
go back to reference Xuan Y, Wang H, Yung MM, Chen F, Chan WS, Chan YS, et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics. 2022;12(7):3534–52.PubMedPubMedCentralCrossRef Xuan Y, Wang H, Yung MM, Chen F, Chan WS, Chan YS, et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics. 2022;12(7):3534–52.PubMedPubMedCentralCrossRef
195.
go back to reference Wang J, Qin D, Tao Z, Wang B, Xie Y, Wang Y, et al. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Front Immunol. 2022;13:1056932.PubMedPubMedCentralCrossRef Wang J, Qin D, Tao Z, Wang B, Xie Y, Wang Y, et al. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Front Immunol. 2022;13:1056932.PubMedPubMedCentralCrossRef
196.
go back to reference Hei Y, Chen Y, Li Q, Mei Z, Pan J, Zhang S, et al. Multifunctional immunoliposomes enhance the Immunotherapeutic effects of PD-L1 antibodies against Melanoma by Reprogramming Immunosuppressive Tumor Microenvironment. Small (Weinheim an Der Bergstrasse. Germany). 2022;18(9):e2105118. Hei Y, Chen Y, Li Q, Mei Z, Pan J, Zhang S, et al. Multifunctional immunoliposomes enhance the Immunotherapeutic effects of PD-L1 antibodies against Melanoma by Reprogramming Immunosuppressive Tumor Microenvironment. Small (Weinheim an Der Bergstrasse. Germany). 2022;18(9):e2105118.
197.
go back to reference Hu C, Song Y, Zhang Y, He S, Liu X, Yang X, et al. Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome. Acta Pharm Sinica B. 2023;13(5):2176–87.CrossRef Hu C, Song Y, Zhang Y, He S, Liu X, Yang X, et al. Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome. Acta Pharm Sinica B. 2023;13(5):2176–87.CrossRef
198.
go back to reference Zhang L, Xu Y, Cheng Z, Zhao J, Wang M, Sun Y, et al. The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis. Cancer Lett. 2024;595:217000.PubMedCrossRef Zhang L, Xu Y, Cheng Z, Zhao J, Wang M, Sun Y, et al. The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis. Cancer Lett. 2024;595:217000.PubMedCrossRef
199.
go back to reference Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25(8):1457–72.PubMedPubMedCentralCrossRef Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25(8):1457–72.PubMedPubMedCentralCrossRef
200.
go back to reference He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of Liver Cancer cells by Targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 2021;15:3965–78.PubMedPubMedCentralCrossRef He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of Liver Cancer cells by Targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 2021;15:3965–78.PubMedPubMedCentralCrossRef
201.
202.
go back to reference Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res. 2021;55(7):853–64.PubMedCrossRef Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res. 2021;55(7):853–64.PubMedCrossRef
203.
go back to reference Zhai H, Zhong S, Wu R, Mo Z, Zheng S, Xue J, et al. Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics. 2023;18(1):2192438.PubMedPubMedCentralCrossRef Zhai H, Zhong S, Wu R, Mo Z, Zheng S, Xue J, et al. Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics. 2023;18(1):2192438.PubMedPubMedCentralCrossRef
204.
go back to reference Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, et al. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 2021;9(8):675.PubMedPubMedCentralCrossRef Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, et al. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 2021;9(8):675.PubMedPubMedCentralCrossRef
205.
go back to reference Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y, et al. TFAP2C-Mediated lncRNA PCAT1 inhibits ferroptosis in Docetaxel-resistant prostate Cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 2022;12:862015.PubMedPubMedCentralCrossRef Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y, et al. TFAP2C-Mediated lncRNA PCAT1 inhibits ferroptosis in Docetaxel-resistant prostate Cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 2022;12:862015.PubMedPubMedCentralCrossRef
206.
go back to reference Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p promotes Non-small Cell Lung Cancer through SLC7A11-Mediated-ferroptosis. Front Oncol. 2021;11:759346.PubMedPubMedCentralCrossRef Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p promotes Non-small Cell Lung Cancer through SLC7A11-Mediated-ferroptosis. Front Oncol. 2021;11:759346.PubMedPubMedCentralCrossRef
207.
go back to reference Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021;12(1):325.PubMedPubMedCentralCrossRef Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021;12(1):325.PubMedPubMedCentralCrossRef
208.
go back to reference Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53(3):333–41.PubMedCrossRef Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53(3):333–41.PubMedCrossRef
209.
go back to reference Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, et al. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer. 2024;23(1):113.PubMedPubMedCentralCrossRef Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, et al. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer. 2024;23(1):113.PubMedPubMedCentralCrossRef
210.
go back to reference Tai F, Zhai R, Ding K, Zhang Y, Yang H, Li H et al. Long non–coding RNA lung cancer–associated transcript 1 regulates ferroptosis via microRNA–34a–5p–mediated GTP cyclohydrolase 1 downregulation in lung cancer cells. Int J Oncol. 2024;64(6). Tai F, Zhai R, Ding K, Zhang Y, Yang H, Li H et al. Long non–coding RNA lung cancer–associated transcript 1 regulates ferroptosis via microRNA–34a–5p–mediated GTP cyclohydrolase 1 downregulation in lung cancer cells. Int J Oncol. 2024;64(6).
211.
go back to reference Li SQ, Lv F, Xu WT, Yin YX, Wei HT, Li KZ, et al. lncRNA SNHG4 inhibits ferroptosis by orchestrating miR-150-5p/c-Myb axis in colorectal cancer. Int J Biol Macromol. 2024;268(Pt 2):131961.PubMedCrossRef Li SQ, Lv F, Xu WT, Yin YX, Wei HT, Li KZ, et al. lncRNA SNHG4 inhibits ferroptosis by orchestrating miR-150-5p/c-Myb axis in colorectal cancer. Int J Biol Macromol. 2024;268(Pt 2):131961.PubMedCrossRef
212.
go back to reference Liu M, Xu C, Yang H, Jiang Q, Chen G, Wang W, et al. Pro-oncogene FBI-1 inhibits the ferroptosis of prostate carcinoma PC-3 cells via the microRNA-324-3p/GPX4 axis. J Cancer. 2024;15(13):4097–112.PubMedPubMedCentralCrossRef Liu M, Xu C, Yang H, Jiang Q, Chen G, Wang W, et al. Pro-oncogene FBI-1 inhibits the ferroptosis of prostate carcinoma PC-3 cells via the microRNA-324-3p/GPX4 axis. J Cancer. 2024;15(13):4097–112.PubMedPubMedCentralCrossRef
213.
go back to reference Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted Mir-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 2024;43(27):2104–14.PubMedCrossRef Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted Mir-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 2024;43(27):2104–14.PubMedCrossRef
214.
go back to reference Cao W, He Y, Lan J, Luo S, Sun B, Xiao C, et al. FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis. Cell Death Dis. 2024;15(4):239.PubMedPubMedCentralCrossRef Cao W, He Y, Lan J, Luo S, Sun B, Xiao C, et al. FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis. Cell Death Dis. 2024;15(4):239.PubMedPubMedCentralCrossRef
215.
go back to reference Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31.
216.
go back to reference Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death and Differentiation. 2022;29(11):2190–202. Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death and Differentiation. 2022;29(11):2190–202.
217.
go back to reference Li K, Lin C, Li M, Xu K, He Y, Mao Y, et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS nano. 2022;16(2):2381–98. Li K, Lin C, Li M, Xu K, He Y, Mao Y, et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS nano. 2022;16(2):2381–98.
218.
go back to reference Wang H, An P, Xie E, Wu Q, Fang X, Gao H, et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology (Baltimore, Md). 2017;66(2):449–65. Wang H, An P, Xie E, Wu Q, Fang X, Gao H, et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology (Baltimore, Md). 2017;66(2):449–65.
219.
go back to reference Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Sci. 2020;6(1):41–53. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Sci. 2020;6(1):41–53.
220.
go back to reference Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nature Chem Bio. 2020;16(12):1351–60. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nature Chem Bio. 2020;16(12):1351–60.
221.
go back to reference Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.
222.
go back to reference Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92.
223.
go back to reference Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9.
224.
go back to reference Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Develop Cell. 2014;29(6):686–700. Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Develop Cell. 2014;29(6):686–700.
225.
go back to reference Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11775–80. Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11775–80.
226.
go back to reference Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochi et Biophy Acta. 2012;1823(2):484–92. Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochi et Biophy Acta. 2012;1823(2):484–92.
227.
go back to reference Xiao C, Yang L, Jin L, Lin W, Zhang F, Huang S, et al. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer. Front Gene. 2022;13:962028. Xiao C, Yang L, Jin L, Lin W, Zhang F, Huang S, et al. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer. Front Gene. 2022;13:962028.
228.
go back to reference Yang L, Zhang Y, Wang Y, Jiang P, Liu F, Feng N. Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: a pan-cancer analysis. Front Pharm. 2022;13:938134. Yang L, Zhang Y, Wang Y, Jiang P, Liu F, Feng N. Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: a pan-cancer analysis. Front Pharm. 2022;13:938134.
229.
go back to reference Huang X, Wang T, Ye J, Feng H, Zhang X, Ma X, et al. FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis. Front Gene. 2022;13:994741. Huang X, Wang T, Ye J, Feng H, Zhang X, Ma X, et al. FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis. Front Gene. 2022;13:994741.
230.
go back to reference Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 2004;10(14):4661–9. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 2004;10(14):4661–9.
231.
go back to reference Wu G, Peng H, Tang M, Yang M, Wang J, Hu Y, et al. ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression. EBioMedicine. 2021;71:103558. Wu G, Peng H, Tang M, Yang M, Wang J, Hu Y, et al. ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression. EBioMedicine. 2021;71:103558.
232.
go back to reference Chen Z, Guo Y, Zhao D, Zou Q, Yu F, Zhang L, et al. Comprehensive Analysis Revealed that CDKN2A is a Biomarker for Immune Infiltrates in Multiple Cancers. Front Cell Dev Biol. 2021;9:808208. Chen Z, Guo Y, Zhao D, Zou Q, Yu F, Zhang L, et al. Comprehensive Analysis Revealed that CDKN2A is a Biomarker for Immune Infiltrates in Multiple Cancers. Front Cell Dev Biol. 2021;9:808208.
233.
go back to reference Cheng T, Wu Y, Liu Z, Yu Y, Sun S, Guo M, et al. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol. 2022;13:970950. Cheng T, Wu Y, Liu Z, Yu Y, Sun S, Guo M, et al. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol. 2022;13:970950.
234.
go back to reference Li X, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. American J Cancer Research. 2022;12(8):3561–80. Li X, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. American J Cancer Research. 2022;12(8):3561–80.
235.
go back to reference Casteel J, Miernyk JA, Thelen JJ. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis. Plant Physiol Biochem. 2011;49(11):1355–61. Casteel J, Miernyk JA, Thelen JJ. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis. Plant Physiol Biochem. 2011;49(11):1355–61.
236.
go back to reference Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell reports. 2019;27(5):1376–86.e6. Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell reports. 2019;27(5):1376–86.e6.
237.
go back to reference Soreze Y, Boutron A, Habarou F, Barnerias C, Nonnenmacher L, Delpech H, et al. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J rare dis. 2013;8:192. Soreze Y, Boutron A, Habarou F, Barnerias C, Nonnenmacher L, Delpech H, et al. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J rare dis. 2013;8:192.
238.
go back to reference Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J trans med. 2022;20(1):452. Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J trans med. 2022;20(1):452.
239.
go back to reference Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, et al. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 2022;7(1):54. Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, et al. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 2022;7(1):54.
240.
go back to reference Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, et al. A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale horizons. 2022;7(2):198–210. Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, et al. A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale horizons. 2022;7(2):198–210.
241.
go back to reference Zhang F, Li F, Lu GH, Nie W, Zhang L, Lv Y, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS nano. 2019;13(5):5662–73. Zhang F, Li F, Lu GH, Nie W, Zhang L, Lv Y, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS nano. 2019;13(5):5662–73.
242.
go back to reference Li WP, Su CH, Chang YC, Lin YJ, Yeh CS. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS nano. 2016;10(2):2017–27. Li WP, Su CH, Chang YC, Lin YJ, Yeh CS. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS nano. 2016;10(2):2017–27.
243.
go back to reference Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy. 2021;17(12):4266–85. Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy. 2021;17(12):4266–85.
244.
go back to reference Zhou L, Chen J, Li R, Wei L, Xiong H, Wang C, et al. Metal-polyphenol-network coated prussian blue nanoparticles for synergistic ferroptosis and apoptosis via triggered GPX4 inhibition and concurrent in situ bleomycin toxification. Small (Weinheim an der Bergstrasse, Germany). 2021;17(47):e2103919. Zhou L, Chen J, Li R, Wei L, Xiong H, Wang C, et al. Metal-polyphenol-network coated prussian blue nanoparticles for synergistic ferroptosis and apoptosis via triggered GPX4 inhibition and concurrent in situ bleomycin toxification. Small (Weinheim an der Bergstrasse, Germany). 2021;17(47):e2103919.
245.
go back to reference Fan R, Chen C, Mu M, Chuan D, Liu H, Hou H, et al. Engineering MMP-2 activated nanoparticles carrying B7-H3 bispecific antibodies for ferroptosis-enhanced glioblastoma immunotherapy. ACS nano. 2023;17(10):9126–39. Fan R, Chen C, Mu M, Chuan D, Liu H, Hou H, et al. Engineering MMP-2 activated nanoparticles carrying B7-H3 bispecific antibodies for ferroptosis-enhanced glioblastoma immunotherapy. ACS nano. 2023;17(10):9126–39.
246.
go back to reference Zhao X, Wang Z, Wu G, Yin L, Xu L, Wang N, et al. Apigenin-7-glucoside-loaded nanoparticle alleviates intestinal ischemia-reperfusion by ATF3/SLC7A11-mediated ferroptosis. J Control Release. 2024;366:182–93. Zhao X, Wang Z, Wu G, Yin L, Xu L, Wang N, et al. Apigenin-7-glucoside-loaded nanoparticle alleviates intestinal ischemia-reperfusion by ATF3/SLC7A11-mediated ferroptosis. J Control Release. 2024;366:182–93.
247.
go back to reference Wang N, Zhang Q, Wang Z, Liu Y, Yang S, Zhao X, et al. A chemo/chemodynamic nanoparticle based on hyaluronic acid induces ferroptosis and apoptosis for triple-negative breast cancer therapy. Carbohydrate polymers. 2024;329:121795. Wang N, Zhang Q, Wang Z, Liu Y, Yang S, Zhao X, et al. A chemo/chemodynamic nanoparticle based on hyaluronic acid induces ferroptosis and apoptosis for triple-negative breast cancer therapy. Carbohydrate polymers. 2024;329:121795.
248.
go back to reference Yuan H, Xia P, Sun X, Ma J, Xu X, Fu C, et al. Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small (Weinheim an der Bergstrasse, Germany). 2022;18(41):e2202161. Yuan H, Xia P, Sun X, Ma J, Xu X, Fu C, et al. Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small (Weinheim an der Bergstrasse, Germany). 2022;18(41):e2202161.
249.
go back to reference Zhang J, Zhou K, Lin J, Yao X, Ju D, Zeng X, et al. Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles. Biomaterials. 2023;303:122395. Zhang J, Zhou K, Lin J, Yao X, Ju D, Zeng X, et al. Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles. Biomaterials. 2023;303:122395.
250.
go back to reference Luo T, Zheng Q, Shao L, Ma T, Mao L, Wang M. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angewandte Chemie (International ed in English). 2022;61(39):e202206277. Luo T, Zheng Q, Shao L, Ma T, Mao L, Wang M. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angewandte Chemie (International ed in English). 2022;61(39):e202206277.
251.
go back to reference Ding X, Wang Z, Yu Q, Michał N, Roman S, Liu Y, et al. Superoxide Dismutase-Like Regulated Fe/Ppa@PDA/B for Synergistically Targeting Ferroptosis/Apoptosis to Enhance Anti-Tumor Efficacy. Adv Healthc Mater. 2023;12(29):e2301824. Ding X, Wang Z, Yu Q, Michał N, Roman S, Liu Y, et al. Superoxide Dismutase-Like Regulated Fe/Ppa@PDA/B for Synergistically Targeting Ferroptosis/Apoptosis to Enhance Anti-Tumor Efficacy. Adv Healthc Mater. 2023;12(29):e2301824.
252.
go back to reference Li Y, Liu J, Chen Y, Weichselbaum RR, Lin W. Nanoparticles synergize ferroptosis and cuproptosis to potentiate cancer immunotherapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024;11(23):e2310309. Li Y, Liu J, Chen Y, Weichselbaum RR, Lin W. Nanoparticles synergize ferroptosis and cuproptosis to potentiate cancer immunotherapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024;11(23):e2310309.
253.
go back to reference Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 2022;10(33):6296–306. Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 2022;10(33):6296–306.
254.
go back to reference Yang Z, Zhao Z, Cheng H, Shen Y, Xie A, Zhu M. In-situ fabrication of novel Au nanoclusters-Cu(2+)@sodium alginate/hyaluronic acid nanohybrid gels for cuproptosis enhanced photothermal/photodynamic/chemodynamic therapy via tumor microenvironment regulation. J Colloid Interface Sci. 2023;641:215–28. Yang Z, Zhao Z, Cheng H, Shen Y, Xie A, Zhu M. In-situ fabrication of novel Au nanoclusters-Cu(2+)@sodium alginate/hyaluronic acid nanohybrid gels for cuproptosis enhanced photothermal/photodynamic/chemodynamic therapy via tumor microenvironment regulation. J Colloid Interface Sci. 2023;641:215–28.
255.
go back to reference Lu X, Chen X, Lin C, Yi Y, Zhao S, Zhu B, et al. Elesclomol loaded copper oxide nanoplatform triggers cuproptosis to enhance antitumor immunotherapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024;11(18):e2309984. Lu X, Chen X, Lin C, Yi Y, Zhao S, Zhu B, et al. Elesclomol loaded copper oxide nanoplatform triggers cuproptosis to enhance antitumor immunotherapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024;11(18):e2309984.
256.
go back to reference Zhao F, Yu H, Liang L, Wang C, Shi D, Zhang X, et al. Redox homeostasis disruptors based on metal-phenolic network nanoparticles for chemo/chemodynamic synergistic tumor therapy through activating apoptosis and cuproptosis. Adv Healthc Mater. 2023;12(29):e2301346. Zhao F, Yu H, Liang L, Wang C, Shi D, Zhang X, et al. Redox homeostasis disruptors based on metal-phenolic network nanoparticles for chemo/chemodynamic synergistic tumor therapy through activating apoptosis and cuproptosis. Adv Healthc Mater. 2023;12(29):e2301346.
257.
go back to reference Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, et al. Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy. Angewandte Chemie (International ed in English). 2023;62(12):e202213922. Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, et al. Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy. Angewandte Chemie (International ed in English). 2023;62(12):e202213922.
Metadata
Title
Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope
Authors
Xiaojie Zhang
Bufu Tang
Jinhua Luo
Yang Yang
Qiaoyou Weng
Shiji Fang
Zhongwei Zhao
Jianfei Tu
Minjiang Chen
Jiansong Ji
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-02130-8

ASH 2024 Annual Meeting Coverage

inMIND supports tafasitamab addition in follicular lymphoma

Combining tafasitamab with lenalidomide and rituximab significantly improves progression-free survival for patients with relapsed or refractory follicular lymphoma.

Featuring the official presentation video

Read more
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now