18-06-2023 | CT Angiography | Original Article
Exhaustive matching of 3D/2D coronary artery structure based on imperfect segmentations
Published in: International Journal of Computer Assisted Radiology and Surgery
Login to get accessAbstract
Purpose
The 3D/2D coronary artery registration technique has been developed for the guidance of the percutaneous coronary intervention. It introduces the absent 3D structural information by fusing the pre-operative computed tomography angiography (CTA) volume with the intra-operative X-ray coronary angiography (XCA) image. To conduct the registration, an accurate matching of the coronary artery structures extracted from the two imaging modalities is an essential step.
Methods
In this study, we propose an exhaustive matching algorithm to solve this problem. First, by recognizing the fake bifurcations in the XCA image caused by projection and concatenating the fractured centerline fragments, the original XCA topological structure is restored. Then, the vessel segments in the two imaging modalities are removed orderly, which generates all the potential structures to simulate the imperfect segmentation results. Finally, the CTA and XCA structures are compared pairwise, and the matching result is obtained by searching for the structure pair with the minimum similarity score.
Results
The experiments were conducted based on a clinical dataset collected from 46 patients and comprising of 240 CTA/XCA data pairs. And the results show that the proposed method is very effective, which achieves an accuracy of 0.960 for recognizing the fake bifurcations in the XCA image and an accuracy of 0.896 for matching the CTA/XCA vascular structures.
Conclusion
The proposed exhaustive structure matching algorithm is simple and straightforward without any impractical assumption or time-consuming computations. With this method, the influence of the imperfect segmentations is eliminated and the accurate matching could be achieved efficiently. This lays a good foundation for the subsequent 3D/2D coronary artery registration task.