Skip to main content
Top
Published in:

13-02-2024 | COVID-19 | Review Article

Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers

Authors: Rasoul Ebrahimi, Fatemeh Nasri, Tahereh Kalantari

Published in: Annals of Hematology | Issue 6/2024

Login to get access

Abstract

The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Literature
1.
2.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506PubMedPubMedCentralCrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506PubMedPubMedCentralCrossRef
3.
4.
go back to reference Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama 323(13):1239–1242PubMedCrossRef Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama 323(13):1239–1242PubMedCrossRef
5.
go back to reference Aktas G (2020) A comprehensive review on rational and effective treatment strategies against an invisible enemy; SARS Cov-2 infection. Exp Biomed Res 3(4):293–311CrossRef Aktas G (2020) A comprehensive review on rational and effective treatment strategies against an invisible enemy; SARS Cov-2 infection. Exp Biomed Res 3(4):293–311CrossRef
6.
go back to reference Aktas G, Balci B, Yilmaz S, Bardak H, Duman TT, Civil C (2022) Characteristics of Covid-19 infection with the original SARS-Cov-2 virus and other variants: a comparative review. J Bionic Mem 2(3):96–112 Aktas G, Balci B, Yilmaz S, Bardak H, Duman TT, Civil C (2022) Characteristics of Covid-19 infection with the original SARS-Cov-2 virus and other variants: a comparative review. J Bionic Mem 2(3):96–112
7.
8.
go back to reference Khalid A, Ali Jaffar M, Khan T, Abbas Lail R, Ali S, Aktas G et al (2021) Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: a retrospective comparative analysis. Hematology 26(1):529–542PubMedCrossRef Khalid A, Ali Jaffar M, Khan T, Abbas Lail R, Ali S, Aktas G et al (2021) Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: a retrospective comparative analysis. Hematology 26(1):529–542PubMedCrossRef
9.
go back to reference Aktas G (2021) Hematological predictors of novel coronavirus infection. Rev Assoc Med Bras 67:1–2CrossRef Aktas G (2021) Hematological predictors of novel coronavirus infection. Rev Assoc Med Bras 67:1–2CrossRef
10.
go back to reference Fei Y, Tang N, Liu H, Cao W (2020) Coagulation dysfunctiona hallmark in COVID-19. Arch Pathol Lab Med 144(10):1223–1229PubMedCrossRef Fei Y, Tang N, Liu H, Cao W (2020) Coagulation dysfunctiona hallmark in COVID-19. Arch Pathol Lab Med 144(10):1223–1229PubMedCrossRef
11.
go back to reference Hadid T, Kafri Z, Al-Katib A (2021) Coagulation and anticoagulation in COVID-19. Blood Rev 47:100761PubMedCrossRef Hadid T, Kafri Z, Al-Katib A (2021) Coagulation and anticoagulation in COVID-19. Blood Rev 47:100761PubMedCrossRef
12.
go back to reference Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T (2020) Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 57(6):389–399PubMedCrossRef Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T (2020) Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 57(6):389–399PubMedCrossRef
14.
go back to reference Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 183(6):1735PubMedPubMedCentralCrossRef Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 183(6):1735PubMedPubMedCentralCrossRef
15.
go back to reference Lei J, Kusov Y, Hilgenfeld R (2018) Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res 149:58–74PubMedCrossRef Lei J, Kusov Y, Hilgenfeld R (2018) Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res 149:58–74PubMedCrossRef
16.
go back to reference Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef
17.
go back to reference Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16(11):676–689PubMedCrossRef Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16(11):676–689PubMedCrossRef
18.
go back to reference Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168PubMedCrossRef Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168PubMedCrossRef
20.
go back to reference Gabryelska A, Kuna P, Antczak A, Białasiewicz P, Panek M (2019) IL-33 Mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily. Front Immunol 10:692PubMedPubMedCentralCrossRef Gabryelska A, Kuna P, Antczak A, Białasiewicz P, Panek M (2019) IL-33 Mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily. Front Immunol 10:692PubMedPubMedCentralCrossRef
21.
go back to reference Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD et al (2020) Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med 8(8):750–752PubMedPubMedCentralCrossRef Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD et al (2020) Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med 8(8):750–752PubMedPubMedCentralCrossRef
22.
go back to reference Hayakawa H, Hayakawa M, Kume A, Tominaga S (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 282(36):26369–26380PubMedCrossRef Hayakawa H, Hayakawa M, Kume A, Tominaga S (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 282(36):26369–26380PubMedCrossRef
24.
go back to reference Zeng Z, Hong X-Y, Zhou H, Liao F-L, Guo S, Li Y et al (2020) Serum soluble ST2 as a novel biomarker reflecting inflammatory status and disease severity in patients with COVID-19. Available at SSRN 3594550 Zeng Z, Hong X-Y, Zhou H, Liao F-L, Guo S, Li Y et al (2020) Serum soluble ST2 as a novel biomarker reflecting inflammatory status and disease severity in patients with COVID-19. Available at SSRN 3594550
25.
go back to reference Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al (2020) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):811–818PubMedCrossRef Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al (2020) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):811–818PubMedCrossRef
26.
go back to reference Zeng Z, Hong XY, Li Y, Chen W, Ye G, Li Y, Luo Y (2020) Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med 14(17):1619–1629PubMedCrossRef Zeng Z, Hong XY, Li Y, Chen W, Ye G, Li Y, Luo Y (2020) Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med 14(17):1619–1629PubMedCrossRef
27.
go back to reference Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84(4):1045–1049PubMedPubMedCentralCrossRef Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84(4):1045–1049PubMedPubMedCentralCrossRef
28.
go back to reference Bazzoni F, Cassatella MA, Rossi F, Ceska M, Dewald B, Baggiolini M (1991) Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8. J Exp Med 173(3):771–774PubMedCrossRef Bazzoni F, Cassatella MA, Rossi F, Ceska M, Dewald B, Baggiolini M (1991) Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8. J Exp Med 173(3):771–774PubMedCrossRef
29.
go back to reference Ma A, Zhang L, Ye X, Chen J, Yu J, Zhuang L et al (2021) High levels of circulating IL-8 and soluble IL-2R are associated with prolonged illness in patients with severe COVID-19. Front Immunol 12:626235PubMedPubMedCentralCrossRef Ma A, Zhang L, Ye X, Chen J, Yu J, Zhuang L et al (2021) High levels of circulating IL-8 and soluble IL-2R are associated with prolonged illness in patients with severe COVID-19. Front Immunol 12:626235PubMedPubMedCentralCrossRef
30.
go back to reference Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y et al (2020) IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A 117(36):22351–22356PubMedPubMedCentralCrossRef Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y et al (2020) IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A 117(36):22351–22356PubMedPubMedCentralCrossRef
31.
go back to reference Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA et al (2020) Neutrophil extracellular traps in COVID-19. JCI Insight 5(11). Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA et al (2020) Neutrophil extracellular traps in COVID-19. JCI Insight 5(11).
32.
go back to reference Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511PubMedCrossRef Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511PubMedCrossRef
33.
34.
go back to reference Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107(3):363–369PubMedCrossRef Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107(3):363–369PubMedCrossRef
35.
go back to reference Kushner I, Jiang SL, Zhang D, Lozanski G, Samols D (1995) Do post-transcriptional mechanisms participate in induction of C-reactive protein and serum amyloid A by IL-6 and IL-1? Ann N Y Acad Sci 762:102–107PubMedCrossRef Kushner I, Jiang SL, Zhang D, Lozanski G, Samols D (1995) Do post-transcriptional mechanisms participate in induction of C-reactive protein and serum amyloid A by IL-6 and IL-1? Ann N Y Acad Sci 762:102–107PubMedCrossRef
36.
go back to reference Calabró P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16):1930–1932PubMedCrossRef Calabró P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16):1930–1932PubMedCrossRef
37.
38.
go back to reference Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, Berger JS (2021) C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J 42(23):2270–2279PubMedPubMedCentralCrossRef Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, Berger JS (2021) C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J 42(23):2270–2279PubMedPubMedCentralCrossRef
39.
go back to reference Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B (2020) C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis 14:1753466620937175PubMedPubMedCentralCrossRef Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B (2020) C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis 14:1753466620937175PubMedPubMedCentralCrossRef
40.
go back to reference Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41(6):1211–1219PubMedCrossRef Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41(6):1211–1219PubMedCrossRef
43.
go back to reference Paliogiannis P, Mangoni AA, Cangemi M, Fois AG, Carru C, Zinellu A (2021) Serum albumin concentrations are associated with disease severity and outcomes in coronavirus 19 disease (COVID-19): a systematic review and meta-analysis. Clin Exp Med 21(3):343–354PubMedPubMedCentralCrossRef Paliogiannis P, Mangoni AA, Cangemi M, Fois AG, Carru C, Zinellu A (2021) Serum albumin concentrations are associated with disease severity and outcomes in coronavirus 19 disease (COVID-19): a systematic review and meta-analysis. Clin Exp Med 21(3):343–354PubMedPubMedCentralCrossRef
44.
go back to reference Bansal A, Prasad JB (2022) Liver profile in COVID-19: a meta-analysis. Z Gesundh Wiss 30(1):253–258PubMedCrossRef Bansal A, Prasad JB (2022) Liver profile in COVID-19: a meta-analysis. Z Gesundh Wiss 30(1):253–258PubMedCrossRef
45.
go back to reference Parohan M, Yaghoubi S, Seraji A (2020) Liver injury is associated with severe coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of retrospective studies. Hepatol Res 50(8):924–935PubMedPubMedCentralCrossRef Parohan M, Yaghoubi S, Seraji A (2020) Liver injury is associated with severe coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of retrospective studies. Hepatol Res 50(8):924–935PubMedPubMedCentralCrossRef
46.
go back to reference Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J et al (2020) Clinical characteristics of 82 cases of death from COVID-19. PLoS One 15(7):e0235458 Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J et al (2020) Clinical characteristics of 82 cases of death from COVID-19. PLoS One 15(7):e0235458
47.
go back to reference Torun A, Çakırca TD, Çakırca G (1992) Portakal RD (2021) The value of C-reactive protein/albumin, fibrinogen/albumin, and neutrophil/lymphocyte ratios in predicting the severity of CoVID-19. Rev Assoc Med Bras 67(3):431–436CrossRef Torun A, Çakırca TD, Çakırca G (1992) Portakal RD (2021) The value of C-reactive protein/albumin, fibrinogen/albumin, and neutrophil/lymphocyte ratios in predicting the severity of CoVID-19. Rev Assoc Med Bras 67(3):431–436CrossRef
48.
go back to reference Park JE, Chung KS, Song JH, Kim SY, Kim EY, Jung JY et al (2018) The C-reactive protein/albumin ratio as a predictor of mortality in critically ill patients. J Clin Med 7(10):333PubMedPubMedCentralCrossRef Park JE, Chung KS, Song JH, Kim SY, Kim EY, Jung JY et al (2018) The C-reactive protein/albumin ratio as a predictor of mortality in critically ill patients. J Clin Med 7(10):333PubMedPubMedCentralCrossRef
49.
go back to reference Kalabin A, Mani VR, Valdivieso SC, Donaldson B (2021) Does C reactive protein/albumin ratio have prognostic value in patients with COVID-19. J Infect Dev Ctries 15(08):1086–1093PubMedCrossRef Kalabin A, Mani VR, Valdivieso SC, Donaldson B (2021) Does C reactive protein/albumin ratio have prognostic value in patients with COVID-19. J Infect Dev Ctries 15(08):1086–1093PubMedCrossRef
50.
go back to reference Karagoz I, Ozer B, Ital I, Turkoglu M, Disikirik A, Ozer S (2023) C-reactive protein-to-serum albumin ratio as a marker of prognosis in adult intensive care population. Bratisl Lek Listy 124(4):277–279 Karagoz I, Ozer B, Ital I, Turkoglu M, Disikirik A, Ozer S (2023) C-reactive protein-to-serum albumin ratio as a marker of prognosis in adult intensive care population. Bratisl Lek Listy 124(4):277–279
52.
go back to reference Bilgin S, Kurtkulagi O, Tel BMA, Duman TT, Kahveci G, Khalid A, Aktas G (2021) Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with type 2 diabetes mellitus? The CARE TIME study. Prim Care Diabetes 15(6):1071–1074PubMedCrossRef Bilgin S, Kurtkulagi O, Tel BMA, Duman TT, Kahveci G, Khalid A, Aktas G (2021) Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with type 2 diabetes mellitus? The CARE TIME study. Prim Care Diabetes 15(6):1071–1074PubMedCrossRef
53.
go back to reference Xie Q, Zhou Y, Xu Z, Yang Y, Kuang D, You H et al (2011) The ratio of CRP to prealbumin levels predict mortality in patients with hospital-acquired acute kidney injury. BMC Nephrol 12:30PubMedPubMedCentralCrossRef Xie Q, Zhou Y, Xu Z, Yang Y, Kuang D, You H et al (2011) The ratio of CRP to prealbumin levels predict mortality in patients with hospital-acquired acute kidney injury. BMC Nephrol 12:30PubMedPubMedCentralCrossRef
54.
go back to reference Kalyon S, Gültop F, Şimşek F, Adaş M (2021) Relationships of the neutrophil-lymphocyte and CRP-albumin ratios with the duration of hospitalization and fatality in geriatric patients with COVID-19. J Int Med Res 49(9):3000605211046112PubMedCrossRef Kalyon S, Gültop F, Şimşek F, Adaş M (2021) Relationships of the neutrophil-lymphocyte and CRP-albumin ratios with the duration of hospitalization and fatality in geriatric patients with COVID-19. J Int Med Res 49(9):3000605211046112PubMedCrossRef
55.
go back to reference Karzai W, Oberhoffer M, Meier-Hellmann A, Reinhart K (1997) Procalcitonin--a new indicator of the systemic response to severe infections. Infection 25(6):329–334PubMedPubMedCentralCrossRef Karzai W, Oberhoffer M, Meier-Hellmann A, Reinhart K (1997) Procalcitonin--a new indicator of the systemic response to severe infections. Infection 25(6):329–334PubMedPubMedCentralCrossRef
56.
go back to reference Organization WH (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland, p 2017 Organization WH (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland, p 2017
57.
go back to reference Delèvaux I, André M, Colombier M, Albuisson E, Meylheuc F, Bègue RJ et al (2003) Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann Rheum Dis 62(4):337–340PubMedPubMedCentralCrossRef Delèvaux I, André M, Colombier M, Albuisson E, Meylheuc F, Bègue RJ et al (2003) Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann Rheum Dis 62(4):337–340PubMedPubMedCentralCrossRef
58.
go back to reference Russwurm S, Wiederhold M, Oberhoffer M, Stonans I, Zipfel PF, Reinhart K (1999) Molecular aspects and natural source of procalcitonin. Clin Chem Lab Med 37(8):789–797PubMedCrossRef Russwurm S, Wiederhold M, Oberhoffer M, Stonans I, Zipfel PF, Reinhart K (1999) Molecular aspects and natural source of procalcitonin. Clin Chem Lab Med 37(8):789–797PubMedCrossRef
59.
go back to reference Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr 16(3):251–259PubMedPubMedCentralCrossRef Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr 16(3):251–259PubMedPubMedCentralCrossRef
60.
go back to reference Chen X, Yang Y, Huang M, Liu L, Zhang X, Xu J et al (2020) Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: a retrospective study from a single center. J Med Virol 92(9):1572–1579PubMedCrossRef Chen X, Yang Y, Huang M, Liu L, Zhang X, Xu J et al (2020) Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: a retrospective study from a single center. J Med Virol 92(9):1572–1579PubMedCrossRef
61.
go back to reference Yunus I, Fasih A, Wang Y (2018) The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS One 13(11):e0206527PubMedPubMedCentralCrossRef Yunus I, Fasih A, Wang Y (2018) The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS One 13(11):e0206527PubMedPubMedCentralCrossRef
62.
go back to reference Wolfisberg S, Gregoriano C, Schuetz P (2022) Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit Rev Clin Lab Sci 59(1):54–65PubMedCrossRef Wolfisberg S, Gregoriano C, Schuetz P (2022) Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit Rev Clin Lab Sci 59(1):54–65PubMedCrossRef
64.
go back to reference Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518PubMedPubMedCentralCrossRef Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518PubMedPubMedCentralCrossRef
65.
go back to reference Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M et al (2020) Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol 146(1):128–36.e4PubMedPubMedCentralCrossRef Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M et al (2020) Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol 146(1):128–36.e4PubMedPubMedCentralCrossRef
66.
go back to reference Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS (2020) IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 53:13–24PubMedPubMedCentralCrossRef Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS (2020) IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 53:13–24PubMedPubMedCentralCrossRef
67.
go back to reference Abbasifard M, Khorramdelazad H (2020) The bio-mission of interleukin-6 in the pathogenesis of COVID-19: a brief look at potential therapeutic tactics. Life Sci 257:118097PubMedPubMedCentralCrossRef Abbasifard M, Khorramdelazad H (2020) The bio-mission of interleukin-6 in the pathogenesis of COVID-19: a brief look at potential therapeutic tactics. Life Sci 257:118097PubMedPubMedCentralCrossRef
68.
go back to reference Potere N, Batticciotto A, Vecchié A, Porreca E, Cappelli A, Abbate A et al (2021) The role of IL-6 and IL-6 blockade in COVID-19. Expert Rev Clin Immunol 17(6):601–618PubMedCrossRef Potere N, Batticciotto A, Vecchié A, Porreca E, Cappelli A, Abbate A et al (2021) The role of IL-6 and IL-6 blockade in COVID-19. Expert Rev Clin Immunol 17(6):601–618PubMedCrossRef
69.
go back to reference Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y et al (2020) Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin Infect Dis 71(8):1937–1942PubMedCrossRef Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y et al (2020) Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin Infect Dis 71(8):1937–1942PubMedCrossRef
70.
go back to reference Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J et al (2020) The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 12(7):e12421PubMedPubMedCentralCrossRef Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J et al (2020) The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 12(7):e12421PubMedPubMedCentralCrossRef
71.
go back to reference Saraiva M, Vieira P, O'Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217(1):e20190418PubMedCrossRef Saraiva M, Vieira P, O'Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217(1):e20190418PubMedCrossRef
72.
go back to reference Moore KW, de Waal MR, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRef Moore KW, de Waal MR, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRef
73.
go back to reference Lu L, Zhang H, Dauphars DJ, He YW (2021) A potential role of interleukin 10 in COVID-19 Pathogenesis. Trends Immunol 42(1):3–5PubMedCrossRef Lu L, Zhang H, Dauphars DJ, He YW (2021) A potential role of interleukin 10 in COVID-19 Pathogenesis. Trends Immunol 42(1):3–5PubMedCrossRef
75.
go back to reference Han H, Ma Q, Li C, Liu R, Zhao L, Wang W et al (2020) Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 9(1):1123–1130PubMedPubMedCentralCrossRef Han H, Ma Q, Li C, Liu R, Zhao L, Wang W et al (2020) Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 9(1):1123–1130PubMedPubMedCentralCrossRef
76.
go back to reference Dhar SK, Vishnupriyan K, Damodar S, Gujar S, Das M (2021) IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon 7(2):e06155PubMedPubMedCentralCrossRef Dhar SK, Vishnupriyan K, Damodar S, Gujar S, Das M (2021) IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon 7(2):e06155PubMedPubMedCentralCrossRef
77.
go back to reference Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J et al (2020) Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 5(13) Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J et al (2020) Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 5(13)
78.
go back to reference Weitz JI, Fredenburgh JC, Eikelboom JW (2017) A test in context: D-dimer. J Am Coll Cardiol 70(19):2411–2420PubMedCrossRef Weitz JI, Fredenburgh JC, Eikelboom JW (2017) A test in context: D-dimer. J Am Coll Cardiol 70(19):2411–2420PubMedCrossRef
79.
go back to reference Adam SS, Key NS, Greenberg CS (2009) D-dimer antigen: current concepts and future prospects. Blood 113(13):2878–2887PubMedCrossRef Adam SS, Key NS, Greenberg CS (2009) D-dimer antigen: current concepts and future prospects. Blood 113(13):2878–2887PubMedCrossRef
80.
go back to reference Cohen AT, Spiro TE, Spyropoulos AC, Desanctis YH, Homering M, Büller HR et al (2014) D-dimer as a predictor of venous thromboembolism in acutely ill, hospitalized patients: a subanalysis of the randomized controlled MAGELLAN trial. J Thromb Haemost 12(4):479–487PubMedCrossRef Cohen AT, Spiro TE, Spyropoulos AC, Desanctis YH, Homering M, Büller HR et al (2014) D-dimer as a predictor of venous thromboembolism in acutely ill, hospitalized patients: a subanalysis of the randomized controlled MAGELLAN trial. J Thromb Haemost 12(4):479–487PubMedCrossRef
81.
go back to reference Rao KM, Pieper CS, Currie MS, Cohen HJ (1994) Variability of plasma IL-6 and crosslinked fibrin dimers over time in community dwelling elderly subjects. Am J Clin Pathol 102(6):802–805PubMedCrossRef Rao KM, Pieper CS, Currie MS, Cohen HJ (1994) Variability of plasma IL-6 and crosslinked fibrin dimers over time in community dwelling elderly subjects. Am J Clin Pathol 102(6):802–805PubMedCrossRef
82.
go back to reference Shorr AF, Thomas SJ, Alkins SA, Fitzpatrick TM, Ling GS (2002) D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest 121(4):1262–1268PubMedCrossRef Shorr AF, Thomas SJ, Alkins SA, Fitzpatrick TM, Ling GS (2002) D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest 121(4):1262–1268PubMedCrossRef
83.
go back to reference Lowe GD, Yarnell JW, Rumley A, Bainton D, Sweetnam PM (2001) C-reactive protein, fibrin D-dimer, and incident ischemic heart disease in the Speedwell study: are inflammation and fibrin turnover linked in pathogenesis? Arterioscler Thromb Vasc Biol 21(4):603–610 Lowe GD, Yarnell JW, Rumley A, Bainton D, Sweetnam PM (2001) C-reactive protein, fibrin D-dimer, and incident ischemic heart disease in the Speedwell study: are inflammation and fibrin turnover linked in pathogenesis? Arterioscler Thromb Vasc Biol 21(4):603–610
84.
go back to reference Xu Y, Qian Y, Gu Q, Tang J (2020) Relationship between D-dimer concentration and inflammatory factors or organ function in patients with coronavirus disease 2019. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 32(5):559–563PubMed Xu Y, Qian Y, Gu Q, Tang J (2020) Relationship between D-dimer concentration and inflammatory factors or organ function in patients with coronavirus disease 2019. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 32(5):559–563PubMed
85.
go back to reference Moreno G, Carbonell R, Bodí M, Rodríguez A (2021) Systematic review of the prognostic utility of D-dimer, disseminated intravascular coagulation, and anticoagulant therapy in COVID-19 critically ill patients. Med Intensiva (Engl Ed) 45(1):42–55PubMedCrossRef Moreno G, Carbonell R, Bodí M, Rodríguez A (2021) Systematic review of the prognostic utility of D-dimer, disseminated intravascular coagulation, and anticoagulant therapy in COVID-19 critically ill patients. Med Intensiva (Engl Ed) 45(1):42–55PubMedCrossRef
88.
go back to reference Levi M, Toh CH, Thachil J, Watson HG (2009) Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 145(1):24–33PubMedCrossRef Levi M, Toh CH, Thachil J, Watson HG (2009) Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 145(1):24–33PubMedCrossRef
89.
go back to reference Han H, Yang L, Liu R, Liu F, Wu KL, Li J et al (2020) Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 58(7):1116–1120PubMedCrossRef Han H, Yang L, Liu R, Liu F, Wu KL, Li J et al (2020) Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 58(7):1116–1120PubMedCrossRef
90.
go back to reference Giannis D, Ziogas IA, Gianni P (2020) Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 127:104362PubMedPubMedCentralCrossRef Giannis D, Ziogas IA, Gianni P (2020) Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 127:104362PubMedPubMedCentralCrossRef
91.
go back to reference Ranucci M, Ballotta A, Di Dedda U, Baryshnikova E, Dei Poli M, Resta M et al (2020) The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 18(7):1747–1751PubMedPubMedCentralCrossRef Ranucci M, Ballotta A, Di Dedda U, Baryshnikova E, Dei Poli M, Resta M et al (2020) The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 18(7):1747–1751PubMedPubMedCentralCrossRef
92.
go back to reference Morrissey JH, Fakhrai H, Edgington TS (1987) Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50(1):129–135PubMedCrossRef Morrissey JH, Fakhrai H, Edgington TS (1987) Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50(1):129–135PubMedCrossRef
93.
go back to reference Morrissey JH (2001) Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost 86(1):66–74PubMed Morrissey JH (2001) Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost 86(1):66–74PubMed
94.
go back to reference Bauer W, Galtung N, Neuwinger N, Kaufner L, Langer E, Somasundaram R et al (2021) A Matter of caution: coagulation parameters in COVID-19 do not differ from patients with ruled-out SARS-CoV-2 infection in the emergency department. TH Open 5(1):e43–e55PubMedPubMedCentralCrossRef Bauer W, Galtung N, Neuwinger N, Kaufner L, Langer E, Somasundaram R et al (2021) A Matter of caution: coagulation parameters in COVID-19 do not differ from patients with ruled-out SARS-CoV-2 infection in the emergency department. TH Open 5(1):e43–e55PubMedPubMedCentralCrossRef
95.
go back to reference Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97(10):5255–5260PubMedPubMedCentralCrossRef Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97(10):5255–5260PubMedPubMedCentralCrossRef
96.
97.
go back to reference Foley JH, Conway EM (2016) Cross talk pathways between coagulation and inflammation. Circ Res 118(9):1392–1408PubMedCrossRef Foley JH, Conway EM (2016) Cross talk pathways between coagulation and inflammation. Circ Res 118(9):1392–1408PubMedCrossRef
98.
go back to reference Eslamifar Z, Behzadifard M, Soleimani M, Behzadifard S (2020) Coagulation abnormalities in SARS-CoV-2 infection: overexpression tissue factor. Thromb J 18(1):38PubMedPubMedCentralCrossRef Eslamifar Z, Behzadifard M, Soleimani M, Behzadifard S (2020) Coagulation abnormalities in SARS-CoV-2 infection: overexpression tissue factor. Thromb J 18(1):38PubMedPubMedCentralCrossRef
99.
go back to reference Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J et al (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958PubMedCrossRef Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J et al (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958PubMedCrossRef
100.
go back to reference Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR et al (2020) Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136(11):1330–1341PubMedCrossRef Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR et al (2020) Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136(11):1330–1341PubMedCrossRef
101.
go back to reference Rosell A, Havervall S, von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP et al (2021) Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler Thromb Vasc Biol 41(2):878–882PubMedCrossRef Rosell A, Havervall S, von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP et al (2021) Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler Thromb Vasc Biol 41(2):878–882PubMedCrossRef
102.
go back to reference Subrahmanian S, Borczuk A, Salvatore S, Fung KM, Merrill JT, Laurence J, Ahamed J (2021) Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients. J Thromb Haemost 19(9):2268–2274PubMedCrossRef Subrahmanian S, Borczuk A, Salvatore S, Fung KM, Merrill JT, Laurence J, Ahamed J (2021) Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients. J Thromb Haemost 19(9):2268–2274PubMedCrossRef
103.
go back to reference Hassan MI, Saxena A, Ahmad F (2012) Structure and function of von Willebrand factor. Blood Coagul Fibrinolysis 23(1):11–22PubMedCrossRef Hassan MI, Saxena A, Ahmad F (2012) Structure and function of von Willebrand factor. Blood Coagul Fibrinolysis 23(1):11–22PubMedCrossRef
104.
go back to reference Li S, Wang Z, Liao Y, Zhang W, Shi Q, Yan R et al (2010) The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. J Thromb Haemost 8(2):341–350PubMedCrossRef Li S, Wang Z, Liao Y, Zhang W, Shi Q, Yan R et al (2010) The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. J Thromb Haemost 8(2):341–350PubMedCrossRef
105.
go back to reference Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324(5932):1330–1334PubMedPubMedCentralCrossRef Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324(5932):1330–1334PubMedPubMedCentralCrossRef
106.
go back to reference Bockmeyer CL, Claus RA, Budde U, Kentouche K, Schneppenheim R, Lösche W et al (2008) Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica 93(1):137–140PubMedCrossRef Bockmeyer CL, Claus RA, Budde U, Kentouche K, Schneppenheim R, Lösche W et al (2008) Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica 93(1):137–140PubMedCrossRef
107.
108.
go back to reference van Breevoort D, van Agtmaal EL, Dragt BS, Gebbinck JK, Dienava-Verdoold I, Kragt A et al (2012) Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J Proteome Res 11(5):2925–2936PubMedCrossRef van Breevoort D, van Agtmaal EL, Dragt BS, Gebbinck JK, Dienava-Verdoold I, Kragt A et al (2012) Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J Proteome Res 11(5):2925–2936PubMedCrossRef
109.
go back to reference Kawecki C, Lenting PJ, Denis CV (2017) von Willebrand factor and inflammation. J Thromb Haemost 15(7):1285–1294PubMedCrossRef Kawecki C, Lenting PJ, Denis CV (2017) von Willebrand factor and inflammation. J Thromb Haemost 15(7):1285–1294PubMedCrossRef
110.
go back to reference Rostami M, Mansouritorghabeh H, Parsa-Kondelaji M (2022) High levels of Von Willebrand factor markers in COVID-19: a systematic review and meta-analysis. Clin Exp Med 22(3):347–357PubMedCrossRef Rostami M, Mansouritorghabeh H, Parsa-Kondelaji M (2022) High levels of Von Willebrand factor markers in COVID-19: a systematic review and meta-analysis. Clin Exp Med 22(3):347–357PubMedCrossRef
111.
go back to reference Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101(10):3765–3777PubMedCrossRef Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101(10):3765–3777PubMedCrossRef
112.
go back to reference Bazzan M, Montaruli B, Sciascia S, Cosseddu D, Norbiato C, Roccatello D (2020) Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med 15(5):861–863PubMedPubMedCentralCrossRef Bazzan M, Montaruli B, Sciascia S, Cosseddu D, Norbiato C, Roccatello D (2020) Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med 15(5):861–863PubMedPubMedCentralCrossRef
113.
go back to reference Xu J, Esmon NL, Esmon CT (1999) Reconstitution of the human endothelial cell protein C receptor with thrombomodulin in phosphatidylcholine vesicles enhances protein C activation. J Biol Chem 274(10):6704–6710PubMedCrossRef Xu J, Esmon NL, Esmon CT (1999) Reconstitution of the human endothelial cell protein C receptor with thrombomodulin in phosphatidylcholine vesicles enhances protein C activation. J Biol Chem 274(10):6704–6710PubMedCrossRef
114.
go back to reference Walker FJ (1980) Regulation of activated protein C by a new protein. A possible function for bovine protein S. J Biol Chem 255(12):5521–5524PubMedCrossRef Walker FJ (1980) Regulation of activated protein C by a new protein. A possible function for bovine protein S. J Biol Chem 255(12):5521–5524PubMedCrossRef
115.
go back to reference Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109(8):3161–3172PubMedCrossRef Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109(8):3161–3172PubMedCrossRef
116.
go back to reference Oto J, Fernandez-Pardo A, Miralles M, Plana E, Espana F, Navarro S, Medina P (2020) Activated protein C assays: a review. Clin Chim Acta 502:227–232PubMedCrossRef Oto J, Fernandez-Pardo A, Miralles M, Plana E, Espana F, Navarro S, Medina P (2020) Activated protein C assays: a review. Clin Chim Acta 502:227–232PubMedCrossRef
117.
go back to reference Mosnier LO, Griffin JH (2006) Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front Biosci 11:2381–2399 Mosnier LO, Griffin JH (2006) Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front Biosci 11:2381–2399
119.
go back to reference Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA et al (2017) Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 292(21):8616–8629PubMedPubMedCentralCrossRef Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA et al (2017) Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 292(21):8616–8629PubMedPubMedCentralCrossRef
121.
go back to reference Mazzeffi MA, Chow JH, Tanaka K (2021) COVID-19 associated hypercoagulability: manifestations, mechanisms, and management. Shock 55(4):465–471PubMedCrossRef Mazzeffi MA, Chow JH, Tanaka K (2021) COVID-19 associated hypercoagulability: manifestations, mechanisms, and management. Shock 55(4):465–471PubMedCrossRef
122.
go back to reference Stanne TM, Pedersen A, Gisslén M, Jern C (2021) Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized patients with COVID-19. Thromb Res 204:13–15PubMedPubMedCentralCrossRef Stanne TM, Pedersen A, Gisslén M, Jern C (2021) Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized patients with COVID-19. Thromb Res 204:13–15PubMedPubMedCentralCrossRef
123.
go back to reference Stoichitoiu LE, Pinte L, Balea MI, Nedelcu V, Badea C, Baicus C (2020) Anticoagulant protein S in COVID-19: low activity, and associated with outcome. Rom J Intern Med 58(4):251–258PubMed Stoichitoiu LE, Pinte L, Balea MI, Nedelcu V, Badea C, Baicus C (2020) Anticoagulant protein S in COVID-19: low activity, and associated with outcome. Rom J Intern Med 58(4):251–258PubMed
124.
go back to reference Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS (2020) Stabilizing cellular barriers: raising the shields against COVID-19. Front Endocrinol (Lausanne) 11:583006PubMedCrossRef Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS (2020) Stabilizing cellular barriers: raising the shields against COVID-19. Front Endocrinol (Lausanne) 11:583006PubMedCrossRef
125.
go back to reference Pepper MS (2001) Extracellular proteolysis and angiogenesis. Thromb Haemost 86(1):346–355PubMed Pepper MS (2001) Extracellular proteolysis and angiogenesis. Thromb Haemost 86(1):346–355PubMed
126.
go back to reference Levin EG, Marzec U, Anderson J, Harker LA (1984) Thrombin stimulates tissue plasminogen activator release from cultured human endothelial cells. J Clin Invest 74(6):1988–1995PubMedPubMedCentralCrossRef Levin EG, Marzec U, Anderson J, Harker LA (1984) Thrombin stimulates tissue plasminogen activator release from cultured human endothelial cells. J Clin Invest 74(6):1988–1995PubMedPubMedCentralCrossRef
127.
go back to reference Myles T, Nishimura T, Yun TH, Nagashima M, Morser J, Patterson AJ et al (2003) Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 278(51):51059–51067PubMedCrossRef Myles T, Nishimura T, Yun TH, Nagashima M, Morser J, Patterson AJ et al (2003) Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 278(51):51059–51067PubMedCrossRef
128.
go back to reference Kolev K, Machovich R (2003) Molecular and cellular modulation of fibrinolysis. Thromb Haemost 89(4):610–621PubMedCrossRef Kolev K, Machovich R (2003) Molecular and cellular modulation of fibrinolysis. Thromb Haemost 89(4):610–621PubMedCrossRef
129.
go back to reference Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636PubMedCrossRef Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636PubMedCrossRef
130.
go back to reference Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(4):844–847PubMedPubMedCentralCrossRef Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(4):844–847PubMedPubMedCentralCrossRef
131.
132.
go back to reference Kam YW, Okumura Y, Kido H, Ng LF, Bruzzone R, Altmeyer R (2009) Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 4(11):e7870PubMedPubMedCentralCrossRef Kam YW, Okumura Y, Kido H, Ng LF, Bruzzone R, Altmeyer R (2009) Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 4(11):e7870PubMedPubMedCentralCrossRef
134.
go back to reference Gacche RN, Gacche RA, Chen J, Li H, Li G (2021) Predictors of morbidity and mortality in COVID-19. Eur Rev Med Pharmacol Sci 25(3):1684–1707PubMed Gacche RN, Gacche RA, Chen J, Li H, Li G (2021) Predictors of morbidity and mortality in COVID-19. Eur Rev Med Pharmacol Sci 25(3):1684–1707PubMed
135.
go back to reference Wu YP, Wei R, Liu ZH, Chen B, Lisman T, Ren DL et al (2006) Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb Haemost 96(1):100–101PubMed Wu YP, Wei R, Liu ZH, Chen B, Lisman T, Ren DL et al (2006) Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb Haemost 96(1):100–101PubMed
136.
go back to reference Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW (2020) An aberrant STAT pathway is central to COVID-19. Cell Death Differ 27(12):3209–3225PubMedCrossRef Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW (2020) An aberrant STAT pathway is central to COVID-19. Cell Death Differ 27(12):3209–3225PubMedCrossRef
137.
go back to reference Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMedCrossRef Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMedCrossRef
138.
go back to reference Li B, Liu Y, Hu T, Zhang Y, Zhang C, Li T et al (2019) Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol 145(7):1695–1707PubMedCrossRef Li B, Liu Y, Hu T, Zhang Y, Zhang C, Li T et al (2019) Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol 145(7):1695–1707PubMedCrossRef
139.
go back to reference Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241PubMedPubMedCentralCrossRef Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241PubMedPubMedCentralCrossRef
140.
go back to reference Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentralCrossRef Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentralCrossRef
141.
go back to reference Björnsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K et al (2015) Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med 89:1024–1035PubMedCrossRef Björnsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K et al (2015) Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med 89:1024–1035PubMedCrossRef
142.
go back to reference Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, Liaw PC (2014) Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34(9):1977–1984PubMedCrossRef Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, Liaw PC (2014) Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34(9):1977–1984PubMedCrossRef
143.
go back to reference Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9(9):1795–1803PubMedCrossRef Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9(9):1795–1803PubMedCrossRef
145.
go back to reference Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I et al (1992) Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 90(6):2565–2573PubMedPubMedCentralCrossRef Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I et al (1992) Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 90(6):2565–2573PubMedPubMedCentralCrossRef
146.
go back to reference Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665PubMed Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665PubMed
147.
go back to reference Nakazawa F, Kannemeier C, Shibamiya A, Song Y, Tzima E, Schubert U et al (2005) Extracellular RNA is a natural cofactor for the (auto-)activation of factor VII-activating protease (FSAP). Biochem J 385(Pt 3):831–838PubMedPubMedCentralCrossRef Nakazawa F, Kannemeier C, Shibamiya A, Song Y, Tzima E, Schubert U et al (2005) Extracellular RNA is a natural cofactor for the (auto-)activation of factor VII-activating protease (FSAP). Biochem J 385(Pt 3):831–838PubMedPubMedCentralCrossRef
148.
go back to reference Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P et al (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 104(15):6388–6393PubMedPubMedCentralCrossRef Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P et al (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 104(15):6388–6393PubMedPubMedCentralCrossRef
149.
go back to reference Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N et al (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26(1):1–43PubMedCrossRef Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N et al (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26(1):1–43PubMedCrossRef
150.
go back to reference Strukova S (2006) Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front Biosci 11:59–80PubMedCrossRef Strukova S (2006) Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front Biosci 11:59–80PubMedCrossRef
151.
go back to reference Tunjungputri RN, Li Y, de Groot PG, Dinarello CA, Smeekens SP, Jaeger M et al (2018) The inter-relationship of platelets with interleukin-1β-mediated inflammation in humans. Thromb Haemost 118(12):2112–2125PubMedCrossRef Tunjungputri RN, Li Y, de Groot PG, Dinarello CA, Smeekens SP, Jaeger M et al (2018) The inter-relationship of platelets with interleukin-1β-mediated inflammation in humans. Thromb Haemost 118(12):2112–2125PubMedCrossRef
152.
go back to reference Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC et al (2021) Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 20(3):102763PubMedCrossRef Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC et al (2021) Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 20(3):102763PubMedCrossRef
153.
go back to reference José RJ, Williams AE, Chambers RC (2014) Proteinase-activated receptors in fibroproliferative lung disease. Thorax 69(2):190–192PubMedCrossRef José RJ, Williams AE, Chambers RC (2014) Proteinase-activated receptors in fibroproliferative lung disease. Thorax 69(2):190–192PubMedCrossRef
154.
go back to reference Levi M, Keller TT, van Gorp E, ten Cate H (2003) Infection and inflammation and the coagulation system. Cardiovasc Res 60(1):26–39PubMedCrossRef Levi M, Keller TT, van Gorp E, ten Cate H (2003) Infection and inflammation and the coagulation system. Cardiovasc Res 60(1):26–39PubMedCrossRef
156.
go back to reference Li G, Chen X, Xu A (2003) Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 349(5):508–509PubMedCrossRef Li G, Chen X, Xu A (2003) Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 349(5):508–509PubMedCrossRef
158.
go back to reference Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K (2020) High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 18(7):1743–1746PubMedPubMedCentralCrossRef Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K (2020) High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 18(7):1743–1746PubMedPubMedCentralCrossRef
Metadata
Title
Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers
Authors
Rasoul Ebrahimi
Fatemeh Nasri
Tahereh Kalantari
Publication date
13-02-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Hematology / Issue 6/2024
Print ISSN: 0939-5555
Electronic ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-024-05630-1

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video