Skip to main content
Top
Published in:

Open Access 15-09-2024 | Coronary Heart Disease | Review

MicroRNAs in diabetic macroangiopathy

Authors: Guocheng Rao, Boqiang Peng, Guixiang Zhang, Xianghui Fu, Jingyan Tian, Yan Tian

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Literature
1.
go back to reference Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34.
2.
go back to reference Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, et al. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol. 2023;64: 102781.PubMedPubMedCentralCrossRef Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, et al. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol. 2023;64: 102781.PubMedPubMedCentralCrossRef
3.
go back to reference Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291–304.PubMedCrossRef Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291–304.PubMedCrossRef
4.
go back to reference Liu P, Zhang Z, Cai Y, Li Z, Zhou Q, Chen Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev. 2024;94: 102201.PubMedCrossRef Liu P, Zhang Z, Cai Y, Li Z, Zhou Q, Chen Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev. 2024;94: 102201.PubMedCrossRef
5.
go back to reference Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab. 2023;34(1):49–60.PubMedCrossRef Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab. 2023;34(1):49–60.PubMedCrossRef
6.
go back to reference Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.PubMedPubMedCentralCrossRef Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.PubMedPubMedCentralCrossRef
8.
go back to reference Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2): e3000603.PubMedPubMedCentralCrossRef Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2): e3000603.PubMedPubMedCentralCrossRef
9.
go back to reference Xu H, Tian Y, Tang D, Zou S, Liu G, Song J, Zhang G, Du X, Huang W, He B, et al. An endoplasmic reticulum stress-microRNA-26a feedback circuit in NAFLD. Hepatology. 2021;73(4):1327–45.PubMedCrossRef Xu H, Tian Y, Tang D, Zou S, Liu G, Song J, Zhang G, Du X, Huang W, He B, et al. An endoplasmic reticulum stress-microRNA-26a feedback circuit in NAFLD. Hepatology. 2021;73(4):1327–45.PubMedCrossRef
10.
go back to reference Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X, et al. RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol. 2020;73(2):371–82.PubMedCrossRef Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X, et al. RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol. 2020;73(2):371–82.PubMedCrossRef
13.
go back to reference Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.PubMedPubMedCentralCrossRef Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.PubMedPubMedCentralCrossRef
14.
go back to reference Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77(9):1661–80.PubMedCrossRef Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77(9):1661–80.PubMedCrossRef
15.
go back to reference Ma M, Xu H, Liu G, Wu J, Li C, Wang X, Zhang S, Xu H, Ju S, Cheng W, et al. Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis. Hepatology. 2019;70(1):215–30.PubMedCrossRef Ma M, Xu H, Liu G, Wu J, Li C, Wang X, Zhang S, Xu H, Ju S, Cheng W, et al. Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis. Hepatology. 2019;70(1):215–30.PubMedCrossRef
16.
go back to reference Ciullo A, Li L, Li C, Tsi K, Farrell C, Pellegrini M, Marbán E, Ibrahim AGE. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur Heart J. 2024;45(29):2660–2673. PubMedPubMedCentralCrossRef Ciullo A, Li L, Li C, Tsi K, Farrell C, Pellegrini M, Marbán E, Ibrahim AGE. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur Heart J. 2024;45(29):2660–2673. PubMedPubMedCentralCrossRef
17.
go back to reference Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis. 2023;374:74–86.PubMedCrossRef Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis. 2023;374:74–86.PubMedCrossRef
18.
go back to reference Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–36.PubMedCrossRef Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–36.PubMedCrossRef
19.
20.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRef
21.
go back to reference Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.PubMedCrossRef Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.PubMedCrossRef
22.
go back to reference Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.PubMedCrossRef Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.PubMedCrossRef
24.
go back to reference Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101.PubMedCrossRef Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101.PubMedCrossRef
25.
go back to reference Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 2010;39(2):292–9.PubMedCrossRef Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 2010;39(2):292–9.PubMedCrossRef
26.
go back to reference Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.PubMedCrossRef Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.PubMedCrossRef
27.
go back to reference DeVeale B, Swindlehurst-Chan J, Blelloch R. The roles of microRNAs in mouse development. Nat Rev Genet. 2021;22(5):307–23.PubMedCrossRef DeVeale B, Swindlehurst-Chan J, Blelloch R. The roles of microRNAs in mouse development. Nat Rev Genet. 2021;22(5):307–23.PubMedCrossRef
28.
go back to reference Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett. 2022;27(1):85.PubMedPubMedCentralCrossRef Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett. 2022;27(1):85.PubMedPubMedCentralCrossRef
29.
go back to reference Liu R, Liu C, He X, Sun P, Zhang B, Yang H, Shi W, Ruan Q. MicroRNA-21 promotes pancreatic β cell function through modulating glucose uptake. Nat Commun. 2022;13(1):3545.PubMedPubMedCentralCrossRef Liu R, Liu C, He X, Sun P, Zhang B, Yang H, Shi W, Ruan Q. MicroRNA-21 promotes pancreatic β cell function through modulating glucose uptake. Nat Commun. 2022;13(1):3545.PubMedPubMedCentralCrossRef
30.
go back to reference Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol. 2023;22(1):260.PubMedPubMedCentralCrossRef Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol. 2023;22(1):260.PubMedPubMedCentralCrossRef
31.
go back to reference Rawal S, Munasinghe PE, Shindikar A, Paulin J, Cameron V, Manning P, Williams MJ, Jones GT, Bunton R, Galvin I, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res. 2017;113(1):90–101.PubMedCrossRef Rawal S, Munasinghe PE, Shindikar A, Paulin J, Cameron V, Manning P, Williams MJ, Jones GT, Bunton R, Galvin I, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res. 2017;113(1):90–101.PubMedCrossRef
32.
go back to reference Lew JK, Pearson JT, Saw E, Tsuchimochi H, Wei M, Ghosh N, Du CK, Zhan DY, Jin M, Umetani K, et al. Exercise regulates microRNAs to preserve coronary and cardiac function in the diabetic heart. Circ Res. 2020;127(11):1384–400.PubMedCrossRef Lew JK, Pearson JT, Saw E, Tsuchimochi H, Wei M, Ghosh N, Du CK, Zhan DY, Jin M, Umetani K, et al. Exercise regulates microRNAs to preserve coronary and cardiac function in the diabetic heart. Circ Res. 2020;127(11):1384–400.PubMedCrossRef
33.
go back to reference Bielska A, Niemira M, Kretowski A. Recent highlights of research on miRNAs as early potential biomarkers for cardiovascular complications of type 2 diabetes mellitus. Int J Mol Sci. 2021;22(6):3153.PubMedPubMedCentralCrossRef Bielska A, Niemira M, Kretowski A. Recent highlights of research on miRNAs as early potential biomarkers for cardiovascular complications of type 2 diabetes mellitus. Int J Mol Sci. 2021;22(6):3153.PubMedPubMedCentralCrossRef
34.
go back to reference Elgheznawy A, Shi L, Hu J, Wittig I, Laban H, Pircher J, Mann A, Provost P, Randriamboavonjy V, Fleming I. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res. 2015;117(2):157–65.PubMedCrossRef Elgheznawy A, Shi L, Hu J, Wittig I, Laban H, Pircher J, Mann A, Provost P, Randriamboavonjy V, Fleming I. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res. 2015;117(2):157–65.PubMedCrossRef
35.
go back to reference Chavali V, Tyagi SC, Mishra PK. Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochem Biophys. 2014;68(1):25–35.PubMedCrossRef Chavali V, Tyagi SC, Mishra PK. Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochem Biophys. 2014;68(1):25–35.PubMedCrossRef
36.
go back to reference Brandão BB, Madsen S, Rabiee A, Oliverio M, Ruiz GP, Ferrucci DL, Branquinho JL, Razolli D, Pinto S, Nielsen TS, et al. Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proc Natl Acad Sci U S A. 2020;117(38):23932–41.PubMedCrossRef Brandão BB, Madsen S, Rabiee A, Oliverio M, Ruiz GP, Ferrucci DL, Branquinho JL, Razolli D, Pinto S, Nielsen TS, et al. Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proc Natl Acad Sci U S A. 2020;117(38):23932–41.PubMedCrossRef
37.
38.
go back to reference Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clin Microbiol Rev. 2023;36(4): e0001523.PubMedCrossRef Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clin Microbiol Rev. 2023;36(4): e0001523.PubMedCrossRef
39.
go back to reference Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57.PubMedCrossRef Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57.PubMedCrossRef
42.
go back to reference Pofi R, Giannetta E, Feola T, Galea N, Barbagallo F, Campolo F, Badagliacca R, Barbano B, Ciolina F, Defeudis G, et al. Sex-specific effects of daily tadalafil on diabetic heart kinetics in RECOGITO, a randomized, double-blind, placebo-controlled trial. Sci Transl Med. 2022;14(649):eabl8503.PubMedCrossRef Pofi R, Giannetta E, Feola T, Galea N, Barbagallo F, Campolo F, Badagliacca R, Barbano B, Ciolina F, Defeudis G, et al. Sex-specific effects of daily tadalafil on diabetic heart kinetics in RECOGITO, a randomized, double-blind, placebo-controlled trial. Sci Transl Med. 2022;14(649):eabl8503.PubMedCrossRef
43.
go back to reference Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal. 2010;22(7):1054–62.PubMedPubMedCentralCrossRef Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal. 2010;22(7):1054–62.PubMedPubMedCentralCrossRef
44.
go back to reference Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef
45.
go back to reference Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–6.PubMedCrossRef Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–6.PubMedCrossRef
46.
go back to reference Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, et al. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS ONE. 2022;17(3): e0265948.PubMedPubMedCentralCrossRef Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, et al. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS ONE. 2022;17(3): e0265948.PubMedPubMedCentralCrossRef
47.
go back to reference Li Z, Mao K, Liu L, Xu S, Zeng M, Fu Y, Huang J, Li T, Gao G, Teng ZQ, et al. Nuclear microRNA-mediated transcriptional control determines adult microglial homeostasis and brain function. Cell Rep. 2024;43(3): 113964.PubMedCrossRef Li Z, Mao K, Liu L, Xu S, Zeng M, Fu Y, Huang J, Li T, Gao G, Teng ZQ, et al. Nuclear microRNA-mediated transcriptional control determines adult microglial homeostasis and brain function. Cell Rep. 2024;43(3): 113964.PubMedCrossRef
48.
go back to reference Santovito D, Egea V, Bidzhekov K, Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen C, Horckmans M, et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci Transl Med. 2020;12(546):eaaz2294. PubMedCrossRef Santovito D, Egea V, Bidzhekov K, Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen C, Horckmans M, et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci Transl Med. 2020;12(546):eaaz2294. PubMedCrossRef
49.
go back to reference Yang D, Wan X, Dennis AT, Bektik E, Wang Z, Costa MGS, Fagnen C, Vénien-Bryan C, Xu X, Gratz DH, et al. MicroRNA biophysically modulates cardiac action potential by direct binding to ion channel. Circulation. 2021;143(16):1597–613.PubMedPubMedCentralCrossRef Yang D, Wan X, Dennis AT, Bektik E, Wang Z, Costa MGS, Fagnen C, Vénien-Bryan C, Xu X, Gratz DH, et al. MicroRNA biophysically modulates cardiac action potential by direct binding to ion channel. Circulation. 2021;143(16):1597–613.PubMedPubMedCentralCrossRef
50.
go back to reference Arevalo-Martinez M, Cidad P, Moreno-Estar S, Fernández M, Albinsson S, Cózar-Castellano I, López-López JR, Pérez-Garcia MT. miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab. 2021;53: 101306.PubMedPubMedCentralCrossRef Arevalo-Martinez M, Cidad P, Moreno-Estar S, Fernández M, Albinsson S, Cózar-Castellano I, López-López JR, Pérez-Garcia MT. miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab. 2021;53: 101306.PubMedPubMedCentralCrossRef
51.
go back to reference Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol. 2022;23(3):185–203.PubMedCrossRef Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol. 2022;23(3):185–203.PubMedCrossRef
52.
go back to reference Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.PubMedCrossRef Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.PubMedCrossRef
54.
go back to reference Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res. 2022;50(19):10839–56.PubMedPubMedCentralCrossRef Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res. 2022;50(19):10839–56.PubMedPubMedCentralCrossRef
55.
go back to reference Gao X, Song Y, Wu J, Lu S, Min X, Liu L, Hu L, Zheng M, Du P, Yu Y, et al. Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus. J Clin Invest. 2022;132(9):e152345. PubMedPubMedCentralCrossRef Gao X, Song Y, Wu J, Lu S, Min X, Liu L, Hu L, Zheng M, Du P, Yu Y, et al. Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus. J Clin Invest. 2022;132(9):e152345. PubMedPubMedCentralCrossRef
56.
go back to reference Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, et al. A microRNA checkpoint for Ca(2+) signaling and overload in acute pancreatitis. Mol Ther. 2022;30(4):1754–74.PubMedPubMedCentralCrossRef Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, et al. A microRNA checkpoint for Ca(2+) signaling and overload in acute pancreatitis. Mol Ther. 2022;30(4):1754–74.PubMedPubMedCentralCrossRef
57.
go back to reference Wang H, Mehal W, Nagy LE, Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.PubMedCrossRef Wang H, Mehal W, Nagy LE, Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.PubMedCrossRef
58.
go back to reference Liu G, Du W, Sang X, Tong Q, Wang Y, Chen G, Yuan Y, Jiang L, Cheng W, Liu D, et al. RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nat Commun. 2022;13(1):1444.PubMedPubMedCentralCrossRef Liu G, Du W, Sang X, Tong Q, Wang Y, Chen G, Yuan Y, Jiang L, Cheng W, Liu D, et al. RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nat Commun. 2022;13(1):1444.PubMedPubMedCentralCrossRef
59.
go back to reference Vigili de Kreutzenberg S, Giannella A, Ceolotto G, Faggin E, Cappellari R, Mazzucato M, Fraccaro C, Tarantini G, Avogaro A, Fadini GP. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia. 2022;65(9):1555–68.PubMedPubMedCentralCrossRef Vigili de Kreutzenberg S, Giannella A, Ceolotto G, Faggin E, Cappellari R, Mazzucato M, Fraccaro C, Tarantini G, Avogaro A, Fadini GP. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia. 2022;65(9):1555–68.PubMedPubMedCentralCrossRef
60.
go back to reference Kwan TW, Wong SS, Hong Y, Kanaya AM, Khan SS, Hayman LL, Shah SH, Welty FK, Deedwania PC, Khaliq A, et al. Epidemiology of diabetes and atherosclerotic cardiovascular disease among asian american adults: implications, management, and future directions: a scientific statement from the American Heart Association. Circulation. 2023;148(1):74–94.PubMedCrossRef Kwan TW, Wong SS, Hong Y, Kanaya AM, Khan SS, Hayman LL, Shah SH, Welty FK, Deedwania PC, Khaliq A, et al. Epidemiology of diabetes and atherosclerotic cardiovascular disease among asian american adults: implications, management, and future directions: a scientific statement from the American Heart Association. Circulation. 2023;148(1):74–94.PubMedCrossRef
61.
go back to reference Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications—a review. Int J Biol Macromol. 2023;230: 123189.PubMedCrossRef Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications—a review. Int J Biol Macromol. 2023;230: 123189.PubMedCrossRef
62.
go back to reference Morrison KR, Solly EL, Shemesh T, Psaltis PJ, Nicholls SJ, Brown A, Bursill CA, Tan JTM. Elevated HDL-bound miR-181c-5p level is associated with diabetic vascular complications in Australian Aboriginal people. Diabetologia. 2021;64(6):1402–11.PubMedCrossRef Morrison KR, Solly EL, Shemesh T, Psaltis PJ, Nicholls SJ, Brown A, Bursill CA, Tan JTM. Elevated HDL-bound miR-181c-5p level is associated with diabetic vascular complications in Australian Aboriginal people. Diabetologia. 2021;64(6):1402–11.PubMedCrossRef
63.
go back to reference Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31.PubMedPubMedCentralCrossRef Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31.PubMedPubMedCentralCrossRef
64.
go back to reference Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152.PubMedPubMedCentralCrossRef Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152.PubMedPubMedCentralCrossRef
65.
go back to reference Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38–51.PubMedCrossRef Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38–51.PubMedCrossRef
66.
go back to reference Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev. 2022;182: 114045.PubMedCrossRef Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev. 2022;182: 114045.PubMedCrossRef
67.
go back to reference Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E, Alonso N, Mauricio D, Avogaro A, Ceolotto G, et al. Circulating small noncoding RNA profiling as a potential biomarker of atherosclerotic plaque composition in type 1 diabetes. Diabetes Care. 2023;46(3):551–60.PubMedCrossRef Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E, Alonso N, Mauricio D, Avogaro A, Ceolotto G, et al. Circulating small noncoding RNA profiling as a potential biomarker of atherosclerotic plaque composition in type 1 diabetes. Diabetes Care. 2023;46(3):551–60.PubMedCrossRef
68.
go back to reference Wen T, Hong Y, Cui Y, Pan J, Wang Y, Luo Y. Downregulation of miR-210-3p attenuates high glucose-induced angiogenesis of vascular endothelial cells via targeting FGFRL1. Ophthalmic Res. 2023;66(1):913–20.PubMedCrossRef Wen T, Hong Y, Cui Y, Pan J, Wang Y, Luo Y. Downregulation of miR-210-3p attenuates high glucose-induced angiogenesis of vascular endothelial cells via targeting FGFRL1. Ophthalmic Res. 2023;66(1):913–20.PubMedCrossRef
69.
go back to reference Jin J, He Y, Guo J, Pan Q, Wei X, Xu C, Qi Z, Li Q, Ma S, Lin J, et al. BACH1 controls hepatic insulin signaling and glucose homeostasis in mice. Nat Commun. 2023;14(1):8428.PubMedPubMedCentralCrossRef Jin J, He Y, Guo J, Pan Q, Wei X, Xu C, Qi Z, Li Q, Ma S, Lin J, et al. BACH1 controls hepatic insulin signaling and glucose homeostasis in mice. Nat Commun. 2023;14(1):8428.PubMedPubMedCentralCrossRef
70.
go back to reference Ali MI, Ketsawatsomkron P, Belin de Chantemele EJ, Mintz JD, Muta K, Salet C, Black SM, Tremblay ML, Fulton DJ, Marrero MB, et al. Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone. Circ Res. 2009;105(10):1013–22.PubMedPubMedCentralCrossRef Ali MI, Ketsawatsomkron P, Belin de Chantemele EJ, Mintz JD, Muta K, Salet C, Black SM, Tremblay ML, Fulton DJ, Marrero MB, et al. Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone. Circ Res. 2009;105(10):1013–22.PubMedPubMedCentralCrossRef
71.
go back to reference Zhou Z, Collado A, Sun C, Tratsiakovich Y, Mahdi A, Winter H, Chernogubova E, Seime T, Narayanan S, Jiao T, et al. Downregulation of erythrocyte miR-210 induces endothelial dysfunction in type 2 diabetes. Diabetes. 2022;71(2):285–97.PubMedCrossRef Zhou Z, Collado A, Sun C, Tratsiakovich Y, Mahdi A, Winter H, Chernogubova E, Seime T, Narayanan S, Jiao T, et al. Downregulation of erythrocyte miR-210 induces endothelial dysfunction in type 2 diabetes. Diabetes. 2022;71(2):285–97.PubMedCrossRef
72.
go back to reference Aschner PJ, Ruiz AJ. Metabolic memory for vascular disease in diabetes. Diabetes Technol Ther. 2012;14(Suppl 1):S68-74.PubMedCrossRef Aschner PJ, Ruiz AJ. Metabolic memory for vascular disease in diabetes. Diabetes Technol Ther. 2012;14(Suppl 1):S68-74.PubMedCrossRef
73.
go back to reference Yao Y, Song Q, Hu C, Da X, Yu Y, He Z, Xu C, Chen Q, Wang QK. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res. 2022;118(1):196–211.PubMedCrossRef Yao Y, Song Q, Hu C, Da X, Yu Y, He Z, Xu C, Chen Q, Wang QK. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res. 2022;118(1):196–211.PubMedCrossRef
74.
go back to reference Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.PubMedCrossRef Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.PubMedCrossRef
75.
go back to reference Jensen DM, Han P, Mangala LS, Lopez-Berestein G, Sood AK, Liu J, Kriegel AJ, Usa K, Widlansky ME, Liang M. Broad-acting therapeutic effects of miR-29b-chitosan on hypertension and diabetic complications. Mol Ther. 2022;30(11):3462–76.PubMedPubMedCentralCrossRef Jensen DM, Han P, Mangala LS, Lopez-Berestein G, Sood AK, Liu J, Kriegel AJ, Usa K, Widlansky ME, Liang M. Broad-acting therapeutic effects of miR-29b-chitosan on hypertension and diabetic complications. Mol Ther. 2022;30(11):3462–76.PubMedPubMedCentralCrossRef
76.
go back to reference Ruopp N, Cockrill B. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA. 2022;327(14):1379–91.PubMedCrossRef Ruopp N, Cockrill B. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA. 2022;327(14):1379–91.PubMedCrossRef
77.
go back to reference Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237–44.PubMedPubMedCentralCrossRef Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237–44.PubMedPubMedCentralCrossRef
78.
go back to reference Li J, Zhang Y, Ye Y, Li D, Liu Y, Lee E, Zhang M, Dai X, Zhang X, Wang S, et al. Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J Extracell Vesicles. 2021;10(3): e12055.PubMedPubMedCentralCrossRef Li J, Zhang Y, Ye Y, Li D, Liu Y, Lee E, Zhang M, Dai X, Zhang X, Wang S, et al. Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J Extracell Vesicles. 2021;10(3): e12055.PubMedPubMedCentralCrossRef
79.
go back to reference Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64–72.PubMedCrossRef Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64–72.PubMedCrossRef
80.
go back to reference He G, Lu H, Zhu Y, Li Y, Wei L. Transplantation of endothelial progenitor cells overexpressing mir-126–3p improves vascular repair in a diabetic rat model. MedComm (2020). 2023;4(2):e224.PubMed He G, Lu H, Zhu Y, Li Y, Wei L. Transplantation of endothelial progenitor cells overexpressing mir-126–3p improves vascular repair in a diabetic rat model. MedComm (2020). 2023;4(2):e224.PubMed
81.
go back to reference Cimen I, Natarelli L, Abedi Kichi Z, Henderson JM, Farina FM, Briem E, Aslani M, Megens RTA, Jansen Y, Mann-Fallenbuchel E, et al. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci Transl Med. 2023;15(720):eadf3357.PubMedCrossRef Cimen I, Natarelli L, Abedi Kichi Z, Henderson JM, Farina FM, Briem E, Aslani M, Megens RTA, Jansen Y, Mann-Fallenbuchel E, et al. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci Transl Med. 2023;15(720):eadf3357.PubMedCrossRef
82.
go back to reference Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368–76.PubMedPubMedCentralCrossRef Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368–76.PubMedPubMedCentralCrossRef
83.
go back to reference Pei CZ, Liu B, Li YT, Fang L, Zhang Y, Li YG, Meng S. MicroRNA-126 protects against vascular injury by promoting homing and maintaining stemness of late outgrowth endothelial progenitor cells. Stem Cell Res Ther. 2020;11(1):28.PubMedPubMedCentralCrossRef Pei CZ, Liu B, Li YT, Fang L, Zhang Y, Li YG, Meng S. MicroRNA-126 protects against vascular injury by promoting homing and maintaining stemness of late outgrowth endothelial progenitor cells. Stem Cell Res Ther. 2020;11(1):28.PubMedPubMedCentralCrossRef
84.
go back to reference Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026–38.PubMedCrossRef Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026–38.PubMedCrossRef
85.
go back to reference Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.PubMedCrossRef Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.PubMedCrossRef
86.
go back to reference De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong B, Cantelmo A, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.PubMedCrossRef De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong B, Cantelmo A, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.PubMedCrossRef
87.
go back to reference Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D’Alessandro A, Beule D, et al. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun. 2023;14(1):5749.PubMedPubMedCentralCrossRef Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D’Alessandro A, Beule D, et al. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun. 2023;14(1):5749.PubMedPubMedCentralCrossRef
88.
go back to reference Luo E, Wang D, Yan G, Qiao Y, Zhu B, Liu B, Hou J, Tang C. The NF-κB/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction. Mol Cell Endocrinol. 2020;500: 110641.PubMedCrossRef Luo E, Wang D, Yan G, Qiao Y, Zhu B, Liu B, Hou J, Tang C. The NF-κB/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction. Mol Cell Endocrinol. 2020;500: 110641.PubMedCrossRef
89.
go back to reference Fernandes H, Zonnari A, Abreu R, Aday S, Barão M, Albino I, Lino M, Branco A, Seabra C, Barata T, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307–27.PubMedPubMedCentralCrossRef Fernandes H, Zonnari A, Abreu R, Aday S, Barão M, Albino I, Lino M, Branco A, Seabra C, Barata T, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307–27.PubMedPubMedCentralCrossRef
90.
go back to reference Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, et al. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther. 2024;32(9):3059-3079. PubMedCrossRef Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, et al. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther. 2024;32(9):3059-3079. PubMedCrossRef
91.
go back to reference Wang Y, Wang M, Chen J, Li Y, Kuang Z, Dende C, Raj P, Quinn G, Hu Z, Srinivasan T, et al. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science. 2023;381(6660):851–7.PubMedPubMedCentralCrossRef Wang Y, Wang M, Chen J, Li Y, Kuang Z, Dende C, Raj P, Quinn G, Hu Z, Srinivasan T, et al. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science. 2023;381(6660):851–7.PubMedPubMedCentralCrossRef
92.
go back to reference Zhu X, Liu Y, Cui J, Lv J, Li C, Lu J, Huo X, Dou J, Bai Z, Chen Z, et al. LncRNA LYPLAL1-DT screening from type 2 diabetes with macrovascular complication contributes protective effects on human umbilical vein endothelial cells via regulating the miR-204-5p/SIRT1 axis. Cell Death Discov. 2022;8(1):245.PubMedPubMedCentralCrossRef Zhu X, Liu Y, Cui J, Lv J, Li C, Lu J, Huo X, Dou J, Bai Z, Chen Z, et al. LncRNA LYPLAL1-DT screening from type 2 diabetes with macrovascular complication contributes protective effects on human umbilical vein endothelial cells via regulating the miR-204-5p/SIRT1 axis. Cell Death Discov. 2022;8(1):245.PubMedPubMedCentralCrossRef
93.
go back to reference Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy. 2022;18(5):949–70.PubMedCrossRef Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy. 2022;18(5):949–70.PubMedCrossRef
96.
go back to reference Zhang W, Sun Y, Yang Y, Chen Y. Impaired intracellular calcium homeostasis enhances protein O-GlcNAcylation and promotes vascular calcification and stiffness in diabetes. Redox Biol. 2023;63: 102720.PubMedPubMedCentralCrossRef Zhang W, Sun Y, Yang Y, Chen Y. Impaired intracellular calcium homeostasis enhances protein O-GlcNAcylation and promotes vascular calcification and stiffness in diabetes. Redox Biol. 2023;63: 102720.PubMedPubMedCentralCrossRef
97.
go back to reference Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMedCrossRef Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.PubMedCrossRef
98.
go back to reference Reddy MA, Das S, Zhuo C, Jin W, Wang M, Lanting L, Natarajan R. Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504. Arterioscler Thromb Vasc Biol. 2016;36(5):864–73.PubMedPubMedCentralCrossRef Reddy MA, Das S, Zhuo C, Jin W, Wang M, Lanting L, Natarajan R. Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504. Arterioscler Thromb Vasc Biol. 2016;36(5):864–73.PubMedPubMedCentralCrossRef
99.
go back to reference Xu J, Li L, Yun HF, Han YS. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1. Biochem Biophys Res Commun. 2015;463(4):1159–64.PubMedCrossRef Xu J, Li L, Yun HF, Han YS. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1. Biochem Biophys Res Commun. 2015;463(4):1159–64.PubMedCrossRef
100.
go back to reference Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, Flender A, Schmitz T, Yang X, Fleischmann BK, et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol. 2017;104:43–52.PubMedCrossRef Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, Flender A, Schmitz T, Yang X, Fleischmann BK, et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol. 2017;104:43–52.PubMedCrossRef
101.
go back to reference Yu H, Douglas HF, Wathieu D, Braun RA, Edomwande C, Lightell DJ Jr, Pham T, Klingenberg NC, Bishop SP, Khismatullin DB, et al. Diabetes is accompanied by secretion of pro-atherosclerotic exosomes from vascular smooth muscle cells. Cardiovasc Diabetol. 2023;22(1):112.PubMedPubMedCentralCrossRef Yu H, Douglas HF, Wathieu D, Braun RA, Edomwande C, Lightell DJ Jr, Pham T, Klingenberg NC, Bishop SP, Khismatullin DB, et al. Diabetes is accompanied by secretion of pro-atherosclerotic exosomes from vascular smooth muscle cells. Cardiovasc Diabetol. 2023;22(1):112.PubMedPubMedCentralCrossRef
102.
go back to reference Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res. 2011;108(10):1180–9.PubMedCrossRef Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res. 2011;108(10):1180–9.PubMedCrossRef
103.
go back to reference Zhang F, Yang Y, Chen X, Liu Y, Hu Q, Huang B, Liu Y, Pan Y, Zhang Y, Liu D, et al. The long non-coding RNA βFaar regulates islet β-cell function and survival during obesity in mice. Nat Commun. 2021;12(1):3997.PubMedPubMedCentralCrossRef Zhang F, Yang Y, Chen X, Liu Y, Hu Q, Huang B, Liu Y, Pan Y, Zhang Y, Liu D, et al. The long non-coding RNA βFaar regulates islet β-cell function and survival during obesity in mice. Nat Commun. 2021;12(1):3997.PubMedPubMedCentralCrossRef
104.
go back to reference Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.PubMedCrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.PubMedCrossRef
105.
go back to reference Zeng Z, Xia L, Fan X, Ostriker AC, Yarovinsky T, Su M, Zhang Y, Peng X, Xie Y, Pi L, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. J Clin Invest. 2019;129(3):1372–86.PubMedPubMedCentralCrossRef Zeng Z, Xia L, Fan X, Ostriker AC, Yarovinsky T, Su M, Zhang Y, Peng X, Xie Y, Pi L, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. J Clin Invest. 2019;129(3):1372–86.PubMedPubMedCentralCrossRef
106.
go back to reference Cao J, Chen C, Chen Q, Gao Y, Zhao Z, Yuan Q, Li A, Yang S, He Y, Zu X, et al. Extracellular vesicle miR-32 derived from macrophage promotes arterial calcification in mice with type 2 diabetes via inhibiting VSMC autophagy. J Transl Med. 2022;20(1):307.PubMedPubMedCentralCrossRef Cao J, Chen C, Chen Q, Gao Y, Zhao Z, Yuan Q, Li A, Yang S, He Y, Zu X, et al. Extracellular vesicle miR-32 derived from macrophage promotes arterial calcification in mice with type 2 diabetes via inhibiting VSMC autophagy. J Transl Med. 2022;20(1):307.PubMedPubMedCentralCrossRef
107.
go back to reference De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol. 2024;21(5):312–325. CrossRef De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol. 2024;21(5):312–325. CrossRef
108.
109.
go back to reference Liechty C, Hu J, Zhang L, Liechty KW, Xu J. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds. Int J Mol Sci. 2020;21(9):3328.PubMedPubMedCentralCrossRef Liechty C, Hu J, Zhang L, Liechty KW, Xu J. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds. Int J Mol Sci. 2020;21(9):3328.PubMedPubMedCentralCrossRef
110.
go back to reference Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, Chen H, Li X, Du X, Cui W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater. 2023;157:175–86.PubMedCrossRef Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, Chen H, Li X, Du X, Cui W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater. 2023;157:175–86.PubMedCrossRef
111.
go back to reference Cheng HY, Hsieh CH, Lin PH, Chen YT, Hsu DS, Tai SK, Chu PY, Yang MH. Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance. J Immunother Cancer. 2022;10(8): e004832.PubMedPubMedCentralCrossRef Cheng HY, Hsieh CH, Lin PH, Chen YT, Hsu DS, Tai SK, Chu PY, Yang MH. Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance. J Immunother Cancer. 2022;10(8): e004832.PubMedPubMedCentralCrossRef
112.
go back to reference Ye Z, Cheng M, Fan L, Ma J, Zhang Y, Gu P, Xie Y, You X, Zhou M, Wang B, et al. Plasma microRNA expression profiles associated with zinc exposure and type 2 diabetes mellitus: exploring potential role of miR-144-3p in zinc-induced insulin resistance. Environ Int. 2023;172: 107807.PubMedCrossRef Ye Z, Cheng M, Fan L, Ma J, Zhang Y, Gu P, Xie Y, You X, Zhou M, Wang B, et al. Plasma microRNA expression profiles associated with zinc exposure and type 2 diabetes mellitus: exploring potential role of miR-144-3p in zinc-induced insulin resistance. Environ Int. 2023;172: 107807.PubMedCrossRef
113.
go back to reference Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z, et al. Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells. 2020;38(10):1307–20.PubMedCrossRef Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z, et al. Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells. 2020;38(10):1307–20.PubMedCrossRef
114.
go back to reference Shi R, Jin Y, Zhao S, Yuan H, Shi J, Zhao H. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization. Biomed Pharmacother. 2022;153: 113463.PubMedCrossRef Shi R, Jin Y, Zhao S, Yuan H, Shi J, Zhao H. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization. Biomed Pharmacother. 2022;153: 113463.PubMedCrossRef
115.
go back to reference Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother. 2021;137: 111286.PubMedCrossRef Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother. 2021;137: 111286.PubMedCrossRef
116.
go back to reference Hartmann D, Fiedler J, Sonnenschein K, Just A, Pfanne A, Zimmer K, Remke J, Foinquinos A, Butzlaff M, Schimmel K, et al. MicroRNA-based therapy of GATA2-deficient vascular disease. Circulation. 2016;134(24):1973–90.PubMedCrossRef Hartmann D, Fiedler J, Sonnenschein K, Just A, Pfanne A, Zimmer K, Remke J, Foinquinos A, Butzlaff M, Schimmel K, et al. MicroRNA-based therapy of GATA2-deficient vascular disease. Circulation. 2016;134(24):1973–90.PubMedCrossRef
117.
go back to reference Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, et al. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J. 2024;45(4):268–83.PubMedCrossRef Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, et al. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J. 2024;45(4):268–83.PubMedCrossRef
118.
go back to reference Dai XY, Cai Y, Sun W, Ding Y, Wang W, Kong W, Tang C, Zhu Y, Xu MJ, Wang X. Intermedin inhibits macrophage foam-cell formation via tristetraprolin-mediated decay of CD36 mRNA. Cardiovasc Res. 2014;101(2):297–305.PubMedCrossRef Dai XY, Cai Y, Sun W, Ding Y, Wang W, Kong W, Tang C, Zhu Y, Xu MJ, Wang X. Intermedin inhibits macrophage foam-cell formation via tristetraprolin-mediated decay of CD36 mRNA. Cardiovasc Res. 2014;101(2):297–305.PubMedCrossRef
119.
go back to reference Su Y, Guan P, Li D, Hang Y, Ye X, Han L, Lu Y, Bai X, Zhang P, Hu W. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes. Biochem Biophys Res Commun. 2021;583:35–42.PubMedCrossRef Su Y, Guan P, Li D, Hang Y, Ye X, Han L, Lu Y, Bai X, Zhang P, Hu W. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes. Biochem Biophys Res Commun. 2021;583:35–42.PubMedCrossRef
120.
go back to reference Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med. 2022;28(8):1679–92.PubMedPubMedCentralCrossRef Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med. 2022;28(8):1679–92.PubMedPubMedCentralCrossRef
121.
go back to reference Han S, Fang J, Yu L, Li B, Hu Y, Chen R, Li C, Zhao C, Li J, Wang Y, et al. Serum-derived exosomal hsa-let-7b-5p as a biomarker for predicting the severity of coronary stenosis in patients with coronary heart disease and hyperglycemia. Mol Med Rep. 2023;28(5):203. PubMedPubMedCentralCrossRef Han S, Fang J, Yu L, Li B, Hu Y, Chen R, Li C, Zhao C, Li J, Wang Y, et al. Serum-derived exosomal hsa-let-7b-5p as a biomarker for predicting the severity of coronary stenosis in patients with coronary heart disease and hyperglycemia. Mol Med Rep. 2023;28(5):203. PubMedPubMedCentralCrossRef
122.
go back to reference Seleem M, Shabayek M, Ewida HA. MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes. Diabetes Metab Res Rev. 2019;35(5): e3130.PubMedCrossRef Seleem M, Shabayek M, Ewida HA. MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes. Diabetes Metab Res Rev. 2019;35(5): e3130.PubMedCrossRef
123.
go back to reference Gallo W, Ottosson F, Kennbäck C, Jujic A, Esguerra JLS, Eliasson L, Melander O. Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease. BMC Cardiovasc Disord. 2021;21(1):162.PubMedPubMedCentralCrossRef Gallo W, Ottosson F, Kennbäck C, Jujic A, Esguerra JLS, Eliasson L, Melander O. Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease. BMC Cardiovasc Disord. 2021;21(1):162.PubMedPubMedCentralCrossRef
124.
go back to reference Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J. Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis. 2019;18(1):22.PubMedPubMedCentralCrossRef Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J. Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis. 2019;18(1):22.PubMedPubMedCentralCrossRef
125.
go back to reference Chandrasekera DNK, Neale JPH, van Hout I, Rawal S, Coffey S, Jones GT, Bunton R, Sugunesegran R, Parry D, Davis P, et al. Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis. 2020;25(5–6):388–99.PubMedCrossRef Chandrasekera DNK, Neale JPH, van Hout I, Rawal S, Coffey S, Jones GT, Bunton R, Sugunesegran R, Parry D, Davis P, et al. Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis. 2020;25(5–6):388–99.PubMedCrossRef
126.
go back to reference Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentralCrossRef Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentralCrossRef
127.
go back to reference Juguilon C, Wang Z, Wang Y, Enrick M, Jamaiyar A, Xu Y, Gadd J, Chen CW, Pu A, Kolz C, et al. Mechanism of the switch from NO to H(2)O(2) in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol. 2022;117(1):2.PubMedPubMedCentralCrossRef Juguilon C, Wang Z, Wang Y, Enrick M, Jamaiyar A, Xu Y, Gadd J, Chen CW, Pu A, Kolz C, et al. Mechanism of the switch from NO to H(2)O(2) in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol. 2022;117(1):2.PubMedPubMedCentralCrossRef
128.
go back to reference Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol. 2022;19(7):456–74.PubMedCrossRef Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol. 2022;19(7):456–74.PubMedCrossRef
129.
go back to reference You M, Liu Y, Wang B, Li L, Zhang H, He H, Zhou Q, Cao T, Wang L, Zhao Z, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25.PubMedPubMedCentralCrossRef You M, Liu Y, Wang B, Li L, Zhang H, He H, Zhou Q, Cao T, Wang L, Zhao Z, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25.PubMedPubMedCentralCrossRef
130.
go back to reference Cheng HS, Zhuang R, Pérez-Cremades D, Chen J, Jamaiyar A, Wu W, Sausen G, Tzani A, Plutzky J, Henao-Mejia J, et al. A miRNA/CXCR4 signaling axis impairs monopoiesis and angiogenesis in diabetic critical limb ischemia. JCI Insight. 2023;8(7):e163360. PubMedPubMedCentralCrossRef Cheng HS, Zhuang R, Pérez-Cremades D, Chen J, Jamaiyar A, Wu W, Sausen G, Tzani A, Plutzky J, Henao-Mejia J, et al. A miRNA/CXCR4 signaling axis impairs monopoiesis and angiogenesis in diabetic critical limb ischemia. JCI Insight. 2023;8(7):e163360. PubMedPubMedCentralCrossRef
131.
go back to reference Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, et al. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest. 2022;132(21):e158309. PubMedPubMedCentralCrossRef Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, et al. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest. 2022;132(21):e158309. PubMedPubMedCentralCrossRef
133.
go back to reference Shi K, Li H, Chang T, He W, Kong Y, Qi C, Li R, Huang H, Zhu Z, Zheng P, et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell. 2022;185(13):2234-2247.e2217.PubMedCrossRef Shi K, Li H, Chang T, He W, Kong Y, Qi C, Li R, Huang H, Zhu Z, Zheng P, et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell. 2022;185(13):2234-2247.e2217.PubMedCrossRef
134.
go back to reference McCoy MG, Jamaiyar A, Sausen G, Cheng HS, Pérez-Cremades D, Zhuang R, Chen J, Goodney PP, Creager MA, Sabatine MS, et al. MicroRNA-375 repression of Kruppel-like factor 5 improves angiogenesis in diabetic critical limb ischemia. Angiogenesis. 2023;26(1):107–27.PubMedCrossRef McCoy MG, Jamaiyar A, Sausen G, Cheng HS, Pérez-Cremades D, Zhuang R, Chen J, Goodney PP, Creager MA, Sabatine MS, et al. MicroRNA-375 repression of Kruppel-like factor 5 improves angiogenesis in diabetic critical limb ischemia. Angiogenesis. 2023;26(1):107–27.PubMedCrossRef
135.
go back to reference Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, et al. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology. 2023;21(1):189.PubMedPubMedCentralCrossRef Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, et al. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology. 2023;21(1):189.PubMedPubMedCentralCrossRef
136.
go back to reference Cheng HS, Pérez-Cremades D, Zhuang R, Jamaiyar A, Wu W, Chen J, Tzani A, Stone L, Plutzky J, Ryan TE, et al. Impaired angiogenesis in diabetic critical limb ischemia is mediated by a miR-130b/INHBA signaling axis. JCI Insight. 2023;8(10): e163041.PubMedPubMedCentralCrossRef Cheng HS, Pérez-Cremades D, Zhuang R, Jamaiyar A, Wu W, Chen J, Tzani A, Stone L, Plutzky J, Ryan TE, et al. Impaired angiogenesis in diabetic critical limb ischemia is mediated by a miR-130b/INHBA signaling axis. JCI Insight. 2023;8(10): e163041.PubMedPubMedCentralCrossRef
138.
go back to reference Marcucci M, Chan MTV, Smith EE, Absalom AR, Devereaux PJ. Prevention of perioperative stroke in patients undergoing non-cardiac surgery. Lancet Neurol. 2023;22(10):946–58.PubMedCrossRef Marcucci M, Chan MTV, Smith EE, Absalom AR, Devereaux PJ. Prevention of perioperative stroke in patients undergoing non-cardiac surgery. Lancet Neurol. 2023;22(10):946–58.PubMedCrossRef
139.
go back to reference Hermann DM, Xin W, Bähr M, Giebel B, Doeppner TR. Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke. Theranostics. 2022;12(13):5776–802.PubMedPubMedCentralCrossRef Hermann DM, Xin W, Bähr M, Giebel B, Doeppner TR. Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke. Theranostics. 2022;12(13):5776–802.PubMedPubMedCentralCrossRef
140.
go back to reference Karam RA, Amer MM, Zidan HE. Long noncoding RNA NEAT1 expression and its target miR-124 in diabetic ischemic stroke patients. Genet Test Mol Biomarkers. 2022;26(7–8):398–407.PubMedCrossRef Karam RA, Amer MM, Zidan HE. Long noncoding RNA NEAT1 expression and its target miR-124 in diabetic ischemic stroke patients. Genet Test Mol Biomarkers. 2022;26(7–8):398–407.PubMedCrossRef
141.
go back to reference Sheikhbahaei S, Manizheh D, Mohammad S, Hasan TM, Saman N, Laleh R, Mahsa M, Sanaz AK, Shaghayegh HJ. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr Disord. 2019;19(1):42.PubMedPubMedCentralCrossRef Sheikhbahaei S, Manizheh D, Mohammad S, Hasan TM, Saman N, Laleh R, Mahsa M, Sanaz AK, Shaghayegh HJ. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr Disord. 2019;19(1):42.PubMedPubMedCentralCrossRef
142.
go back to reference Chi NF, Chiou HY, Chou SY, Hu CJ, Chen KY, Chang CF, Hsieh YC. Hyperglycemia-related FAS gene and hsa-let-7b-5p as markers of poor outcomes for ischaemic stroke. Eur J Neurol. 2020;27(8):1647–55.PubMedCrossRef Chi NF, Chiou HY, Chou SY, Hu CJ, Chen KY, Chang CF, Hsieh YC. Hyperglycemia-related FAS gene and hsa-let-7b-5p as markers of poor outcomes for ischaemic stroke. Eur J Neurol. 2020;27(8):1647–55.PubMedCrossRef
143.
go back to reference Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, Chopp M, Chen J. Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol. 2020;334: 113456.PubMedCrossRef Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, Chopp M, Chen J. Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol. 2020;334: 113456.PubMedCrossRef
144.
go back to reference Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126(5):663–78.PubMedPubMedCentralCrossRef Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126(5):663–78.PubMedPubMedCentralCrossRef
145.
go back to reference Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, Rode L, Weigt H, Genschel C, Lorch U, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–88.PubMedCrossRef Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, Rode L, Weigt H, Genschel C, Lorch U, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–88.PubMedCrossRef
146.
go back to reference Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53.PubMedCrossRef Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53.PubMedCrossRef
147.
go back to reference Rech M, Kuhn AR, Lumens J, Carai P, van Leeuwen R, Verhesen W, Verjans R, Lecomte J, Liu Y, Luiken J, et al. AntagomiR-103 and -107 treatment affects cardiac function and metabolism. Mol Ther Nucleic Acids. 2019;14:424–37.PubMedCrossRef Rech M, Kuhn AR, Lumens J, Carai P, van Leeuwen R, Verhesen W, Verjans R, Lecomte J, Liu Y, Luiken J, et al. AntagomiR-103 and -107 treatment affects cardiac function and metabolism. Mol Ther Nucleic Acids. 2019;14:424–37.PubMedCrossRef
148.
go back to reference Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, et al. miR-10b-5p rescues diabetes and gastrointestinal dysmotility. Gastroenterology. 2021;160(5):1662-1678.e1618.PubMedCrossRef Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, et al. miR-10b-5p rescues diabetes and gastrointestinal dysmotility. Gastroenterology. 2021;160(5):1662-1678.e1618.PubMedCrossRef
149.
go back to reference Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024;20(1):27–49.PubMedCrossRef Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024;20(1):27–49.PubMedCrossRef
150.
go back to reference Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Cui RR, Wu F, et al. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res. 2020;68(3): e12631.PubMedPubMedCentralCrossRef Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Cui RR, Wu F, et al. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res. 2020;68(3): e12631.PubMedPubMedCentralCrossRef
151.
go back to reference Eiring A, Harb J, Neviani P, Garton C, Oaks J, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey C, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.PubMedPubMedCentralCrossRef Eiring A, Harb J, Neviani P, Garton C, Oaks J, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey C, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.PubMedPubMedCentralCrossRef
152.
go back to reference Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang C, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22(3):504–15.PubMedCrossRef Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang C, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22(3):504–15.PubMedCrossRef
153.
go back to reference Matsui M, Chu Y, Zhang H, Gagnon K, Shaikh S, Kuchimanchi S, Manoharan M, Corey D, Janowski B. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 2013;41(22):10086–109.PubMedPubMedCentralCrossRef Matsui M, Chu Y, Zhang H, Gagnon K, Shaikh S, Kuchimanchi S, Manoharan M, Corey D, Janowski B. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 2013;41(22):10086–109.PubMedPubMedCentralCrossRef
Metadata
Title
MicroRNAs in diabetic macroangiopathy
Authors
Guocheng Rao
Boqiang Peng
Guixiang Zhang
Xianghui Fu
Jingyan Tian
Yan Tian
Publication date
15-09-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02405-w

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now