Skip to main content
Top

Open Access 12-03-2025 | Computed Tomography | Original Article

Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement

Authors: Masafumi Takafuji, Kakuya Kitagawa, Sachio Mizutani, Akane Hamaguchi, Ryosuke Kisou, Kenji Sasaki, Yuto Funaki, Kotaro Iio, Kazuhide Ichikawa, Daisuke Izumi, Shiko Okabe, Motonori Nagata, Hajime Sakuma

Published in: Japanese Journal of Radiology

Login to get access

Abstract

Purpose

Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR).

Methods and methods

We retrospectively analyzed 30 patients who underwent CT-LE using 320-row CT. The CT protocol comprised stress dynamic CT perfusion, coronary CT angiography, and CT-LE. CT-LE images were reconstructed using three different algorithms: SR-DLR, C-DLR, and hybrid IR. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scores are in terms of noise reduction, sharpness, visibility of scar and myocardial boarder, and overall image quality. Inter-observer differences in myocardial scar sizing in CT-LE by the three algorithms were also compared.

Results

SR-DLR significantly decreased image noise by 35% compared to C-DLR (median 6.2 HU, interquartile range [IQR] 5.6–7.2 HU vs 9.6 HU, IQR 8.4–10.7 HU; p < 0.001) and by 37% compared to hybrid IR (9.8 HU, IQR 8.5–12.0 HU; p < 0.001). SNR and CNR of CT-LE reconstructed using SR-DLR were significantly higher than with C-DLR (both p < 0.001) and hybrid IR (both p < 0.05). All qualitative image quality scores were higher with SR-DLR than those with C-DLR and hybrid IR (all p < 0.001). The inter-observer differences in scar sizing were reduced with SR-DLR and C-DLR compared with hybrid IR (both p = 0.02).

Conclusion

SR-DLR reduces image noise and improves image quality of myocardial CT-LE compared with C-DLR and hybrid IR techniques and improves inter-observer reproducibility of scar sizing compared to hybrid IR. The SR-DLR approach has the potential to improve the assessment of myocardial scar by CT late enhancement.
Literature
1.
go back to reference Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.CrossRefPubMed Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.CrossRefPubMed
2.
go back to reference Oyama-Manabe N, Oda S, Ohta Y, Takagi H, Kitagawa K, Jinzaki M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr. 2024;18(1):3–10.CrossRefPubMed Oyama-Manabe N, Oda S, Ohta Y, Takagi H, Kitagawa K, Jinzaki M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr. 2024;18(1):3–10.CrossRefPubMed
3.
go back to reference Assen MV, Vonder M, Pelgrim GJ, Von Knebel Doeberitz PL, Vliegenthart R. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp. 2020;4(1):36.CrossRefPubMedPubMedCentral Assen MV, Vonder M, Pelgrim GJ, Von Knebel Doeberitz PL, Vliegenthart R. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp. 2020;4(1):36.CrossRefPubMedPubMedCentral
4.
go back to reference Kurobe Y, Kitagawa K, Ito T, Kurita Y, Shiraishi Y, Nakamori S, et al. Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction. J Cardiovasc Comput Tomogr. 2014;8(4):289–98.CrossRefPubMed Kurobe Y, Kitagawa K, Ito T, Kurita Y, Shiraishi Y, Nakamori S, et al. Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction. J Cardiovasc Comput Tomogr. 2014;8(4):289–98.CrossRefPubMed
5.
go back to reference Aikawa T, Oyama-Manabe N, Naya M, Ohira H, Sugimoto A, Tsujino I, et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: a feasibility study. Eur Radiol. 2017;27(10):4054–63.CrossRefPubMed Aikawa T, Oyama-Manabe N, Naya M, Ohira H, Sugimoto A, Tsujino I, et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: a feasibility study. Eur Radiol. 2017;27(10):4054–63.CrossRefPubMed
6.
go back to reference Takafuji M, Kitagawa K, Ishida M, Goto Y, Nakamura S, Nagasawa N, et al. Myocardial coverage and radiation dose in dynamic myocardial perfusion imaging using third-generation dual-source CT. Korean J Radiol. 2020;21(1):58–67.CrossRefPubMed Takafuji M, Kitagawa K, Ishida M, Goto Y, Nakamura S, Nagasawa N, et al. Myocardial coverage and radiation dose in dynamic myocardial perfusion imaging using third-generation dual-source CT. Korean J Radiol. 2020;21(1):58–67.CrossRefPubMed
7.
go back to reference Fujita M, Kitagawa K, Ito T, Shiraishi Y, Kurobe Y, Nagata M, et al. Dose reduction in dynamic CT stress myocardial perfusion imaging: comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols. Eur Radiol. 2014;24(3):748–55.CrossRefPubMed Fujita M, Kitagawa K, Ito T, Shiraishi Y, Kurobe Y, Nagata M, et al. Dose reduction in dynamic CT stress myocardial perfusion imaging: comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols. Eur Radiol. 2014;24(3):748–55.CrossRefPubMed
8.
go back to reference Tanabe Y, Kido T, Kurata A, Fukuyama N, Yokoi T, Kido T, et al. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance. Int J Cardiovasc Imaging. 2017;33(10):1609–18.CrossRefPubMed Tanabe Y, Kido T, Kurata A, Fukuyama N, Yokoi T, Kido T, et al. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance. Int J Cardiovasc Imaging. 2017;33(10):1609–18.CrossRefPubMed
9.
go back to reference Takaoka H, Funabashi N, Ozawa K, Uehara M, Sano K, Komuro I, et al. Improved diagnosis of detection of late enhancement in left ventricular myocardium using 2nd generation 320-slice CT reconstructed with FIRST in non-ischemic cardiomyopathy. Int Heart J. 2018;59(3):542–9.CrossRefPubMed Takaoka H, Funabashi N, Ozawa K, Uehara M, Sano K, Komuro I, et al. Improved diagnosis of detection of late enhancement in left ventricular myocardium using 2nd generation 320-slice CT reconstructed with FIRST in non-ischemic cardiomyopathy. Int Heart J. 2018;59(3):542–9.CrossRefPubMed
10.
go back to reference Takafuji M, Kitagawa K, Mizutani S, Oka R, Kisou R, Sakaguchi S, et al. Deep-learning reconstruction to improve image quality of myocardial dynamic CT perfusion: comparison with hybrid iterative reconstruction. Clin Radiol. 2022;77(10):e771–5.CrossRefPubMed Takafuji M, Kitagawa K, Mizutani S, Oka R, Kisou R, Sakaguchi S, et al. Deep-learning reconstruction to improve image quality of myocardial dynamic CT perfusion: comparison with hybrid iterative reconstruction. Clin Radiol. 2022;77(10):e771–5.CrossRefPubMed
11.
go back to reference Lee T-C, Zhou J, Yu Z, Cai L. Deep learning enabled wide-coverage high-resolution cardiac CT: Medical Imaging 2022: Physics of Medical Imaging. SPIE. 2022; 675-678 Lee T-C, Zhou J, Yu Z, Cai L. Deep learning enabled wide-coverage high-resolution cardiac CT: Medical Imaging 2022: Physics of Medical Imaging. SPIE. 2022; 675-678
12.
go back to reference Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Iio K, et al. Super-resolution deep learning reconstruction for improved image quality of coronary CT angiography. Radiol Cardiothorac Imaging. 2023;5(4):e230085.CrossRefPubMedPubMedCentral Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Iio K, et al. Super-resolution deep learning reconstruction for improved image quality of coronary CT angiography. Radiol Cardiothorac Imaging. 2023;5(4):e230085.CrossRefPubMedPubMedCentral
13.
go back to reference Trattner S, Halliburton S, Thompson CM, Xu Y, Chelliah A, Jambawalikar SR, et al. Cardiac-specific conversion factors to estimate radiation effective dose from dose-length product in computed tomography. JACC Cardiovasc imaging. 2018;11(1):64–74.CrossRefPubMed Trattner S, Halliburton S, Thompson CM, Xu Y, Chelliah A, Jambawalikar SR, et al. Cardiac-specific conversion factors to estimate radiation effective dose from dose-length product in computed tomography. JACC Cardiovasc imaging. 2018;11(1):64–74.CrossRefPubMed
14.
go back to reference Hamdy A, Kitagawa K, Goto Y, Yamada A, Nakamura S, Takafuji M, et al. Comparison of the different imaging time points in delayed phase cardiac CT for myocardial scar assessment and extracellular volume fraction estimation in patients with old myocardial infarction. Int J Cardiovasc Imaging. 2019;35(5):917–26.CrossRefPubMed Hamdy A, Kitagawa K, Goto Y, Yamada A, Nakamura S, Takafuji M, et al. Comparison of the different imaging time points in delayed phase cardiac CT for myocardial scar assessment and extracellular volume fraction estimation in patients with old myocardial infarction. Int J Cardiovasc Imaging. 2019;35(5):917–26.CrossRefPubMed
15.
go back to reference Takafuji M, Kitagawa K, Nakamura S, Hamdy A, Goto Y, Ishida M, et al. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J Cardiovasc Comput Tomogr. 2020;14(6):524–8.CrossRefPubMed Takafuji M, Kitagawa K, Nakamura S, Hamdy A, Goto Y, Ishida M, et al. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J Cardiovasc Comput Tomogr. 2020;14(6):524–8.CrossRefPubMed
16.
go back to reference Walsh DP, Chen MJ, Buhl LK, Neves SE, Mitchell JD. Assessing interrater reliability of a faculty-provided feedback rating instrument. J Med Educ Curric Dev. 2022;9:23821205221093204.CrossRefPubMedPubMedCentral Walsh DP, Chen MJ, Buhl LK, Neves SE, Mitchell JD. Assessing interrater reliability of a faculty-provided feedback rating instrument. J Med Educ Curric Dev. 2022;9:23821205221093204.CrossRefPubMedPubMedCentral
17.
go back to reference Koweek L, Achenbach S, Berman DS, Carr JJ, Cury RC, Ghoshhajra B, et al. Standardized medical terminology for cardiac computed tomography 2023 update: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), American Association of Physicists in Medicine (AAPM), American College of Radiology (ACR), North American Society for Cardiovascular Imaging (NASCI) and Radiological Society of North America (RSNA) with endorsement by the Asian Society of Cardiovascular Imaging (ASCI), the European Association of Cardiovascular Imaging (EACI), and the European Society of Cardiovascular Radiology (ESCR). J Cardiovasc Comput Tomogr. 2023;17(5):345–54.CrossRefPubMed Koweek L, Achenbach S, Berman DS, Carr JJ, Cury RC, Ghoshhajra B, et al. Standardized medical terminology for cardiac computed tomography 2023 update: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), American Association of Physicists in Medicine (AAPM), American College of Radiology (ACR), North American Society for Cardiovascular Imaging (NASCI) and Radiological Society of North America (RSNA) with endorsement by the Asian Society of Cardiovascular Imaging (ASCI), the European Association of Cardiovascular Imaging (EACI), and the European Society of Cardiovascular Radiology (ESCR). J Cardiovasc Comput Tomogr. 2023;17(5):345–54.CrossRefPubMed
18.
go back to reference Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, et al. Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology. 2008;247(1):49–56.CrossRefPubMed Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, et al. Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology. 2008;247(1):49–56.CrossRefPubMed
19.
go back to reference Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol. 2019;29(10):5322–9.CrossRefPubMed Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol. 2019;29(10):5322–9.CrossRefPubMed
20.
go back to reference Nagayama Y, Emoto T, Kato Y, Kidoh M, Oda S, Sakabe D, et al. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Eur Radiol. 2023;33(12):8488–500.CrossRefPubMed Nagayama Y, Emoto T, Kato Y, Kidoh M, Oda S, Sakabe D, et al. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Eur Radiol. 2023;33(12):8488–500.CrossRefPubMed
21.
go back to reference Tatsugami F, Higaki T, Kawashita I, Fukumoto W, Nakamura Y, Matsuura M, et al. Improvement of spatial resolution on coronary CT angiography by using super-resolution deep learning reconstruction. Acad Radiol. 2023;30(11):2497–504.CrossRefPubMed Tatsugami F, Higaki T, Kawashita I, Fukumoto W, Nakamura Y, Matsuura M, et al. Improvement of spatial resolution on coronary CT angiography by using super-resolution deep learning reconstruction. Acad Radiol. 2023;30(11):2497–504.CrossRefPubMed
22.
go back to reference Andreini D, Conte E, Mushtaq S, Melotti E, Gigante C, Mancini ME, et al. Comprehensive evaluation of left ventricle dysfunction by a new computed tomography scanner: the E-PLURIBUS study. JACC Cardiovasc Imaging. 2023;16(2):175–88.CrossRefPubMed Andreini D, Conte E, Mushtaq S, Melotti E, Gigante C, Mancini ME, et al. Comprehensive evaluation of left ventricle dysfunction by a new computed tomography scanner: the E-PLURIBUS study. JACC Cardiovasc Imaging. 2023;16(2):175–88.CrossRefPubMed
23.
go back to reference Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109–19.CrossRefPubMed Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109–19.CrossRefPubMed
24.
go back to reference Higaki T, Tatsugami F, Ohana M, Nakamura Y, Kawashita I, Awai K. Super resolution deep learning reconstruction for coronary CT angiography: a structured phantom study. Eur J Radiol Open. 2024;12:100570.CrossRefPubMedPubMedCentral Higaki T, Tatsugami F, Ohana M, Nakamura Y, Kawashita I, Awai K. Super resolution deep learning reconstruction for coronary CT angiography: a structured phantom study. Eur J Radiol Open. 2024;12:100570.CrossRefPubMedPubMedCentral
Metadata
Title
Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement
Authors
Masafumi Takafuji
Kakuya Kitagawa
Sachio Mizutani
Akane Hamaguchi
Ryosuke Kisou
Kenji Sasaki
Yuto Funaki
Kotaro Iio
Kazuhide Ichikawa
Daisuke Izumi
Shiko Okabe
Motonori Nagata
Hajime Sakuma
Publication date
12-03-2025
Publisher
Springer Nature Singapore
Published in
Japanese Journal of Radiology
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-025-01760-2