Purpose
Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR).
Methods and methods
We retrospectively analyzed 30 patients who underwent CT-LE using 320-row CT. The CT protocol comprised stress dynamic CT perfusion, coronary CT angiography, and CT-LE. CT-LE images were reconstructed using three different algorithms: SR-DLR, C-DLR, and hybrid IR. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scores are in terms of noise reduction, sharpness, visibility of scar and myocardial boarder, and overall image quality. Inter-observer differences in myocardial scar sizing in CT-LE by the three algorithms were also compared.
Results
SR-DLR significantly decreased image noise by 35% compared to C-DLR (median 6.2 HU, interquartile range [IQR] 5.6–7.2 HU vs 9.6 HU, IQR 8.4–10.7 HU; p < 0.001) and by 37% compared to hybrid IR (9.8 HU, IQR 8.5–12.0 HU; p < 0.001). SNR and CNR of CT-LE reconstructed using SR-DLR were significantly higher than with C-DLR (both p < 0.001) and hybrid IR (both p < 0.05). All qualitative image quality scores were higher with SR-DLR than those with C-DLR and hybrid IR (all p < 0.001). The inter-observer differences in scar sizing were reduced with SR-DLR and C-DLR compared with hybrid IR (both p = 0.02).
Conclusion
SR-DLR reduces image noise and improves image quality of myocardial CT-LE compared with C-DLR and hybrid IR techniques and improves inter-observer reproducibility of scar sizing compared to hybrid IR. The SR-DLR approach has the potential to improve the assessment of myocardial scar by CT late enhancement.