Skip to main content
Top

Open Access 30-09-2024 | Computed Tomography | Review

Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions – new opportunities for precision medicine

Authors: Vitaliy Androshchuk, Natalie Montarello, Nishant Lahoti, Samuel Joseph Hill, Can Zhou, Tiffany Patterson, Simon Redwood, Steven Niederer, Pablo Lamata, Adelaide De Vecchi, Ronak Rajani

Published in: The International Journal of Cardiovascular Imaging

Login to get access

Abstract

The last decade has witnessed a substantial growth in percutaneous treatment options for heart valve disease. The development in these innovative therapies has been mirrored by advances in multi-detector computed tomography (MDCT). MDCT plays a central role in obtaining detailed pre-procedural anatomical information, helping to inform clinical decisions surrounding procedural planning, improve clinical outcomes and prevent potential complications. Improvements in MDCT image acquisition and processing techniques have led to increased application of advanced analytics in routine clinical care. Workflow implementation of patient-specific computational modeling, fluid dynamics, 3D printing, extended reality, extracellular volume mapping and artificial intelligence are shaping the landscape for delivering patient-specific care. This review will provide an insight of key innovations in the field of MDCT for planning transcatheter heart valve interventions.
Literature
1.
go back to reference Agricola E, Ingallina G, Ancona F, Biondi F, Margonato D, Barki M et al (2023) Evolution of interventional imaging in structural heart disease. Eur Heart J Suppl 25(Suppl C):C189–C199PubMedCentralCrossRefPubMed Agricola E, Ingallina G, Ancona F, Biondi F, Margonato D, Barki M et al (2023) Evolution of interventional imaging in structural heart disease. Eur Heart J Suppl 25(Suppl C):C189–C199PubMedCentralCrossRefPubMed
2.
go back to reference Pontone G, Rossi A, Guglielmo M, Dweck MR, Gaemperli O, Nieman K et al (2022) Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-Part I. Eur Heart J Cardiovasc Imaging 23(3):299–314PubMedCentralCrossRefPubMed Pontone G, Rossi A, Guglielmo M, Dweck MR, Gaemperli O, Nieman K et al (2022) Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-Part I. Eur Heart J Cardiovasc Imaging 23(3):299–314PubMedCentralCrossRefPubMed
3.
go back to reference Achenbach S, Schuhbäck A, Min JK, Leipsic J (2013) Determination of the aortic annulus plane in CT imaging-a step-by-step approach. JACC Cardiovasc Imaging 6(2):275–278CrossRefPubMed Achenbach S, Schuhbäck A, Min JK, Leipsic J (2013) Determination of the aortic annulus plane in CT imaging-a step-by-step approach. JACC Cardiovasc Imaging 6(2):275–278CrossRefPubMed
4.
go back to reference Nguyen V, Willner N, Eltchaninoff H, Burwash IG, Michel M, Durand E et al (2022) Trends in aortic valve replacement for aortic stenosis: a French nationwide study. Eur Heart J 43(7):666–679CrossRefPubMed Nguyen V, Willner N, Eltchaninoff H, Burwash IG, Michel M, Durand E et al (2022) Trends in aortic valve replacement for aortic stenosis: a French nationwide study. Eur Heart J 43(7):666–679CrossRefPubMed
5.
go back to reference Curio J, Beneduce A, Giannini F (2023) Transcatheter mitral and tricuspid interventions—the bigger picture: valvular disease as part of heart failure. Front Cardiovasc Med 10:1091309PubMedCentralCrossRefPubMed Curio J, Beneduce A, Giannini F (2023) Transcatheter mitral and tricuspid interventions—the bigger picture: valvular disease as part of heart failure. Front Cardiovasc Med 10:1091309PubMedCentralCrossRefPubMed
6.
go back to reference Agricola E, Ancona F, Brochet E, Donal E, Dweck M, Faletra F et al (2021) The structural heart disease interventional imager rationale, skills and training: a position paper of the European Association of Cardiovascular Imaging. Eur Heart J - Cardiovasc Imaging 22(5):471–479CrossRefPubMed Agricola E, Ancona F, Brochet E, Donal E, Dweck M, Faletra F et al (2021) The structural heart disease interventional imager rationale, skills and training: a position paper of the European Association of Cardiovascular Imaging. Eur Heart J - Cardiovasc Imaging 22(5):471–479CrossRefPubMed
7.
go back to reference Revels JW, Wang SS, Gharai LR, Febbo J, Fadl S, Bastawrous S (2021) The role of CT in planning percutaneous structural heart interventions: where to measure and why. Clin Imaging 76:247–264CrossRefPubMed Revels JW, Wang SS, Gharai LR, Febbo J, Fadl S, Bastawrous S (2021) The role of CT in planning percutaneous structural heart interventions: where to measure and why. Clin Imaging 76:247–264CrossRefPubMed
8.
go back to reference Nicol ED, Norgaard BL, Blanke P, Ahmadi A, Weir-McCall J, Horvat PM et al (2019) The future of Cardiovascular computed tomography: Advanced Analytics and clinical insights. JACC Cardiovasc Imaging 12(6):1058–1072CrossRefPubMed Nicol ED, Norgaard BL, Blanke P, Ahmadi A, Weir-McCall J, Horvat PM et al (2019) The future of Cardiovascular computed tomography: Advanced Analytics and clinical insights. JACC Cardiovasc Imaging 12(6):1058–1072CrossRefPubMed
9.
go back to reference Rydberg J, Sandrasegaran K, Tarver RD, Frank MS, Conces DJ, Choplin RH (2007) Routine isotropic computed tomography scanning of chest: value of coronal and sagittal reformations. Invest Radiol 42(1):23–28CrossRefPubMed Rydberg J, Sandrasegaran K, Tarver RD, Frank MS, Conces DJ, Choplin RH (2007) Routine isotropic computed tomography scanning of chest: value of coronal and sagittal reformations. Invest Radiol 42(1):23–28CrossRefPubMed
10.
go back to reference Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C et al (2021) 3D Printing, computational modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc Imaging 14(1):41–60CrossRefPubMed Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C et al (2021) 3D Printing, computational modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc Imaging 14(1):41–60CrossRefPubMed
11.
go back to reference Wang Q, Primiano C, McKay R, Kodali S, Sun W (2014) CT image-based engineering analysis of transcatheter aortic valve replacement. JACC Cardiovasc Imaging 7(5):526–528PubMedCentralCrossRefPubMed Wang Q, Primiano C, McKay R, Kodali S, Sun W (2014) CT image-based engineering analysis of transcatheter aortic valve replacement. JACC Cardiovasc Imaging 7(5):526–528PubMedCentralCrossRefPubMed
12.
go back to reference McQueen D, Peskin C (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAPH Comput Graphics 34:56–60CrossRef McQueen D, Peskin C (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAPH Comput Graphics 34:56–60CrossRef
13.
go back to reference Thiriveedhi VK, Krishnaswamy D, Clunie D, Pieper S, Kikinis R, Fedorov A (2024) Cloud-based large-scale curation of medical imaging data using AI segmentation. Res Sq.;rs.3.rs-4351526 Thiriveedhi VK, Krishnaswamy D, Clunie D, Pieper S, Kikinis R, Fedorov A (2024) Cloud-based large-scale curation of medical imaging data using AI segmentation. Res Sq.;rs.3.rs-4351526
14.
go back to reference Yucel-Finn A, Nicol E, Leipsic JA, Weir-McCall JR (2021) CT in planning transcatheter aortic valve implantation procedures and risk assessment. Clin Radiol 76(1):73. http://e1-73.e19CrossRef Yucel-Finn A, Nicol E, Leipsic JA, Weir-McCall JR (2021) CT in planning transcatheter aortic valve implantation procedures and risk assessment. Clin Radiol 76(1):73. http://​e1-73.​e19CrossRef
15.
go back to reference Reid A, Blanke P, Bax JJ, Leipsic J (2021) Multimodality imaging in valvular heart disease: how to use state-of-the-art technology in daily practice. Eur Heart J 42(19):1912–1925CrossRefPubMed Reid A, Blanke P, Bax JJ, Leipsic J (2021) Multimodality imaging in valvular heart disease: how to use state-of-the-art technology in daily practice. Eur Heart J 42(19):1912–1925CrossRefPubMed
16.
go back to reference Pulerwitz TC, Khalique OK, Leb J, Hahn RT, Nazif TM, Leon MB et al (2020) Optimizing Cardiac CT protocols for Comprehensive Acquisition Prior to Percutaneous MV and TV Repair/Replacement. JACC Cardiovasc Imaging 13(3):836–850CrossRefPubMed Pulerwitz TC, Khalique OK, Leb J, Hahn RT, Nazif TM, Leon MB et al (2020) Optimizing Cardiac CT protocols for Comprehensive Acquisition Prior to Percutaneous MV and TV Repair/Replacement. JACC Cardiovasc Imaging 13(3):836–850CrossRefPubMed
17.
go back to reference Hell MM, Emrich T, Lurz P, von Bardeleben RS, Schmermund A (2023) Cardiac CT beyond coronaries: Focus on Structural Heart Disease. Curr Heart Fail Rep 20(6):484–492PubMedCentralCrossRefPubMed Hell MM, Emrich T, Lurz P, von Bardeleben RS, Schmermund A (2023) Cardiac CT beyond coronaries: Focus on Structural Heart Disease. Curr Heart Fail Rep 20(6):484–492PubMedCentralCrossRefPubMed
18.
go back to reference Faletti R, Gatti M, Cosentino A, Bergamasco L, Cura Stura E, Garabello D et al (2018) 3D printing of the aortic annulus based on cardiovascular computed tomography: preliminary experience in pre-procedural planning for aortic valve sizing. J Cardiovasc Comput Tomogr 12(5):391–397CrossRefPubMed Faletti R, Gatti M, Cosentino A, Bergamasco L, Cura Stura E, Garabello D et al (2018) 3D printing of the aortic annulus based on cardiovascular computed tomography: preliminary experience in pre-procedural planning for aortic valve sizing. J Cardiovasc Comput Tomogr 12(5):391–397CrossRefPubMed
19.
go back to reference Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ et al (2016) 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 10(1):28–36CrossRefPubMed Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ et al (2016) 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 10(1):28–36CrossRefPubMed
20.
go back to reference Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153CrossRefPubMed Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153CrossRefPubMed
22.
go back to reference Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J et al (2017) Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng.;33(5) Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J et al (2017) Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng.;33(5)
24.
go back to reference de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Nordsletten DA, Simpson JM et al (2014) Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. Prog Biophys Mol Biol 116(1):3–10CrossRefPubMed de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Nordsletten DA, Simpson JM et al (2014) Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. Prog Biophys Mol Biol 116(1):3–10CrossRefPubMed
25.
go back to reference de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Simpson JM, Razavi R et al (2016) A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data. Comput Med Imaging Graph 51:20–31PubMedCentralCrossRefPubMed de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Simpson JM, Razavi R et al (2016) A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data. Comput Med Imaging Graph 51:20–31PubMedCentralCrossRefPubMed
26.
go back to reference Plitman Mayo R, Yaakobovich H, Finkelstein A, Shadden SC, Marom G (2020) Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. R Soc Open Sci 7(12):201838PubMedCentralCrossRefPubMed Plitman Mayo R, Yaakobovich H, Finkelstein A, Shadden SC, Marom G (2020) Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. R Soc Open Sci 7(12):201838PubMedCentralCrossRefPubMed
27.
go back to reference Qureshi A, Lip GYH, Nordsletten DA, Williams SE, Aslanidi O, de Vecchi A (2023) Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front Cardiovasc Med 9:1074562PubMedCentralCrossRefPubMed Qureshi A, Lip GYH, Nordsletten DA, Williams SE, Aslanidi O, de Vecchi A (2023) Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front Cardiovasc Med 9:1074562PubMedCentralCrossRefPubMed
28.
go back to reference Karády J, Ntalas I, Prendergast B, Blauth C, Niederer S, Maurovich-Horvat P et al (2018) Transcatheter mitral valve replacement in mitral annulus calcification - ‘The art of computer simulation’. J Cardiovasc Comput Tomogr 12(2):153–157CrossRefPubMed Karády J, Ntalas I, Prendergast B, Blauth C, Niederer S, Maurovich-Horvat P et al (2018) Transcatheter mitral valve replacement in mitral annulus calcification - ‘The art of computer simulation’. J Cardiovasc Comput Tomogr 12(2):153–157CrossRefPubMed
29.
go back to reference Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C et al (2024) Effect of Sinotubular Junction size on TAVR Leaflet thrombosis: a fluid-structure Interaction Analysis. Ann Biomed Eng 52(3):719–733CrossRefPubMed Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C et al (2024) Effect of Sinotubular Junction size on TAVR Leaflet thrombosis: a fluid-structure Interaction Analysis. Ann Biomed Eng 52(3):719–733CrossRefPubMed
30.
go back to reference Luraghi G, Migliavacca F, García-González A, Chiastra C, Rossi A, Cao D et al (2019) On the modeling of patient-specific transcatheter aortic valve replacement: a fluid-structure Interaction Approach. Cardiovasc Eng Technol 10(3):437–455CrossRefPubMed Luraghi G, Migliavacca F, García-González A, Chiastra C, Rossi A, Cao D et al (2019) On the modeling of patient-specific transcatheter aortic valve replacement: a fluid-structure Interaction Approach. Cardiovasc Eng Technol 10(3):437–455CrossRefPubMed
31.
go back to reference Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D et al (2022) The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. Npj Digit Med 5(1):1–12CrossRef Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D et al (2022) The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. Npj Digit Med 5(1):1–12CrossRef
32.
go back to reference Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y et al (2020) The ‘Digital twin’ to enable the vision of precision cardiology. Eur Heart J 41(48):4556–4564PubMedCentralCrossRefPubMed Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y et al (2020) The ‘Digital twin’ to enable the vision of precision cardiology. Eur Heart J 41(48):4556–4564PubMedCentralCrossRefPubMed
34.
go back to reference de Jaegere P, De Santis G, Rodriguez-Olivares R, Bosmans J, Bruining N, Dezutter T et al (2016) Patient-specific computer modeling to Predict Aortic Regurgitation after Transcatheter aortic valve replacement. JACC Cardiovasc Interv 9(5):508–512CrossRefPubMed de Jaegere P, De Santis G, Rodriguez-Olivares R, Bosmans J, Bruining N, Dezutter T et al (2016) Patient-specific computer modeling to Predict Aortic Regurgitation after Transcatheter aortic valve replacement. JACC Cardiovasc Interv 9(5):508–512CrossRefPubMed
35.
go back to reference El Faquir N, De Backer O, Bosmans J, Rudolph T, Buzzatti N, Bieliauskas G et al (2020) Patient-Specific Computer Simulation in TAVR With the Self-Expanding Evolut R Valve. JACC: Cardiovascular Interventions.;13(15):1803–12 El Faquir N, De Backer O, Bosmans J, Rudolph T, Buzzatti N, Bieliauskas G et al (2020) Patient-Specific Computer Simulation in TAVR With the Self-Expanding Evolut R Valve. JACC: Cardiovascular Interventions.;13(15):1803–12
36.
go back to reference Hokken TW, Wienemann H, Dargan J, van Ginkel DJ, Dowling C, Unbehaun A et al (2023) Clinical value of CT-derived simulations of transcatheter-aortic-valve-implantation in challenging anatomies the PRECISE-TAVI trial. Catheter Cardiovasc Interv 102(6):1140–1148CrossRefPubMed Hokken TW, Wienemann H, Dargan J, van Ginkel DJ, Dowling C, Unbehaun A et al (2023) Clinical value of CT-derived simulations of transcatheter-aortic-valve-implantation in challenging anatomies the PRECISE-TAVI trial. Catheter Cardiovasc Interv 102(6):1140–1148CrossRefPubMed
38.
go back to reference Chen F, Jia K, Li Y, Xiong T, Wang X, Zhu Z et al (2022) Coronary access after transcatheter aortic valve replacement in bicuspid versus tricuspid aortic stenosis. EuroIntervention 18(3):203–212PubMedCentralCrossRefPubMed Chen F, Jia K, Li Y, Xiong T, Wang X, Zhu Z et al (2022) Coronary access after transcatheter aortic valve replacement in bicuspid versus tricuspid aortic stenosis. EuroIntervention 18(3):203–212PubMedCentralCrossRefPubMed
39.
go back to reference Yudi MB, Sharma SK, Tang GHL, Kini A (2018) Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. J Am Coll Cardiol 71(12):1360–1378CrossRefPubMed Yudi MB, Sharma SK, Tang GHL, Kini A (2018) Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. J Am Coll Cardiol 71(12):1360–1378CrossRefPubMed
40.
go back to reference Allali A, El-Mawardy M, Schwarz B, Sato T, Geist V, Toelg R et al (2016) Incidence, feasibility and outcome of percutaneous coronary intervention after transcatheter aortic valve implantation with a self-expanding prosthesis. Results from a single center experience. Cardiovasc Revasc Med 17(6):391–398CrossRefPubMed Allali A, El-Mawardy M, Schwarz B, Sato T, Geist V, Toelg R et al (2016) Incidence, feasibility and outcome of percutaneous coronary intervention after transcatheter aortic valve implantation with a self-expanding prosthesis. Results from a single center experience. Cardiovasc Revasc Med 17(6):391–398CrossRefPubMed
41.
go back to reference Tanaka A, Jabbour RJ, Testa L, Agnifili M, Ettori F, Fiorina C et al (2019) Incidence, Technical Safety, and feasibility of coronary angiography and intervention following self-expanding transcatheter aortic valve replacement. Cardiovasc Revasc Med 20(5):371–375CrossRefPubMed Tanaka A, Jabbour RJ, Testa L, Agnifili M, Ettori F, Fiorina C et al (2019) Incidence, Technical Safety, and feasibility of coronary angiography and intervention following self-expanding transcatheter aortic valve replacement. Cardiovasc Revasc Med 20(5):371–375CrossRefPubMed
42.
go back to reference Dargan J, Rocatello G, Weng Y, Khan F, Firoozi S, Dowling C et al (2023) Patient-specific computer modelling to predict anatomical risk factors preventing post transcatheter aortic valve implantation coronary re-access in bicuspid aortic valve; a modelling study. Eur Heart J 44(Supplement2):ehad6551670CrossRef Dargan J, Rocatello G, Weng Y, Khan F, Firoozi S, Dowling C et al (2023) Patient-specific computer modelling to predict anatomical risk factors preventing post transcatheter aortic valve implantation coronary re-access in bicuspid aortic valve; a modelling study. Eur Heart J 44(Supplement2):ehad6551670CrossRef
43.
go back to reference Pasta S, Cannata S, Gentile G, Di Giuseppe M, Cosentino F, Pasta F et al (2020) Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve. Med Biol Eng Comput 58(4):815–829CrossRefPubMed Pasta S, Cannata S, Gentile G, Di Giuseppe M, Cosentino F, Pasta F et al (2020) Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve. Med Biol Eng Comput 58(4):815–829CrossRefPubMed
44.
go back to reference Hatoum H, Singh-Gryzbon S, Esmailie F, Ruile P, Neumann FJ, Blanke P et al (2021) Predictive model for Thrombus formation after transcatheter valve replacement. Cardiovasc Eng Technol 12(6):576–588PubMedCentralCrossRefPubMed Hatoum H, Singh-Gryzbon S, Esmailie F, Ruile P, Neumann FJ, Blanke P et al (2021) Predictive model for Thrombus formation after transcatheter valve replacement. Cardiovasc Eng Technol 12(6):576–588PubMedCentralCrossRefPubMed
45.
go back to reference Heitkemper M, Hatoum H, Azimian A, Yeats B, Dollery J, Whitson B et al (2020) Modeling risk of coronary obstruction during transcatheter aortic valve replacement. J Thorac Cardiovasc Surg 159(3):829–838e3CrossRefPubMed Heitkemper M, Hatoum H, Azimian A, Yeats B, Dollery J, Whitson B et al (2020) Modeling risk of coronary obstruction during transcatheter aortic valve replacement. J Thorac Cardiovasc Surg 159(3):829–838e3CrossRefPubMed
46.
go back to reference Hossien A, Nithiarasu P, Cheriex E, Maessen J, Sardari Nia P, Ashraf S (2015) A multidimensional dynamic quantification tool for the mitral valve. Interact Cardiovasc Thorac Surg 21(4):481–487CrossRefPubMed Hossien A, Nithiarasu P, Cheriex E, Maessen J, Sardari Nia P, Ashraf S (2015) A multidimensional dynamic quantification tool for the mitral valve. Interact Cardiovasc Thorac Surg 21(4):481–487CrossRefPubMed
47.
go back to reference Ring L, Rana BS, Kydd A, Boyd J, Parker K, Rusk RA (2012) Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur Heart J - Cardiovasc Imaging 13(9):756–762CrossRefPubMed Ring L, Rana BS, Kydd A, Boyd J, Parker K, Rusk RA (2012) Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur Heart J - Cardiovasc Imaging 13(9):756–762CrossRefPubMed
48.
go back to reference Yoon SH, Bleiziffer S, Latib A, Eschenbach L, Ancona M, Vincent F et al (2019) Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement. JACC Cardiovasc Interv 12(2):182–193CrossRefPubMed Yoon SH, Bleiziffer S, Latib A, Eschenbach L, Ancona M, Vincent F et al (2019) Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement. JACC Cardiovasc Interv 12(2):182–193CrossRefPubMed
49.
go back to reference De Vecchi A, Marlevi D, Nordsletten DA, Ntalas I, Leipsic J, Bapat V et al (2018) Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement. Sci Rep 8(1):15540PubMedCentralCrossRefPubMed De Vecchi A, Marlevi D, Nordsletten DA, Ntalas I, Leipsic J, Bapat V et al (2018) Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement. Sci Rep 8(1):15540PubMedCentralCrossRefPubMed
50.
go back to reference Blanke P, Naoum C, Dvir D, Bapat V, Ong K, Muller D et al (2017) Predicting LVOT obstruction in transcatheter mitral valve implantation: Concept of the Neo-LVOT. JACC Cardiovasc Imaging 10(4):482–485CrossRefPubMed Blanke P, Naoum C, Dvir D, Bapat V, Ong K, Muller D et al (2017) Predicting LVOT obstruction in transcatheter mitral valve implantation: Concept of the Neo-LVOT. JACC Cardiovasc Imaging 10(4):482–485CrossRefPubMed
51.
go back to reference Hashimoto G, Lopes BBC, Sato H, Fukui M, Garcia S, Gössl M et al (2022) Computed Tomography Planning for Transcatheter mitral valve replacement. Struct Heart 6(1):100012PubMedCentralCrossRefPubMed Hashimoto G, Lopes BBC, Sato H, Fukui M, Garcia S, Gössl M et al (2022) Computed Tomography Planning for Transcatheter mitral valve replacement. Struct Heart 6(1):100012PubMedCentralCrossRefPubMed
52.
go back to reference Meduri CU, Reardon MJ, Lim DS, Howard E, Dunnington G, Lee DP et al (2019) Novel Multiphase Assessment for Predicting Left ventricular outflow tract obstruction before transcatheter mitral valve replacement. JACC Cardiovasc Interv 12(23):2402–2412CrossRefPubMed Meduri CU, Reardon MJ, Lim DS, Howard E, Dunnington G, Lee DP et al (2019) Novel Multiphase Assessment for Predicting Left ventricular outflow tract obstruction before transcatheter mitral valve replacement. JACC Cardiovasc Interv 12(23):2402–2412CrossRefPubMed
53.
go back to reference Hill SJ, Young A, Prendergast B, Redwood S, Rajani R, De Vecchi A (2022) Patient-specific fluid simulation of transcatheter mitral valve replacement in mitral annulus calcification. Front Cardiovasc Med 9:934305PubMedCentralCrossRefPubMed Hill SJ, Young A, Prendergast B, Redwood S, Rajani R, De Vecchi A (2022) Patient-specific fluid simulation of transcatheter mitral valve replacement in mitral annulus calcification. Front Cardiovasc Med 9:934305PubMedCentralCrossRefPubMed
54.
go back to reference Chehab O, Roberts-Thomson R, Bivona A, Gill H, Patterson T, Pursnani A et al (2022) Management of patients with severe mitral annular calcification: JACC state-of-the-art review. J Am Coll Cardiol 80(7):722–738CrossRefPubMed Chehab O, Roberts-Thomson R, Bivona A, Gill H, Patterson T, Pursnani A et al (2022) Management of patients with severe mitral annular calcification: JACC state-of-the-art review. J Am Coll Cardiol 80(7):722–738CrossRefPubMed
55.
go back to reference de Vecchi A, Niederer S, Karády J, Ntalas I, Maurovich-Horvat P, Rajani R (2018) Computational fluid dynamic modelling to determine the hemodynamic effects of implanting a transcatheter mitral valve within the left ventricle. Int J Cardiovasc Imaging 34(5):803–805PubMed de Vecchi A, Niederer S, Karády J, Ntalas I, Maurovich-Horvat P, Rajani R (2018) Computational fluid dynamic modelling to determine the hemodynamic effects of implanting a transcatheter mitral valve within the left ventricle. Int J Cardiovasc Imaging 34(5):803–805PubMed
56.
go back to reference Pasta S, Catalano C, Cannata S, Guccione JM, Gandolfo C (2022) Numerical simulation of transcatheter mitral valve replacement: the dynamic implication of LVOT obstruction in the valve-in-ring case. J Biomech 144:111337CrossRefPubMed Pasta S, Catalano C, Cannata S, Guccione JM, Gandolfo C (2022) Numerical simulation of transcatheter mitral valve replacement: the dynamic implication of LVOT obstruction in the valve-in-ring case. J Biomech 144:111337CrossRefPubMed
57.
go back to reference Taramasso M, Pozzoli A, Basso C, Thiene G, Denti P, Kuwata S et al (2018) Compare and contrast tricuspid and mitral valve anatomy: interventional perspectives for transcatheter tricuspid valve therapies. EuroIntervention 13(16):1889–1898CrossRefPubMed Taramasso M, Pozzoli A, Basso C, Thiene G, Denti P, Kuwata S et al (2018) Compare and contrast tricuspid and mitral valve anatomy: interventional perspectives for transcatheter tricuspid valve therapies. EuroIntervention 13(16):1889–1898CrossRefPubMed
59.
go back to reference Buğan B, İjlal Çekirdekçi E, Çağatay Onar L, Barçın C (2022) Transcatheter tricuspid valve replacement for Tricuspid Regurgitation: a systematic review and Meta-analysis. Anatol J Cardiol 26(7):505–519PubMedCentralCrossRefPubMed Buğan B, İjlal Çekirdekçi E, Çağatay Onar L, Barçın C (2022) Transcatheter tricuspid valve replacement for Tricuspid Regurgitation: a systematic review and Meta-analysis. Anatol J Cardiol 26(7):505–519PubMedCentralCrossRefPubMed
60.
go back to reference Praz F, Khalique OK, Dos Reis Macedo LG, Pulerwitz TC, Jantz J, Wu IY et al (2018) Comparison between three-Dimensional Echocardiography and Computed Tomography for Comprehensive Tricuspid Annulus and Valve Assessment in severe tricuspid regurgitation: implications for Tricuspid Regurgitation Grading and Transcatheter therapies. J Am Soc Echocardiogr 31(11):1190–1202e3CrossRefPubMed Praz F, Khalique OK, Dos Reis Macedo LG, Pulerwitz TC, Jantz J, Wu IY et al (2018) Comparison between three-Dimensional Echocardiography and Computed Tomography for Comprehensive Tricuspid Annulus and Valve Assessment in severe tricuspid regurgitation: implications for Tricuspid Regurgitation Grading and Transcatheter therapies. J Am Soc Echocardiogr 31(11):1190–1202e3CrossRefPubMed
61.
go back to reference Katkar RA, Taft RM, Grant GT (2018) 3D volume rendering and 3D Printing (Additive Manufacturing). Dental Clin N Am 62(3):393–402CrossRef Katkar RA, Taft RM, Grant GT (2018) 3D volume rendering and 3D Printing (Additive Manufacturing). Dental Clin N Am 62(3):393–402CrossRef
62.
go back to reference Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117(18):2388–2394CrossRefPubMed Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117(18):2388–2394CrossRefPubMed
64.
go back to reference Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341CrossRefPubMed Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341CrossRefPubMed
65.
go back to reference Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI (2017) From medical imaging data to 3D printed anatomical models. PLoS ONE 12(5):e0178540PubMedCentralCrossRefPubMed Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI (2017) From medical imaging data to 3D printed anatomical models. PLoS ONE 12(5):e0178540PubMedCentralCrossRefPubMed
66.
go back to reference Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13(12):701–718CrossRefPubMed Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13(12):701–718CrossRefPubMed
67.
go back to reference Wang DD, Eng M, Kupsky D, Myers E, Forbes M, Rahman M et al (2016) Application of 3-Dimensional Computed Tomographic Image Guidance to WATCHMAN Implantation and Impact on Early Operator Learning curve: single-center experience. JACC Cardiovasc Interv 9(22):2329–2340CrossRefPubMed Wang DD, Eng M, Kupsky D, Myers E, Forbes M, Rahman M et al (2016) Application of 3-Dimensional Computed Tomographic Image Guidance to WATCHMAN Implantation and Impact on Early Operator Learning curve: single-center experience. JACC Cardiovasc Interv 9(22):2329–2340CrossRefPubMed
68.
go back to reference Vukicevic M, Faza NN, Little SH (2021) Patient-specific preprocedural planning for tricuspid valve repair and replacement procedures. Curr Opin Cardiol 36(5):495–504CrossRefPubMed Vukicevic M, Faza NN, Little SH (2021) Patient-specific preprocedural planning for tricuspid valve repair and replacement procedures. Curr Opin Cardiol 36(5):495–504CrossRefPubMed
69.
go back to reference Huang H, Tayyab H, Khan A, Shah U, Anantharaj RM, Rajak K et al (2023) Three-dimensional Printing and modeling in Interventional Cardiology: a Comprehensive Review. Annals Clin Cardiol 5(2):53CrossRef Huang H, Tayyab H, Khan A, Shah U, Anantharaj RM, Rajak K et al (2023) Three-dimensional Printing and modeling in Interventional Cardiology: a Comprehensive Review. Annals Clin Cardiol 5(2):53CrossRef
70.
go back to reference Fan Y, Kwok KW, Zhang Y, Cheung GSH, Chan AKY, Lee APW (2016) Three-Dimensional Printing for planning occlusion Procedure for a double-lobed left atrial appendage. Circ Cardiovasc Interv 9(3):e003561CrossRefPubMed Fan Y, Kwok KW, Zhang Y, Cheung GSH, Chan AKY, Lee APW (2016) Three-Dimensional Printing for planning occlusion Procedure for a double-lobed left atrial appendage. Circ Cardiovasc Interv 9(3):e003561CrossRefPubMed
71.
go back to reference Harb SC, Rodriguez LL, Svensson LG, Xu B, Elgharably H, Klatte R et al (2018) Pitfalls and pearls for 3-Dimensional Printing of the tricuspid valve in the Procedural Planning of Percutaneous Transcatheter therapies. JACC Cardiovasc Imaging 11(10):1531–1534CrossRefPubMed Harb SC, Rodriguez LL, Svensson LG, Xu B, Elgharably H, Klatte R et al (2018) Pitfalls and pearls for 3-Dimensional Printing of the tricuspid valve in the Procedural Planning of Percutaneous Transcatheter therapies. JACC Cardiovasc Imaging 11(10):1531–1534CrossRefPubMed
72.
go back to reference Cabasa AS, Eleid MF, Rihal CS, Villarraga HR, Foley TA, Suri RM (2015) Tricuspid valve replacement: a Percutaneous Transfemoral Valve-in-Ring Approach. JACC Cardiovasc Interv 8(8):1126–1128CrossRefPubMed Cabasa AS, Eleid MF, Rihal CS, Villarraga HR, Foley TA, Suri RM (2015) Tricuspid valve replacement: a Percutaneous Transfemoral Valve-in-Ring Approach. JACC Cardiovasc Interv 8(8):1126–1128CrossRefPubMed
73.
go back to reference Hernández-Enríquez M, Brugaletta S, Andreu D, Macià-Muñoz G, Castrejón-Subirá M, Fernández-Suelves S et al (2017) Three-dimensional printing of an aortic model for transcatheter aortic valve implantation: possible clinical applications. Int J Cardiovasc Imaging 33(2):283–285CrossRefPubMed Hernández-Enríquez M, Brugaletta S, Andreu D, Macià-Muñoz G, Castrejón-Subirá M, Fernández-Suelves S et al (2017) Three-dimensional printing of an aortic model for transcatheter aortic valve implantation: possible clinical applications. Int J Cardiovasc Imaging 33(2):283–285CrossRefPubMed
74.
go back to reference Qian Z, Wang K, Liu S, Zhou X, Rajagopal V, Meduri C et al (2017) Quantitative prediction of Paravalvular Leak in Transcatheter aortic valve replacement based on tissue-mimicking 3D Printing. JACC Cardiovasc Imaging 10(7):719–731CrossRefPubMed Qian Z, Wang K, Liu S, Zhou X, Rajagopal V, Meduri C et al (2017) Quantitative prediction of Paravalvular Leak in Transcatheter aortic valve replacement based on tissue-mimicking 3D Printing. JACC Cardiovasc Imaging 10(7):719–731CrossRefPubMed
75.
go back to reference Hatoum H, Dollery J, Lilly SM, Crestanello J, Dasi LP (2019) Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J Thorac Cardiovasc Surg 157(2):540–549CrossRefPubMed Hatoum H, Dollery J, Lilly SM, Crestanello J, Dasi LP (2019) Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J Thorac Cardiovasc Surg 157(2):540–549CrossRefPubMed
76.
go back to reference Hatoum H, Lilly SM, Crestanello J, Dasi LP (2019) A case study on implantation strategies to mitigate coronary obstruction in a patient receiving transcatheter aortic valve replacement. J Biomech 89:115–118PubMedCentralCrossRefPubMed Hatoum H, Lilly SM, Crestanello J, Dasi LP (2019) A case study on implantation strategies to mitigate coronary obstruction in a patient receiving transcatheter aortic valve replacement. J Biomech 89:115–118PubMedCentralCrossRefPubMed
77.
go back to reference Wang DD, Eng MH, Greenbaum AB, Myers E, Forbes M, Karabon P et al (2018) Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter Cardiovasc Interv 92(2):379–387CrossRefPubMed Wang DD, Eng MH, Greenbaum AB, Myers E, Forbes M, Karabon P et al (2018) Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter Cardiovasc Interv 92(2):379–387CrossRefPubMed
79.
go back to reference Faza NN, Harb SC, Wang DD, van den DMMP, Van MN, Little SH (2024) Physical and computational modeling for Transcatheter Structural Heart interventions. JACC: Cardiovasc Imaging 17(4):428–440PubMed Faza NN, Harb SC, Wang DD, van den DMMP, Van MN, Little SH (2024) Physical and computational modeling for Transcatheter Structural Heart interventions. JACC: Cardiovasc Imaging 17(4):428–440PubMed
80.
go back to reference Wang K, Zhao Y, Chang YH, Qian Z, Zhang C, Wang B et al (2016) Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Design 90:704–712CrossRef Wang K, Zhao Y, Chang YH, Qian Z, Zhang C, Wang B et al (2016) Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Design 90:704–712CrossRef
81.
go back to reference Minga I, Al-Ani MA, Moharem-Elgamal S, Md AVH, Md ASA, Masoomi M et al (2024) Use of virtual reality and 3D models in contemporary practice of Cardiology. Curr Cardiol Rep 26(6):643–650 Minga I, Al-Ani MA, Moharem-Elgamal S, Md AVH, Md ASA, Masoomi M et al (2024) Use of virtual reality and 3D models in contemporary practice of Cardiology. Curr Cardiol Rep 26(6):643–650
82.
go back to reference Mahtab EAF, Egorova AD (2022) Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol 19(12):779–780PubMedCentralCrossRefPubMed Mahtab EAF, Egorova AD (2022) Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol 19(12):779–780PubMedCentralCrossRefPubMed
83.
go back to reference Stephenson N, Pushparajah K, Wheeler G, Deng S, Schnabel JA, Simpson JM (2023) Extended reality for procedural planning and guidance in structural heart disease – a review of the state-of-the-art. Int J Cardiovasc Imaging 39(7):1405–1419PubMedCentralCrossRefPubMed Stephenson N, Pushparajah K, Wheeler G, Deng S, Schnabel JA, Simpson JM (2023) Extended reality for procedural planning and guidance in structural heart disease – a review of the state-of-the-art. Int J Cardiovasc Imaging 39(7):1405–1419PubMedCentralCrossRefPubMed
84.
go back to reference Ruyra X, Permanyer E, Huguet M, Maldonado G (2022) Use of virtual reality for procedural planning of transcatheter aortic valve replacement. Interact Cardiovasc Thorac Surg 35(5):ivac248PubMedCentralCrossRefPubMed Ruyra X, Permanyer E, Huguet M, Maldonado G (2022) Use of virtual reality for procedural planning of transcatheter aortic valve replacement. Interact Cardiovasc Thorac Surg 35(5):ivac248PubMedCentralCrossRefPubMed
85.
go back to reference Chahine J, Mascarenhas L, Yannopoulos D, Raveendran G, Gurevich S (2024) Virtual reality to predict paravalvular leak in bicuspid severe aortic valve stenosis in transcatheter aortic valve implants. J Invasive Cardiol 36(7). https://doi.org/10.25270/jic/24.00019. Epub March 11, 2024 Chahine J, Mascarenhas L, Yannopoulos D, Raveendran G, Gurevich S (2024) Virtual reality to predict paravalvular leak in bicuspid severe aortic valve stenosis in transcatheter aortic valve implants. J Invasive Cardiol 36(7). https://​doi.​org/​10.​25270/​jic/​24.​00019. Epub March 11, 2024
86.
go back to reference Khokhar AA, Zlahoda-Huzior A, Stanuch M, Ponticelli F, Ruggiero R, Chandra K et al (2022) Advanced CT-Based imaging techniques to evaluate Coronary Access after TAVI for degenerated Surgical Bioprosthesis. Can J Cardiol 38(3):392–394CrossRefPubMed Khokhar AA, Zlahoda-Huzior A, Stanuch M, Ponticelli F, Ruggiero R, Chandra K et al (2022) Advanced CT-Based imaging techniques to evaluate Coronary Access after TAVI for degenerated Surgical Bioprosthesis. Can J Cardiol 38(3):392–394CrossRefPubMed
87.
go back to reference Jang SJ, Liu J, Singh G, Al’Aref SJ, Caprio A, Amiri Moghadam AA et al (2019) Abstract 11714: augmented reality Guidance for Transcatheter Septal puncture Procedure in Structural Heart interventions. Circulation 140(Suppl1):A11714–A11714 Jang SJ, Liu J, Singh G, Al’Aref SJ, Caprio A, Amiri Moghadam AA et al (2019) Abstract 11714: augmented reality Guidance for Transcatheter Septal puncture Procedure in Structural Heart interventions. Circulation 140(Suppl1):A11714–A11714
88.
go back to reference Sadeghi AH, Ooms JF, Bakhuis W, Taverne YJHJ, Van Mieghem NM, Bogers AJJC (2021) Immersive virtual reality heart models for planning of Transcatheter Paravalvular Leak Closure: a feasibility study. JACC Cardiovasc Interv 14(16):1854–1856CrossRefPubMed Sadeghi AH, Ooms JF, Bakhuis W, Taverne YJHJ, Van Mieghem NM, Bogers AJJC (2021) Immersive virtual reality heart models for planning of Transcatheter Paravalvular Leak Closure: a feasibility study. JACC Cardiovasc Interv 14(16):1854–1856CrossRefPubMed
89.
go back to reference Hussain MA, Nabi F (2017) Complex structural interventions: the role of computed tomography, Fluoroscopy, and Fusion Imaging. Methodist Debakey Cardiovasc J 13(3):98–105PubMedCentralCrossRefPubMed Hussain MA, Nabi F (2017) Complex structural interventions: the role of computed tomography, Fluoroscopy, and Fusion Imaging. Methodist Debakey Cardiovasc J 13(3):98–105PubMedCentralCrossRefPubMed
90.
go back to reference Sherif MA, Abdel-Wahab M, Stöcker B, Geist V, Richardt D, Tölg R et al (2010) Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. J Am Coll Cardiol 56(20):1623–1629CrossRefPubMed Sherif MA, Abdel-Wahab M, Stöcker B, Geist V, Richardt D, Tölg R et al (2010) Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. J Am Coll Cardiol 56(20):1623–1629CrossRefPubMed
91.
go back to reference Silva JNA, Southworth M, Raptis C, Silva J (2018) Emerging applications of virtual reality in Cardiovascular Medicine. JACC Basic Transl Sci 3(3):420–430PubMedCentralCrossRefPubMed Silva JNA, Southworth M, Raptis C, Silva J (2018) Emerging applications of virtual reality in Cardiovascular Medicine. JACC Basic Transl Sci 3(3):420–430PubMedCentralCrossRefPubMed
92.
go back to reference Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN et al (2023) Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ 23(1):689PubMedCentralCrossRefPubMed Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN et al (2023) Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ 23(1):689PubMedCentralCrossRefPubMed
94.
go back to reference Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng PA et al (2018) Deep Learning techniques for Automatic MRI Cardiac multi-structures Segmentation and diagnosis: is the Problem Solved? IEEE Trans Med Imaging 37(11):2514–2525CrossRefPubMed Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng PA et al (2018) Deep Learning techniques for Automatic MRI Cardiac multi-structures Segmentation and diagnosis: is the Problem Solved? IEEE Trans Med Imaging 37(11):2514–2525CrossRefPubMed
95.
go back to reference Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R et al (2023) Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction. Diagn Interv Imaging 104(11):521–528CrossRefPubMed Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R et al (2023) Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction. Diagn Interv Imaging 104(11):521–528CrossRefPubMed
96.
go back to reference Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H et al (2019) Computed Tomography Imaging in the context of transcatheter aortic valve implantation (TAVI)/Transcatheter aortic valve replacement (TAVR): an Expert Consensus Document of the Society of Cardiovascular computed Tomography. JACC Cardiovasc Imaging 12(1):1–24CrossRefPubMed Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H et al (2019) Computed Tomography Imaging in the context of transcatheter aortic valve implantation (TAVI)/Transcatheter aortic valve replacement (TAVR): an Expert Consensus Document of the Society of Cardiovascular computed Tomography. JACC Cardiovasc Imaging 12(1):1–24CrossRefPubMed
97.
go back to reference Schuhbaeck A, Achenbach S, Pflederer T, Marwan M, Schmid J, Nef H et al (2014) Reproducibility of aortic annulus measurements by computed tomography. Eur Radiol 24(8):1878–1888CrossRefPubMed Schuhbaeck A, Achenbach S, Pflederer T, Marwan M, Schmid J, Nef H et al (2014) Reproducibility of aortic annulus measurements by computed tomography. Eur Radiol 24(8):1878–1888CrossRefPubMed
98.
go back to reference Francone M, Budde RPJ, Bremerich J, Dacher JN, Loewe C, Wolf F et al (2020) CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol 30(5):2627–2650CrossRefPubMed Francone M, Budde RPJ, Bremerich J, Dacher JN, Loewe C, Wolf F et al (2020) CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol 30(5):2627–2650CrossRefPubMed
99.
go back to reference Hewitson LJ, Cadiz S, Al-Sayed S, Fellows S, Amin A, Asimakopoulos G et al (2023) Time to TAVI: streamlining the pathway to treatment. Open Heart 10(2):e002170PubMedCentralCrossRefPubMed Hewitson LJ, Cadiz S, Al-Sayed S, Fellows S, Amin A, Asimakopoulos G et al (2023) Time to TAVI: streamlining the pathway to treatment. Open Heart 10(2):e002170PubMedCentralCrossRefPubMed
100.
go back to reference Sorajja Paul W, Brian H, Nadira N, Hursh M, Raj T, Peter et al (2023) Transcatheter repair for patients with tricuspid regurgitation. N Engl J Med 388(20):1833–1842CrossRefPubMed Sorajja Paul W, Brian H, Nadira N, Hursh M, Raj T, Peter et al (2023) Transcatheter repair for patients with tricuspid regurgitation. N Engl J Med 388(20):1833–1842CrossRefPubMed
101.
go back to reference Winkel MG, Praz F, Wenaweser P (2020) Mitral and tricuspid transcatheter interventions current indications and future directions. Front Cardiovasc Med 7:61PubMedCentralCrossRefPubMed Winkel MG, Praz F, Wenaweser P (2020) Mitral and tricuspid transcatheter interventions current indications and future directions. Front Cardiovasc Med 7:61PubMedCentralCrossRefPubMed
102.
go back to reference Lou J, Obuchowski NA, Krishnaswamy A, Popovic Z, Flamm SD, Kapadia SR et al (2015) Manual, semiautomated, and fully automated measurement of the aortic annulus for planning of transcatheter aortic valve replacement (TAVR/TAVI): analysis of interchangeability. J Cardiovasc Comput Tomogr 9(1):42–49CrossRefPubMed Lou J, Obuchowski NA, Krishnaswamy A, Popovic Z, Flamm SD, Kapadia SR et al (2015) Manual, semiautomated, and fully automated measurement of the aortic annulus for planning of transcatheter aortic valve replacement (TAVR/TAVI): analysis of interchangeability. J Cardiovasc Comput Tomogr 9(1):42–49CrossRefPubMed
103.
go back to reference Santaló-Corcoy M, Corbin D, Tastet O, Lesage F, Modine T, Asgar A et al (2023) TAVI-PREP: a deep learning-based Tool for Automated measurements extraction in TAVI Planning. Diagnostics (Basel) 13(20):3181CrossRefPubMed Santaló-Corcoy M, Corbin D, Tastet O, Lesage F, Modine T, Asgar A et al (2023) TAVI-PREP: a deep learning-based Tool for Automated measurements extraction in TAVI Planning. Diagnostics (Basel) 13(20):3181CrossRefPubMed
104.
go back to reference Wang M, Niu G, Chen Y, Zhou Z, Feng D, Zhang Y et al (2023) Development and validation of a deep learning-based fully automated algorithm for pre-TAVR CT assessment of the aortic valvular complex and detection of anatomical risk factors: a retrospective, multicentre study. EBioMedicine 96:104794PubMedCentralCrossRefPubMed Wang M, Niu G, Chen Y, Zhou Z, Feng D, Zhang Y et al (2023) Development and validation of a deep learning-based fully automated algorithm for pre-TAVR CT assessment of the aortic valvular complex and detection of anatomical risk factors: a retrospective, multicentre study. EBioMedicine 96:104794PubMedCentralCrossRefPubMed
105.
106.
go back to reference Bartkowiak J, Vivekanantham H, Kassar M, Dernektsi C, Agarwal V, Lebehn M et al (2024) Computed tomography anatomic predictors of outcomes in patients undergoing tricuspid transcatheter edge-to-edge repair. J Cardiovasc Comput Tomogr 18(3):259–266CrossRefPubMed Bartkowiak J, Vivekanantham H, Kassar M, Dernektsi C, Agarwal V, Lebehn M et al (2024) Computed tomography anatomic predictors of outcomes in patients undergoing tricuspid transcatheter edge-to-edge repair. J Cardiovasc Comput Tomogr 18(3):259–266CrossRefPubMed
107.
go back to reference Kirchner J, Gesch J, Gercek M, Piran M, Friedrichs K, Pfister R et al (2024) Analysis of tricuspid annulus dimensions and RCA-proximity with artificial intelligence-based software for procedural planning of percutaneous tricuspid annuloplasty. J Cardiovasc Comput Tomogr 18(3):309–310CrossRefPubMed Kirchner J, Gesch J, Gercek M, Piran M, Friedrichs K, Pfister R et al (2024) Analysis of tricuspid annulus dimensions and RCA-proximity with artificial intelligence-based software for procedural planning of percutaneous tricuspid annuloplasty. J Cardiovasc Comput Tomogr 18(3):309–310CrossRefPubMed
108.
go back to reference Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E (2022) Cardiac Fibrosis in the pressure overloaded Left and right ventricle as a therapeutic target. Front Cardiovasc Med 9:886553PubMedCentralCrossRefPubMed Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E (2022) Cardiac Fibrosis in the pressure overloaded Left and right ventricle as a therapeutic target. Front Cardiovasc Med 9:886553PubMedCentralCrossRefPubMed
109.
go back to reference López B, Ravassa S, Moreno MU, José GS, Beaumont J, González A et al (2021) Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol 18(7):479–498CrossRefPubMed López B, Ravassa S, Moreno MU, José GS, Beaumont J, González A et al (2021) Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol 18(7):479–498CrossRefPubMed
110.
go back to reference McLenachan JM, Dargie HJ (1990) Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3(10):735–740CrossRefPubMed McLenachan JM, Dargie HJ (1990) Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3(10):735–740CrossRefPubMed
111.
go back to reference Brower GL, Gardner JD, Forman MF, Murray DB, Voloshenyuk T, Levick SP et al (2006) The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg 30(4):604–610CrossRefPubMed Brower GL, Gardner JD, Forman MF, Murray DB, Voloshenyuk T, Levick SP et al (2006) The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg 30(4):604–610CrossRefPubMed
112.
go back to reference Anderson KR, Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128(2):79–85CrossRefPubMed Anderson KR, Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128(2):79–85CrossRefPubMed
113.
go back to reference Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA et al (2016) Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective Cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging 9(12):e005277CrossRefPubMed Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA et al (2016) Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective Cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging 9(12):e005277CrossRefPubMed
114.
go back to reference Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L (2015) Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart 101(17):1406–1411CrossRefPubMed Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L (2015) Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart 101(17):1406–1411CrossRefPubMed
115.
go back to reference Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A et al (2017) Temporal relation between myocardial fibrosis and heart failure with preserved Ejection Fraction: Association with Baseline Disease Severity and subsequent outcome. JAMA Cardiol 2(9):995–1006PubMedCentralCrossRefPubMed Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A et al (2017) Temporal relation between myocardial fibrosis and heart failure with preserved Ejection Fraction: Association with Baseline Disease Severity and subsequent outcome. JAMA Cardiol 2(9):995–1006PubMedCentralCrossRefPubMed
116.
go back to reference Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18:89PubMedCentralCrossRefPubMed Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18:89PubMedCentralCrossRefPubMed
117.
go back to reference Nacif MS, Kawel N, Lee JJ, Chen X, Yao J, Zavodni A et al (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264(3):876–883PubMedCentralCrossRefPubMed Nacif MS, Kawel N, Lee JJ, Chen X, Yao J, Zavodni A et al (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264(3):876–883PubMedCentralCrossRefPubMed
118.
go back to reference Einstein AJ, Shaw LJ, Hirschfeld C, Williams MC, Villines TC, Better N et al (2021) International Impact of COVID-19 on the diagnosis of Heart Disease. J Am Coll Cardiol 77(2):173–185PubMedCentralCrossRefPubMed Einstein AJ, Shaw LJ, Hirschfeld C, Williams MC, Villines TC, Better N et al (2021) International Impact of COVID-19 on the diagnosis of Heart Disease. J Am Coll Cardiol 77(2):173–185PubMedCentralCrossRefPubMed
119.
go back to reference Cundari G, Galea N, Mergen V, Alkadhi H, Eberhard M (2023) Myocardial extracellular volume quantification with computed tomography—current status and future outlook. Insights into Imaging 14(1):156PubMedCentralCrossRefPubMed Cundari G, Galea N, Mergen V, Alkadhi H, Eberhard M (2023) Myocardial extracellular volume quantification with computed tomography—current status and future outlook. Insights into Imaging 14(1):156PubMedCentralCrossRefPubMed
120.
go back to reference van Assen M, De Cecco CN, Sahbaee P, Eid MH, Griffith LP, Bauer MJ et al (2019) Feasibility of extracellular volume quantification using dual-energy CT. J Cardiovasc Comput Tomogr 13(1):81–84CrossRefPubMed van Assen M, De Cecco CN, Sahbaee P, Eid MH, Griffith LP, Bauer MJ et al (2019) Feasibility of extracellular volume quantification using dual-energy CT. J Cardiovasc Comput Tomogr 13(1):81–84CrossRefPubMed
121.
go back to reference Abadia AF, Grant KL, Carey KE, Bolch WE, Morin RL (2017) Spatial distribution of Iron within the Normal Human Liver using dual-source dual-energy CT imaging. Invest Radiol 52(11):693–700CrossRefPubMed Abadia AF, Grant KL, Carey KE, Bolch WE, Morin RL (2017) Spatial distribution of Iron within the Normal Human Liver using dual-source dual-energy CT imaging. Invest Radiol 52(11):693–700CrossRefPubMed
122.
go back to reference Abadia AF, van Assen M, Martin SS, Vingiani V, Griffith LP, Giovagnoli DA et al (2020) Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT. J Cardiovasc Comput Tomogr 14(2):162–167CrossRefPubMed Abadia AF, van Assen M, Martin SS, Vingiani V, Griffith LP, Giovagnoli DA et al (2020) Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT. J Cardiovasc Comput Tomogr 14(2):162–167CrossRefPubMed
123.
go back to reference Hong YJ, Kim TK, Hong D, Park CH, Yoo SJ, Wickum ME et al (2016) Myocardial characterization using dual-energy CT in Doxorubicin-Induced DCM: comparison with CMR T1-Mapping and histology in a rabbit model. JACC Cardiovasc Imaging 9(7):836–845CrossRefPubMed Hong YJ, Kim TK, Hong D, Park CH, Yoo SJ, Wickum ME et al (2016) Myocardial characterization using dual-energy CT in Doxorubicin-Induced DCM: comparison with CMR T1-Mapping and histology in a rabbit model. JACC Cardiovasc Imaging 9(7):836–845CrossRefPubMed
124.
go back to reference Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269(2):396–403CrossRefPubMed Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269(2):396–403CrossRefPubMed
125.
go back to reference Treibel TA, Bandula S, Fontana M, White SK, Gilbertson JA, Herrey AS et al (2015) Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 9(6):585–592PubMedCentralCrossRefPubMed Treibel TA, Bandula S, Fontana M, White SK, Gilbertson JA, Herrey AS et al (2015) Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 9(6):585–592PubMedCentralCrossRefPubMed
126.
go back to reference Hayashi H, Oda S, Emoto T, Kidoh M, Nagayama Y, Nakaura T et al (2022) Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: comparison with cardiac MRI. Eur J Radiol 153:110386CrossRefPubMed Hayashi H, Oda S, Emoto T, Kidoh M, Nagayama Y, Nakaura T et al (2022) Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: comparison with cardiac MRI. Eur J Radiol 153:110386CrossRefPubMed
127.
go back to reference Ohta Y, Kishimoto J, Kitao S, Yunaga H, Mukai-Yatagai N, Fujii S et al (2020) Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dual-energy CT: segmental comparison with MRI T1 mapping. J Cardiovasc Comput Tomogr 14(4):349–355CrossRefPubMed Ohta Y, Kishimoto J, Kitao S, Yunaga H, Mukai-Yatagai N, Fujii S et al (2020) Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dual-energy CT: segmental comparison with MRI T1 mapping. J Cardiovasc Comput Tomogr 14(4):349–355CrossRefPubMed
128.
go back to reference Suzuki M, Toba T, Izawa Y, Fujita H, Miwa K, Takahashi Y et al (2021) Prognostic impact of myocardial extracellular volume Fraction Assessment using dual-energy computed tomography in patients treated with aortic valve replacement for severe aortic stenosis. J Am Heart Association 10(18):e020655CrossRef Suzuki M, Toba T, Izawa Y, Fujita H, Miwa K, Takahashi Y et al (2021) Prognostic impact of myocardial extracellular volume Fraction Assessment using dual-energy computed tomography in patients treated with aortic valve replacement for severe aortic stenosis. J Am Heart Association 10(18):e020655CrossRef
129.
go back to reference Hammer Y, Talmor-Barkan Y, Abelow A, Orvin K, Aviv Y, Bar N et al (2021) Myocardial extracellular volume quantification by computed tomography predicts outcomes in patients with severe aortic stenosis. PLoS ONE 16(3):e0248306PubMedCentralCrossRefPubMed Hammer Y, Talmor-Barkan Y, Abelow A, Orvin K, Aviv Y, Bar N et al (2021) Myocardial extracellular volume quantification by computed tomography predicts outcomes in patients with severe aortic stenosis. PLoS ONE 16(3):e0248306PubMedCentralCrossRefPubMed
130.
go back to reference Han D, Tamarappoo B, Klein E, Tyler J, Chakravarty T, Otaki Y et al (2021) Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement. Eur Heart J - Cardiovasc Imaging 22(2):179–185CrossRefPubMed Han D, Tamarappoo B, Klein E, Tyler J, Chakravarty T, Otaki Y et al (2021) Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement. Eur Heart J - Cardiovasc Imaging 22(2):179–185CrossRefPubMed
131.
go back to reference Tamarappoo B, Han D, Tyler J, Chakravarty T, Otaki Y, Miller R et al (2020) Prognostic value of computed tomography-derived extracellular volume in TAVR patients with Low-Flow Low-Gradient aortic stenosis. JACC Cardiovasc Imaging 13(12):2591–2601PubMedCentralCrossRefPubMed Tamarappoo B, Han D, Tyler J, Chakravarty T, Otaki Y, Miller R et al (2020) Prognostic value of computed tomography-derived extracellular volume in TAVR patients with Low-Flow Low-Gradient aortic stenosis. JACC Cardiovasc Imaging 13(12):2591–2601PubMedCentralCrossRefPubMed
132.
go back to reference Kato S, Misumi Y, Horita N, Yamamoto K, Utsunomiya D (2024) Clinical utility of computed tomography–derived myocardial extracellular volume fraction: a systematic review and Meta-analysis. JACC: Cardiovasc Imaging 17(5):516–528PubMed Kato S, Misumi Y, Horita N, Yamamoto K, Utsunomiya D (2024) Clinical utility of computed tomography–derived myocardial extracellular volume fraction: a systematic review and Meta-analysis. JACC: Cardiovasc Imaging 17(5):516–528PubMed
Metadata
Title
Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions – new opportunities for precision medicine
Authors
Vitaliy Androshchuk
Natalie Montarello
Nishant Lahoti
Samuel Joseph Hill
Can Zhou
Tiffany Patterson
Simon Redwood
Steven Niederer
Pablo Lamata
Adelaide De Vecchi
Ronak Rajani
Publication date
30-09-2024
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-024-03247-z

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now