Skip to main content
Top
Published in:

01-08-2024 | Colorectal Cancer | Review Article

Therapeutic and diagnostic applications of exosomes in colorectal cancer

Authors: Neda Shakerian, Elham Darzi-Eslam, Fatemeh Afsharnoori, Nikoo Bana, Faezeh Noorabad Ghahroodi, Mojtaba Tarin, Maysam Mard-soltani, Bahman Khalesi, Zahra Sadat Hashemi, Saeed Khalili

Published in: Medical Oncology | Issue 8/2024

Login to get access

Abstract

Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Literature
1.
go back to reference Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag C, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023;72(2):338–44.PubMedCrossRef Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag C, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023;72(2):338–44.PubMedCrossRef
2.
go back to reference Mediu N, Mediu R, Alimehmeti R. Risk factors of colorectal cancer in hospitalized patients in regional hospital Durrës. Open Access Maced J Med Sci 2022;10(B):222–6.CrossRef Mediu N, Mediu R, Alimehmeti R. Risk factors of colorectal cancer in hospitalized patients in regional hospital Durrës. Open Access Maced J Med Sci 2022;10(B):222–6.CrossRef
3.
go back to reference Alrubaie A, Alkhalidi N, Abd-Alhusain S. A clinical study of newly-diagnosed colorectal cancer over 2 years in a gastroenterology center in Iraq. J Coloproctol (Rio de Janeiro). 2019;39:217–22.CrossRef Alrubaie A, Alkhalidi N, Abd-Alhusain S. A clinical study of newly-diagnosed colorectal cancer over 2 years in a gastroenterology center in Iraq. J Coloproctol (Rio de Janeiro). 2019;39:217–22.CrossRef
4.
go back to reference Lin G, Feng Z, Liu H, Li Y, Nie Y, Liang Y, et al. Mass screening for colorectal cancer in a population of two million older adults in Guangzhou. China Scientific Reports. 2019;9(1):1–8. Lin G, Feng Z, Liu H, Li Y, Nie Y, Liang Y, et al. Mass screening for colorectal cancer in a population of two million older adults in Guangzhou. China Scientific Reports. 2019;9(1):1–8.
5.
go back to reference Kheirelseid EA, Miller N, Kerin MJ. Molecular biology of colorectal cancer: review of the literature. Am J Mol Biol. 2013;3:72-80.CrossRef Kheirelseid EA, Miller N, Kerin MJ. Molecular biology of colorectal cancer: review of the literature. Am J Mol Biol. 2013;3:72-80.CrossRef
6.
go back to reference McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2007;1773(8):1263–84. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2007;1773(8):1263–84.
7.
go back to reference Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol/Hematol. 2023:103987. Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol/Hematol. 2023:103987.
8.
go back to reference Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci. 2019;20(23):5822.PubMedPubMedCentralCrossRef Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci. 2019;20(23):5822.PubMedPubMedCentralCrossRef
9.
go back to reference Blanes-Vidal V, Baatrup G, Nadimi ES. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncol. 2019;58(sup1):S29–36.PubMedCrossRef Blanes-Vidal V, Baatrup G, Nadimi ES. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncol. 2019;58(sup1):S29–36.PubMedCrossRef
10.
go back to reference Lin J, Cai D, Li W, Yu T, Mao H, Jiang S, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 2019;74:60–8.PubMedCrossRef Lin J, Cai D, Li W, Yu T, Mao H, Jiang S, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 2019;74:60–8.PubMedCrossRef
11.
go back to reference Pesta M, Kucera R, Topolcan O, Karlikova M, Houfkova K, Polivka J, et al. Plasma microRNA levels combined with CEA and CA19-9 in the follow-up of colorectal cancer patients. Cancers. 2019;11(6):864.PubMedPubMedCentralCrossRef Pesta M, Kucera R, Topolcan O, Karlikova M, Houfkova K, Polivka J, et al. Plasma microRNA levels combined with CEA and CA19-9 in the follow-up of colorectal cancer patients. Cancers. 2019;11(6):864.PubMedPubMedCentralCrossRef
12.
go back to reference Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered tools to study intercellular communication. Adv Sci. 2021;8(3):2002825.CrossRef Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered tools to study intercellular communication. Adv Sci. 2021;8(3):2002825.CrossRef
13.
go back to reference Allegra A, Di Gioacchino M, Cancemi G, Casciaro M, Petrarca C, Musolino C, et al. Specialized intercellular communications via tunnelling nanotubes in acute and chronic leukemia. Cancers. 2022;14(3):659.PubMedPubMedCentralCrossRef Allegra A, Di Gioacchino M, Cancemi G, Casciaro M, Petrarca C, Musolino C, et al. Specialized intercellular communications via tunnelling nanotubes in acute and chronic leukemia. Cancers. 2022;14(3):659.PubMedPubMedCentralCrossRef
14.
15.
16.
go back to reference Börger V, Dittrich R, Staubach S, Zumegen S, Horn P, Giebel B. Tangential flow filtration, a potential method for the scaled preparation of extracellular vesicles. Cytotherapy. 2019;21(5):S57.CrossRef Börger V, Dittrich R, Staubach S, Zumegen S, Horn P, Giebel B. Tangential flow filtration, a potential method for the scaled preparation of extracellular vesicles. Cytotherapy. 2019;21(5):S57.CrossRef
18.
19.
go back to reference Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer. 2020;19(1):1–14.CrossRef Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer. 2020;19(1):1–14.CrossRef
20.
go back to reference Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.PubMedPubMedCentralCrossRef Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.PubMedPubMedCentralCrossRef
21.
go back to reference Hosokawa K, Ishimaru H, Watanabe T, Fujimuro M. The lysosome pathway degrades CD81 on the cell surface by poly-ubiquitination and clathrin-mediated endocytosis. Biol Pharm Bull. 2020;43(3):540–5.PubMedCrossRef Hosokawa K, Ishimaru H, Watanabe T, Fujimuro M. The lysosome pathway degrades CD81 on the cell surface by poly-ubiquitination and clathrin-mediated endocytosis. Biol Pharm Bull. 2020;43(3):540–5.PubMedCrossRef
22.
go back to reference Sun LX, Qian H, Liu MY, Wu MH, Wei YY, Zhu XM, et al. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae. Environ Microbiol. 2022;24(3):1076–92.PubMedCrossRef Sun LX, Qian H, Liu MY, Wu MH, Wei YY, Zhu XM, et al. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae. Environ Microbiol. 2022;24(3):1076–92.PubMedCrossRef
23.
go back to reference Li Y, Meng L, Li B, Li Y, Shen T, Zhao B. The exosome journey: from biogenesis to regulation and function in cancers. J Oncol. 2022;2022. Li Y, Meng L, Li B, Li Y, Shen T, Zhao B. The exosome journey: from biogenesis to regulation and function in cancers. J Oncol. 2022;2022.
24.
go back to reference Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L, et al. Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic-and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21(7):2576.PubMedPubMedCentralCrossRef Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L, et al. Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic-and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21(7):2576.PubMedPubMedCentralCrossRef
25.
go back to reference Nicolini A, Ferrari P, Biava PM. Exosomes and cell communication: from tumour-derived exosomes and their role in tumour progression to the use of exosomal cargo for cancer treatment. Cancers. 2021;13(4):822.PubMedPubMedCentralCrossRef Nicolini A, Ferrari P, Biava PM. Exosomes and cell communication: from tumour-derived exosomes and their role in tumour progression to the use of exosomal cargo for cancer treatment. Cancers. 2021;13(4):822.PubMedPubMedCentralCrossRef
26.
go back to reference Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C et al. Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C et al. Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1).
27.
go back to reference Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. Acta Pharmaceutica Sinica B. 2021;11(9):2783–97.PubMedPubMedCentralCrossRef Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. Acta Pharmaceutica Sinica B. 2021;11(9):2783–97.PubMedPubMedCentralCrossRef
28.
go back to reference Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: role of immune cells and immune proteins. Clin Transl Allergy. 2022;12(3): e12133.PubMedPubMedCentralCrossRef Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: role of immune cells and immune proteins. Clin Transl Allergy. 2022;12(3): e12133.PubMedPubMedCentralCrossRef
29.
go back to reference Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, et al. Precancer atlas to drive precision prevention trials. Can Res. 2017;77(7):1510–41.CrossRef Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, et al. Precancer atlas to drive precision prevention trials. Can Res. 2017;77(7):1510–41.CrossRef
30.
go back to reference Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, et al. Exosomes and cancer: from oncogenic roles to therapeutic applications. IUBMB Life. 2020;72(4):724–48.PubMedCrossRef Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, et al. Exosomes and cancer: from oncogenic roles to therapeutic applications. IUBMB Life. 2020;72(4):724–48.PubMedCrossRef
31.
go back to reference Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18(1):1–10.PubMedPubMedCentralCrossRef Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18(1):1–10.PubMedPubMedCentralCrossRef
32.
go back to reference Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, et al. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res. 2022;41(1):1–17.CrossRef Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, et al. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res. 2022;41(1):1–17.CrossRef
33.
go back to reference Wang B, Wang Y, Yan Z, Sun Y, Su C. Colorectal cancer cell-derived exosomes promote proliferation and decrease apoptosis by activating the ERK pathway. Int J Clin Exp Pathol. 2019;12(7):2485.PubMedPubMedCentral Wang B, Wang Y, Yan Z, Sun Y, Su C. Colorectal cancer cell-derived exosomes promote proliferation and decrease apoptosis by activating the ERK pathway. Int J Clin Exp Pathol. 2019;12(7):2485.PubMedPubMedCentral
34.
go back to reference He K, Wang Y, Zhong Y, Pan X, Si L, Lu J. Kras codon 12 mutation is associated with more aggressive invasiveness in synchronous metastatic colorectal cancer (Mcrc): Retrospective research. OncoTargets Ther. 2020:12601–13. He K, Wang Y, Zhong Y, Pan X, Si L, Lu J. Kras codon 12 mutation is associated with more aggressive invasiveness in synchronous metastatic colorectal cancer (Mcrc): Retrospective research. OncoTargets Ther. 2020:12601–13.
35.
go back to reference Awidi M, Ababneh N, Shomaf M, Al Fararjeh F, Owaidi L, AlKhatib M, et al. KRAS and NRAS mutational gene profile of metastatic colorectal cancer patients in Jordan. PLoS ONE. 2019;14(12): e0226473.PubMedPubMedCentralCrossRef Awidi M, Ababneh N, Shomaf M, Al Fararjeh F, Owaidi L, AlKhatib M, et al. KRAS and NRAS mutational gene profile of metastatic colorectal cancer patients in Jordan. PLoS ONE. 2019;14(12): e0226473.PubMedPubMedCentralCrossRef
36.
go back to reference Abudabous A, Drah M, Aldehmani M, Parker I, Alqawi O. KRAS mutations in patients with colorectal cancer in Libya. Mol Clin Oncol. 2021;15(4):1–6.CrossRef Abudabous A, Drah M, Aldehmani M, Parker I, Alqawi O. KRAS mutations in patients with colorectal cancer in Libya. Mol Clin Oncol. 2021;15(4):1–6.CrossRef
37.
go back to reference Lafitte M, Lecointre C, Roche S. Roles of exosomes in metastatic colorectal cancer. Am J Physiol Cell Physiol. 2019;317(5):C869–80.PubMedCrossRef Lafitte M, Lecointre C, Roche S. Roles of exosomes in metastatic colorectal cancer. Am J Physiol Cell Physiol. 2019;317(5):C869–80.PubMedCrossRef
38.
go back to reference Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024;81(1):1–19.CrossRef Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024;81(1):1–19.CrossRef
39.
go back to reference Hu J, Wang W, Lan X, Zeng Z, Liang Y, Yan Y, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):1–15.PubMedPubMedCentralCrossRef Hu J, Wang W, Lan X, Zeng Z, Liang Y, Yan Y, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):1–15.PubMedPubMedCentralCrossRef
40.
go back to reference Maleki M, Golchin A, Javadi S, Khelghati N, Morovat P, Asemi Z, et al. Role of exosomal miRNA in chemotherapy resistance of Colorectal cancer: a systematic review. Chem Biol Drug Des. 2023;101(5):1096–112.PubMedCrossRef Maleki M, Golchin A, Javadi S, Khelghati N, Morovat P, Asemi Z, et al. Role of exosomal miRNA in chemotherapy resistance of Colorectal cancer: a systematic review. Chem Biol Drug Des. 2023;101(5):1096–112.PubMedCrossRef
41.
go back to reference Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol. 2023;44(1):72–86.PubMedCrossRef Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol. 2023;44(1):72–86.PubMedCrossRef
42.
go back to reference Guo W, Li Y, Pang W, Shen H. Exosomes: a potential therapeutic tool targeting communications between tumor cells and macrophages. Mol Ther. 2020;28(9):1953–64.PubMedPubMedCentralCrossRef Guo W, Li Y, Pang W, Shen H. Exosomes: a potential therapeutic tool targeting communications between tumor cells and macrophages. Mol Ther. 2020;28(9):1953–64.PubMedPubMedCentralCrossRef
44.
go back to reference Henshall DC. MicroRNAs. Cambridge: Cambridge University Press; 2024. Henshall DC. MicroRNAs. Cambridge: Cambridge University Press; 2024.
45.
go back to reference Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef
46.
go back to reference Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in cancer. Rev Literature. 2022;23(5):2805. Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in cancer. Rev Literature. 2022;23(5):2805.
48.
go back to reference Bhagtaney L, Dharmarajan A, Warrier S. miRNA on the battlefield of cancer: significance in cancer stem cells. WNT Pathway Treatment. 2024;16(5):957. Bhagtaney L, Dharmarajan A, Warrier S. miRNA on the battlefield of cancer: significance in cancer stem cells. WNT Pathway Treatment. 2024;16(5):957.
49.
go back to reference Su T, Zhang P, Zhao F, Zhang S. Exosomal microRNAs mediating crosstalk between cancer cells with cancer-associated fibroblasts and tumor-associated macrophages in the tumor microenvironment. Front Oncol. 2021;11: 631703.PubMedPubMedCentralCrossRef Su T, Zhang P, Zhao F, Zhang S. Exosomal microRNAs mediating crosstalk between cancer cells with cancer-associated fibroblasts and tumor-associated macrophages in the tumor microenvironment. Front Oncol. 2021;11: 631703.PubMedPubMedCentralCrossRef
50.
go back to reference Zhang QC, Hu SQ, Hu AN, Zhang TW, Jiang LB, Li XL. Autophagy‐activated nucleus pulposus cells deliver exosomal miR‐27a to prevent extracellular matrix degradation by targeting MMP‐13. J Orthop Res. 2021;39(9):1921–32. Zhang QC, Hu SQ, Hu AN, Zhang TW, Jiang LB, Li XL. Autophagy‐activated nucleus pulposus cells deliver exosomal miR‐27a to prevent extracellular matrix degradation by targeting MMP‐13. J Orthop Res. 2021;39(9):1921–32.
51.
go back to reference Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49(1):e285-e. Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49(1):e285-e.
52.
go back to reference Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 2020;486:18–28.PubMedPubMedCentralCrossRef Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 2020;486:18–28.PubMedPubMedCentralCrossRef
53.
go back to reference Zhao C, Ling X, Li X, Hou X, Zhao D. MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1. Breast Cancer. 2019;26(6):817–25.PubMedCrossRef Zhao C, Ling X, Li X, Hou X, Zhao D. MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1. Breast Cancer. 2019;26(6):817–25.PubMedCrossRef
54.
go back to reference Xishan Z, Ziying L, Jing D, Gang L. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia. Sci Rep. 2015;5(1):1–11.CrossRef Xishan Z, Ziying L, Jing D, Gang L. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia. Sci Rep. 2015;5(1):1–11.CrossRef
55.
go back to reference Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. The role of miRNA in somatic embryogenesis. Genomics. 2019;111(5):1026–33.PubMedCrossRef Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. The role of miRNA in somatic embryogenesis. Genomics. 2019;111(5):1026–33.PubMedCrossRef
56.
go back to reference Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020;66: 109485.PubMedCrossRef Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020;66: 109485.PubMedCrossRef
57.
go back to reference Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39:1–15.CrossRef Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39:1–15.CrossRef
58.
go back to reference Shi Z-Y, Yang X-X, Malichewe C, Li Y-S, Guo X-L. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol. 2020;158:530–41.PubMedCrossRef Shi Z-Y, Yang X-X, Malichewe C, Li Y-S, Guo X-L. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol. 2020;158:530–41.PubMedCrossRef
60.
go back to reference Norouzi-Barough L, Asgari Khosro Shahi A, Mohebzadeh F, Masoumi L, Haddadi MR, Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell International. 2020;20(1):1–10. Norouzi-Barough L, Asgari Khosro Shahi A, Mohebzadeh F, Masoumi L, Haddadi MR, Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell International. 2020;20(1):1–10.
61.
go back to reference Xu L, Wu L-F, Deng F-Y. Exosome: an emerging source of biomarkers for human diseases. Curr Mol Med. 2019;19(6):387–94.PubMedCrossRef Xu L, Wu L-F, Deng F-Y. Exosome: an emerging source of biomarkers for human diseases. Curr Mol Med. 2019;19(6):387–94.PubMedCrossRef
62.
go back to reference Wan YH, Liu QS, Wan SS, Wang RW. Colorectal cancer-derived exosomes and modulation KRAS signaling. Clin Transl Oncol. 2022; pp 1–7. Wan YH, Liu QS, Wan SS, Wang RW. Colorectal cancer-derived exosomes and modulation KRAS signaling. Clin Transl Oncol. 2022; pp 1–7.
63.
go back to reference Bahrami A, Binabaj MM, Ferns GA. Exosomes: emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother. 2021;141: 111882.PubMedCrossRef Bahrami A, Binabaj MM, Ferns GA. Exosomes: emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother. 2021;141: 111882.PubMedCrossRef
67.
go back to reference Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096.PubMedPubMedCentralCrossRef Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096.PubMedPubMedCentralCrossRef
68.
go back to reference Liu N, Jiang F, Chen Z, Liu X, Zhiming F, Wang B-c et al. circIFT80 Functions as a ceRNA for miR-142, miR-568, and miR-634 and promotes the progression of colorectal cancer by targeting β-Catenin. Disease Markers. 2022;2022. Liu N, Jiang F, Chen Z, Liu X, Zhiming F, Wang B-c et al. circIFT80 Functions as a ceRNA for miR-142, miR-568, and miR-634 and promotes the progression of colorectal cancer by targeting β-Catenin. Disease Markers. 2022;2022.
69.
go back to reference Li J, Zhang G, Liu C-G, Xiang X, Le MT, Sethi G, et al. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy. Theranostics. 2022;12(1):87.PubMedPubMedCentralCrossRef Li J, Zhang G, Liu C-G, Xiang X, Le MT, Sethi G, et al. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy. Theranostics. 2022;12(1):87.PubMedPubMedCentralCrossRef
70.
go back to reference Sun B, Li Y, Zhou Y, Ng TK, Zhao C, Gan Q, et al. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J Cell Physiol. 2019;234(2):1416–25.PubMedCrossRef Sun B, Li Y, Zhou Y, Ng TK, Zhao C, Gan Q, et al. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J Cell Physiol. 2019;234(2):1416–25.PubMedCrossRef
72.
go back to reference Seeber A, Gunsilius E, Gastl G, Pircher A. Anti-angiogenics: their value in colorectal cancer therapy. Oncol Res Treatment. 2018;41(4):188–93.CrossRef Seeber A, Gunsilius E, Gastl G, Pircher A. Anti-angiogenics: their value in colorectal cancer therapy. Oncol Res Treatment. 2018;41(4):188–93.CrossRef
73.
74.
go back to reference Alamdar M, Sadeghizadeh M. Investigating differential expression of mTOR1/UCA1 in tumor samples of colorectal cancer compared with tumor marginal samples. J Human Genet Genom. 2019;3(2). Alamdar M, Sadeghizadeh M. Investigating differential expression of mTOR1/UCA1 in tumor samples of colorectal cancer compared with tumor marginal samples. J Human Genet Genom. 2019;3(2).
75.
go back to reference Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother. 2021;140: 111717.PubMedCrossRef Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother. 2021;140: 111717.PubMedCrossRef
76.
go back to reference Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 2019;110:312–8.PubMedCrossRef Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 2019;110:312–8.PubMedCrossRef
77.
go back to reference Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: overcoming barriers of the metastatic cascade. Int J Mol Med. 2021;47(6):1–16.CrossRef Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: overcoming barriers of the metastatic cascade. Int J Mol Med. 2021;47(6):1–16.CrossRef
78.
go back to reference Hui J, Zhou M, An G, Zhang H, Lu Y, Wang X, et al. Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers. Cancer Biol Med. 2023;20(8):575.PubMedPubMedCentral Hui J, Zhou M, An G, Zhang H, Lu Y, Wang X, et al. Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers. Cancer Biol Med. 2023;20(8):575.PubMedPubMedCentral
79.
go back to reference Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef
80.
go back to reference Zhang P, Ji D-B, Han H-B, Shi Y-F, Du C-Z, Gu J. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol: WJG. 2014;20(34):12241.PubMedPubMedCentralCrossRef Zhang P, Ji D-B, Han H-B, Shi Y-F, Du C-Z, Gu J. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol: WJG. 2014;20(34):12241.PubMedPubMedCentralCrossRef
81.
go back to reference Han K, Wang F-W, Cao C-H, Ling H, Chen J-W, Chen R-X, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19(1):1–18.CrossRef Han K, Wang F-W, Cao C-H, Ling H, Chen J-W, Chen R-X, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19(1):1–18.CrossRef
82.
go back to reference Han J, Ma S, Zhao Y, Wang B, Ding S, Hu Y. The function, underlying mechanism and clinical potential of exosomes in colorectal cancer. Front Biosci-Landmark. 2023;28(11):302.CrossRef Han J, Ma S, Zhao Y, Wang B, Ding S, Hu Y. The function, underlying mechanism and clinical potential of exosomes in colorectal cancer. Front Biosci-Landmark. 2023;28(11):302.CrossRef
83.
go back to reference Han X, Wang M, Zhao Y-L, Yang Y, Yang Y-G, editors. RNA methylations in human cancers. Seminars in cancer biology. Amsterdam: Elsevier, 2021. Han X, Wang M, Zhao Y-L, Yang Y, Yang Y-G, editors. RNA methylations in human cancers. Seminars in cancer biology. Amsterdam: Elsevier, 2021.
84.
go back to reference Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N. Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci Rep. 2019;9(1):16497.PubMedPubMedCentralCrossRef Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N. Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci Rep. 2019;9(1):16497.PubMedPubMedCentralCrossRef
85.
86.
go back to reference Tam C, Wong JH, Tsui SKW, Zuo T, Chan TF, Ng TB. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol. 2019;103:4649–77.PubMedCrossRef Tam C, Wong JH, Tsui SKW, Zuo T, Chan TF, Ng TB. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol. 2019;103:4649–77.PubMedCrossRef
88.
go back to reference Dang Y, Zhang S, Wang Y, Zhao G, Chen C, Jiang W. State-of-the-art: exosomes in colorectal cancer. Curr Cancer Drug Targets. 2022;22(1):2–17.PubMedCrossRef Dang Y, Zhang S, Wang Y, Zhao G, Chen C, Jiang W. State-of-the-art: exosomes in colorectal cancer. Curr Cancer Drug Targets. 2022;22(1):2–17.PubMedCrossRef
89.
go back to reference Kusaba T, Nakayama T, Yamazumi K, Yakata Y, Yoshizaki A, Nagayasu T, et al. Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. J Clin Pathol. 2005;58(8):833.PubMedPubMedCentralCrossRef Kusaba T, Nakayama T, Yamazumi K, Yakata Y, Yoshizaki A, Nagayasu T, et al. Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. J Clin Pathol. 2005;58(8):833.PubMedPubMedCentralCrossRef
91.
go back to reference Han S, Li G, Jia M, Zhao Y, He C, Huang M, et al. Delivery of anti-miRNA-221 for colorectal carcinoma therapy using modified cord blood mesenchymal stem cells-derived exosomes. Front Mol Biosci. 2021;8: 743013.PubMedPubMedCentralCrossRef Han S, Li G, Jia M, Zhao Y, He C, Huang M, et al. Delivery of anti-miRNA-221 for colorectal carcinoma therapy using modified cord blood mesenchymal stem cells-derived exosomes. Front Mol Biosci. 2021;8: 743013.PubMedPubMedCentralCrossRef
92.
go back to reference Wojdyla L, Stone AL, Sethakorn N, Uppada SB, Devito JT, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446(2):596–601.PubMedPubMedCentralCrossRef Wojdyla L, Stone AL, Sethakorn N, Uppada SB, Devito JT, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446(2):596–601.PubMedPubMedCentralCrossRef
93.
go back to reference Xiong X, Wen Y-A, Fairchild R, Zaytseva YY, Weiss HL, Evers BM, et al. Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer. Cell Death Dis. 2020;11(9):736.PubMedPubMedCentralCrossRef Xiong X, Wen Y-A, Fairchild R, Zaytseva YY, Weiss HL, Evers BM, et al. Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer. Cell Death Dis. 2020;11(9):736.PubMedPubMedCentralCrossRef
94.
go back to reference Yan C, Luo L, Guo C-Y, Goto S, Urata Y, Shao J-H, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett. 2017;388:34–42.PubMedCrossRef Yan C, Luo L, Guo C-Y, Goto S, Urata Y, Shao J-H, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett. 2017;388:34–42.PubMedCrossRef
95.
go back to reference Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Revt Genet. 2023; pp 1–22. Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Revt Genet. 2023; pp 1–22.
96.
go back to reference Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol. 2022;57(3):261–304.PubMedCrossRef Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol. 2022;57(3):261–304.PubMedCrossRef
97.
go back to reference Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278: 119499.PubMedCrossRef Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278: 119499.PubMedCrossRef
98.
go back to reference Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15:261–78.PubMedPubMedCentralCrossRef Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15:261–78.PubMedPubMedCentralCrossRef
99.
go back to reference Martino E, D’Onofrio N, Anastasio C, Abate M, Zappavigna S, Caraglia M, et al. MicroRNA-nanoparticles against cancer: opportunities and challenges for personalized medicine. Mol Ther Nucleic Acids. 2023;32:371.PubMedPubMedCentralCrossRef Martino E, D’Onofrio N, Anastasio C, Abate M, Zappavigna S, Caraglia M, et al. MicroRNA-nanoparticles against cancer: opportunities and challenges for personalized medicine. Mol Ther Nucleic Acids. 2023;32:371.PubMedPubMedCentralCrossRef
100.
go back to reference Kutikhin A, Shishkova D, Velikanova E, Sinitsky MY, Sinitskaya A, Markova V. Endothelial dysfunction in the context of blood-brain barrier modeling. J Evol Biochem Physiol. 2022;58(3):781–806.PubMedPubMedCentralCrossRef Kutikhin A, Shishkova D, Velikanova E, Sinitsky MY, Sinitskaya A, Markova V. Endothelial dysfunction in the context of blood-brain barrier modeling. J Evol Biochem Physiol. 2022;58(3):781–806.PubMedPubMedCentralCrossRef
101.
go back to reference Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, et al. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 2019;9(4):1001.PubMedPubMedCentralCrossRef Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, et al. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 2019;9(4):1001.PubMedPubMedCentralCrossRef
102.
go back to reference Behrooz AB, Cordani M, Donadelli M, Ghavami S. Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2023:166824. Behrooz AB, Cordani M, Donadelli M, Ghavami S. Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2023:166824.
103.
go back to reference Rezaei R, Baghaei K, Amani D, Piccin A, Hashemi SM, Aghdaei HA, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci. 2021;269: 119035.PubMedCrossRef Rezaei R, Baghaei K, Amani D, Piccin A, Hashemi SM, Aghdaei HA, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci. 2021;269: 119035.PubMedCrossRef
104.
go back to reference Wang S, Zhang Z, Gao Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol Ther-Nucleic Acids. 2021;23:552–64.PubMedCrossRef Wang S, Zhang Z, Gao Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol Ther-Nucleic Acids. 2021;23:552–64.PubMedCrossRef
106.
go back to reference Guo L, Jia L, Luo L, Xu X, Xiang Y, Ren Y, et al. Critical roles of circular RNA in tumor metastasis via acting as a sponge of miRNA/isomiR. Int J Mol Sci. 2022;23(13):7024.PubMedPubMedCentralCrossRef Guo L, Jia L, Luo L, Xu X, Xiang Y, Ren Y, et al. Critical roles of circular RNA in tumor metastasis via acting as a sponge of miRNA/isomiR. Int J Mol Sci. 2022;23(13):7024.PubMedPubMedCentralCrossRef
107.
go back to reference Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, et al. Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 2021;12(5):443.PubMedPubMedCentralCrossRef Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, et al. Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 2021;12(5):443.PubMedPubMedCentralCrossRef
108.
go back to reference Ye D, Gong M, Deng Y, Fang S, Cao Y, Xiang Y, et al. Roles and clinical application of exosomal circRNAs in the diagnosis and treatment of malignant tumors. J Transl Med. 2022;20(1):1–17.CrossRef Ye D, Gong M, Deng Y, Fang S, Cao Y, Xiang Y, et al. Roles and clinical application of exosomal circRNAs in the diagnosis and treatment of malignant tumors. J Transl Med. 2022;20(1):1–17.CrossRef
124.
go back to reference Chen H-Y, Li X-N, Ye C-X, Chen Z-L, Wang Z-J. Circular RNA circHUWE1 is upregulated and promotes cell proliferation, migration and invasion in colorectal cancer by sponging miR-486. OncoTargets Ther. 2020:423–34. Chen H-Y, Li X-N, Ye C-X, Chen Z-L, Wang Z-J. Circular RNA circHUWE1 is upregulated and promotes cell proliferation, migration and invasion in colorectal cancer by sponging miR-486. OncoTargets Ther. 2020:423–34.
125.
go back to reference Han J, Zhao G, Ma X, Dong Q, Zhang H, Wang Y, et al. CircRNA circ-BANP-mediated miR-503/LARP1 signaling contributes to lung cancer progression. Biochem Biophys Res Commun. 2018;503(4):2429–35.PubMedCrossRef Han J, Zhao G, Ma X, Dong Q, Zhang H, Wang Y, et al. CircRNA circ-BANP-mediated miR-503/LARP1 signaling contributes to lung cancer progression. Biochem Biophys Res Commun. 2018;503(4):2429–35.PubMedCrossRef
127.
go back to reference Jin H, Fang M, Man Z, Wang Y, Liu H. Circular RNA 001569 acts as an oncogene and correlates with aggressive characteristics in hepatocellular carcinoma. Int J Clin Exp Pathol. 2017;10(3):2997–3005. Jin H, Fang M, Man Z, Wang Y, Liu H. Circular RNA 001569 acts as an oncogene and correlates with aggressive characteristics in hepatocellular carcinoma. Int J Clin Exp Pathol. 2017;10(3):2997–3005.
128.
go back to reference Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J, et al. Circular RNAs: clinical relevance in cancer. Oncotarget. 2018;9(1):1444.PubMedCrossRef Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J, et al. Circular RNAs: clinical relevance in cancer. Oncotarget. 2018;9(1):1444.PubMedCrossRef
130.
go back to reference Palcau AC, Canu V, Donzelli S, Strano S, Pulito C, Blandino G. CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol Cancer. 2022;21(1):1–15.CrossRef Palcau AC, Canu V, Donzelli S, Strano S, Pulito C, Blandino G. CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol Cancer. 2022;21(1):1–15.CrossRef
131.
go back to reference Yi Z, Li Y, Wu Y, Zeng B, Li H, Ren G et al. Circular RNA 0001073 attenuates malignant biological behaviours in breast cancer cell and is delivered by nanoparticles to inhibit mice tumour growth. OncoTargets Ther. 2020:6157–69. Yi Z, Li Y, Wu Y, Zeng B, Li H, Ren G et al. Circular RNA 0001073 attenuates malignant biological behaviours in breast cancer cell and is delivered by nanoparticles to inhibit mice tumour growth. OncoTargets Ther. 2020:6157–69.
132.
go back to reference Shao Y, Chen L, Lu R, Zhang X, Xiao B, Ye G, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumor Biol. 2017;39(4):1010428317699125.CrossRef Shao Y, Chen L, Lu R, Zhang X, Xiao B, Ye G, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumor Biol. 2017;39(4):1010428317699125.CrossRef
133.
go back to reference Bao L, Zhong J, Pang L. Upregulation of circular RNA VPS13C-has-circ-001567 promotes ovarian Cancer cell proliferation and invasion. Cancer Biother Radiopharm. 2019;34(2):110–8.PubMed Bao L, Zhong J, Pang L. Upregulation of circular RNA VPS13C-has-circ-001567 promotes ovarian Cancer cell proliferation and invasion. Cancer Biother Radiopharm. 2019;34(2):110–8.PubMed
134.
go back to reference Imanishi S, Nagata S, Fujita T, Fujii H. Circular RNAs hsa_circ_0001438 and hsa_circ_0000417 are downregulated and upregulated, respectively, in hepatocellular carcinoma. Int J Exp Pathol. 2022;103(6):245–51.PubMedPubMedCentralCrossRef Imanishi S, Nagata S, Fujita T, Fujii H. Circular RNAs hsa_circ_0001438 and hsa_circ_0000417 are downregulated and upregulated, respectively, in hepatocellular carcinoma. Int J Exp Pathol. 2022;103(6):245–51.PubMedPubMedCentralCrossRef
135.
go back to reference Huang X-Y, Huang Z-L, Huang J, Xu B, Huang X-Y, Xu Y-H, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39:1–16.CrossRef Huang X-Y, Huang Z-L, Huang J, Xu B, Huang X-Y, Xu Y-H, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39:1–16.CrossRef
136.
go back to reference Peng L, Yuan XQ, Li GC. The emerging landscape of circular RNA ciRS-7 in cancer. Oncol Rep. 2015;33(6):2669–74.PubMedCrossRef Peng L, Yuan XQ, Li GC. The emerging landscape of circular RNA ciRS-7 in cancer. Oncol Rep. 2015;33(6):2669–74.PubMedCrossRef
137.
go back to reference Zhu P, Liang H, Huang X, Zeng Q, Liu Y, Lv J et al. Circular RNA Hsa_circ_0004018 inhibits Wnt/β-catenin signaling pathway by targeting microRNA-626/DKK3 in hepatocellular carcinoma. OncoTargets Ther. 2020:9351–64. Zhu P, Liang H, Huang X, Zeng Q, Liu Y, Lv J et al. Circular RNA Hsa_circ_0004018 inhibits Wnt/β-catenin signaling pathway by targeting microRNA-626/DKK3 in hepatocellular carcinoma. OncoTargets Ther. 2020:9351–64.
138.
go back to reference Zhou G-R, Huang D-P, Sun Z-F, Zhang X-F. Characteristics and prognostic significance of circRNA-100876 in patients with colorectal cancer. Euro Rev Med Pharmacol Sci. 2020;24(22). Zhou G-R, Huang D-P, Sun Z-F, Zhang X-F. Characteristics and prognostic significance of circRNA-100876 in patients with colorectal cancer. Euro Rev Med Pharmacol Sci. 2020;24(22).
139.
go back to reference Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. Wiley Online Library; 2017; p. 2170–82. Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. Wiley Online Library; 2017; p. 2170–82.
140.
go back to reference Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36(32):4551–61.PubMedPubMedCentralCrossRef Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36(32):4551–61.PubMedPubMedCentralCrossRef
141.
go back to reference Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12.PubMedCrossRef Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12.PubMedCrossRef
142.
go back to reference Heumüller AW, Jones AN, Mourão A, Klangwart M, Shi C, Wittig I, et al. Locus-conserved circular RNA cZNF292 controls endothelial cell flow responses. Circ Res. 2022;130(1):67–79.PubMedCrossRef Heumüller AW, Jones AN, Mourão A, Klangwart M, Shi C, Wittig I, et al. Locus-conserved circular RNA cZNF292 controls endothelial cell flow responses. Circ Res. 2022;130(1):67–79.PubMedCrossRef
143.
go back to reference Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O’Reilly D, et al. A guide to naming human non-coding RNA genes. EMBO J. 2020;39(6): e103777.PubMedPubMedCentralCrossRef Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O’Reilly D, et al. A guide to naming human non-coding RNA genes. EMBO J. 2020;39(6): e103777.PubMedPubMedCentralCrossRef
144.
go back to reference Sun R, He X-Y, Mei C, Ou C-L. Role of exosomal long non-coding RNAs in colorectal cancer. World J Gastrointestinal Oncol. 2021;13(8):867.CrossRef Sun R, He X-Y, Mei C, Ou C-L. Role of exosomal long non-coding RNAs in colorectal cancer. World J Gastrointestinal Oncol. 2021;13(8):867.CrossRef
145.
go back to reference Wu Y, Wang Y, Wei M, Han X, Xu T, Cui M. Advances in the study of exosomal lncRNAs in tumors and the selection of research methods. Biomed Pharmacother. 2020;123: 109716.PubMedCrossRef Wu Y, Wang Y, Wei M, Han X, Xu T, Cui M. Advances in the study of exosomal lncRNAs in tumors and the selection of research methods. Biomed Pharmacother. 2020;123: 109716.PubMedCrossRef
146.
go back to reference Shan L, Liu W, Zhan Y. Long non-coding RNA CCAT1 acts as an oncogene and promotes sunitinib resistance in renal cell carcinoma. Front Oncol. 2020;10: 516552.PubMedPubMedCentralCrossRef Shan L, Liu W, Zhan Y. Long non-coding RNA CCAT1 acts as an oncogene and promotes sunitinib resistance in renal cell carcinoma. Front Oncol. 2020;10: 516552.PubMedPubMedCentralCrossRef
147.
go back to reference Wang D, Zhang W, Zhang C, Wang L, Chen H, Xu J. Exosomal non-coding RNAs have a significant effect on tumor metastasis. Mol Ther-Nucleic Acids. 2022;29:16–35.PubMedPubMedCentralCrossRef Wang D, Zhang W, Zhang C, Wang L, Chen H, Xu J. Exosomal non-coding RNAs have a significant effect on tumor metastasis. Mol Ther-Nucleic Acids. 2022;29:16–35.PubMedPubMedCentralCrossRef
148.
go back to reference Lampropoulou DI, Pliakou E, Aravantinos G, Filippou D, Gazouli M. The role of exosomal non-coding RNAs in colorectal cancer drug resistance. Int J Mol Sci. 2022;23(3):1473.PubMedPubMedCentralCrossRef Lampropoulou DI, Pliakou E, Aravantinos G, Filippou D, Gazouli M. The role of exosomal non-coding RNAs in colorectal cancer drug resistance. Int J Mol Sci. 2022;23(3):1473.PubMedPubMedCentralCrossRef
154.
go back to reference Sinha D, Roy S, Saha P, Chatterjee N, Bishayee A. Trends in research on exosomes in cancer progression and anticancer therapy. Cancers. 2021;13(2):326.PubMedPubMedCentralCrossRef Sinha D, Roy S, Saha P, Chatterjee N, Bishayee A. Trends in research on exosomes in cancer progression and anticancer therapy. Cancers. 2021;13(2):326.PubMedPubMedCentralCrossRef
155.
go back to reference Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2014;35(8):1792–800.PubMedPubMedCentralCrossRef Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2014;35(8):1792–800.PubMedPubMedCentralCrossRef
156.
go back to reference Dinkins MB, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016;36(33):8653–67.PubMedPubMedCentralCrossRef Dinkins MB, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016;36(33):8653–67.PubMedPubMedCentralCrossRef
157.
go back to reference Han Q-F, Li W-J, Hu K-S, Gao J, Zhai W-L, Yang J-H, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21(1):1–26.CrossRef Han Q-F, Li W-J, Hu K-S, Gao J, Zhai W-L, Yang J-H, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21(1):1–26.CrossRef
158.
go back to reference Liu Y, Hardie J, Zhang X, Rotello VM, editors. Effects of engineered nanoparticles on the innate immune system. Seminars in immunology; 2017. Amsterdam: Elsevier. Liu Y, Hardie J, Zhang X, Rotello VM, editors. Effects of engineered nanoparticles on the innate immune system. Seminars in immunology; 2017. Amsterdam: Elsevier.
159.
go back to reference Emam SE, Elsadek NE, Lila ASA, Takata H, Kawaguchi Y, Shimizu T, et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J Control Release. 2021;334:327–34.PubMedCrossRef Emam SE, Elsadek NE, Lila ASA, Takata H, Kawaguchi Y, Shimizu T, et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J Control Release. 2021;334:327–34.PubMedCrossRef
160.
go back to reference Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez-Fueyo A, Martinez-Llordella M. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol. 2018;9:1583.PubMedPubMedCentralCrossRef Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez-Fueyo A, Martinez-Llordella M. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol. 2018;9:1583.PubMedPubMedCentralCrossRef
161.
go back to reference Timaner M, Tsai KK, Shaked Y, editors. The multifaceted role of mesenchymal stem cells in cancer. Seminars in cancer biology; 2020. Amsterdam: Elsevier. Timaner M, Tsai KK, Shaked Y, editors. The multifaceted role of mesenchymal stem cells in cancer. Seminars in cancer biology; 2020. Amsterdam: Elsevier.
162.
go back to reference Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal. 2023;21(1):1–26.CrossRef Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal. 2023;21(1):1–26.CrossRef
163.
go back to reference Dai W, Yang H, Xu B, He T, Liu L, Ma X, et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model. J Ovarian Res. 2023;16(1):198.PubMedPubMedCentralCrossRef Dai W, Yang H, Xu B, He T, Liu L, Ma X, et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model. J Ovarian Res. 2023;16(1):198.PubMedPubMedCentralCrossRef
164.
go back to reference Zhao J, Lin H, Huang K. Mesenchymal stem cell-derived extracellular vesicles transmitting MicroRNA-34a-5p suppress tumorigenesis of colorectal cancer through c-MYC/DNMT3a/PTEN axis. Molecular neurobiology. 2022:1–14. Zhao J, Lin H, Huang K. Mesenchymal stem cell-derived extracellular vesicles transmitting MicroRNA-34a-5p suppress tumorigenesis of colorectal cancer through c-MYC/DNMT3a/PTEN axis. Molecular neurobiology. 2022:1–14.
165.
go back to reference Fath MK, Anjomrooz M, Taha SR, Zadeh MS, Sahraei M, Atbaei R et al. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: toward cell-free therapy. Pathol-ResPract. 2022:154024. Fath MK, Anjomrooz M, Taha SR, Zadeh MS, Sahraei M, Atbaei R et al. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: toward cell-free therapy. Pathol-ResPract. 2022:154024.
166.
go back to reference Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic use of mesenchymal stem cell-derived exosomes: from basic science to clinics. Pharmaceutics. 2020;12(5):474.PubMedPubMedCentralCrossRef Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic use of mesenchymal stem cell-derived exosomes: from basic science to clinics. Pharmaceutics. 2020;12(5):474.PubMedPubMedCentralCrossRef
167.
go back to reference Abbasi R, Mesgin RM, Nazari-Khanamiri F, Abdyazdani N, Imani Z, Talatapeh SP, et al. Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer. Eur J Med Res. 2023;28(1):1–10.CrossRef Abbasi R, Mesgin RM, Nazari-Khanamiri F, Abdyazdani N, Imani Z, Talatapeh SP, et al. Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer. Eur J Med Res. 2023;28(1):1–10.CrossRef
168.
go back to reference Guo G, Tan Z, Liu Y, Shi F, She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther. 2022;13(1):1–18.CrossRef Guo G, Tan Z, Liu Y, Shi F, She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther. 2022;13(1):1–18.CrossRef
169.
go back to reference Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y, et al. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol. 2019;54(5):1843–52.PubMed Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y, et al. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol. 2019;54(5):1843–52.PubMed
170.
go back to reference Zakaria N, Yahaya BH. Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Adv Exp Med Biol. 2020;1292:83–95.PubMedCrossRef Zakaria N, Yahaya BH. Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Adv Exp Med Biol. 2020;1292:83–95.PubMedCrossRef
171.
go back to reference Lee DY, Lee SE, Kwon DH, Nithiyanandam S, Lee MH, Hwang JS, et al. Strategies to improve the quality and freshness of human bone marrow-derived mesenchymal stem cells for neurological diseases. Stem Cells Int. 2021;2021(1):8444599.PubMedPubMedCentral Lee DY, Lee SE, Kwon DH, Nithiyanandam S, Lee MH, Hwang JS, et al. Strategies to improve the quality and freshness of human bone marrow-derived mesenchymal stem cells for neurological diseases. Stem Cells Int. 2021;2021(1):8444599.PubMedPubMedCentral
173.
go back to reference Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, et al. Extracellular vesicles and pancreatic cancer: insights on the roles of miRNA, lncRNA, and protein cargos in cancer progression. Cells. 2021;10(6):1361.PubMedPubMedCentralCrossRef Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, et al. Extracellular vesicles and pancreatic cancer: insights on the roles of miRNA, lncRNA, and protein cargos in cancer progression. Cells. 2021;10(6):1361.PubMedPubMedCentralCrossRef
174.
go back to reference Lim W, Kim H-S. Exosomes as therapeutic vehicles for cancer. Tissue Eng Regenerative Med. 2019;16:213–23.CrossRef Lim W, Kim H-S. Exosomes as therapeutic vehicles for cancer. Tissue Eng Regenerative Med. 2019;16:213–23.CrossRef
175.
go back to reference Priya S, Satheeshkumar P. Exosomal biomarkers in colorectal cancer. Colon cancer diagnosis and therapy: Volume 1. Cham: Springer; 2021. pp. 101–22. Priya S, Satheeshkumar P. Exosomal biomarkers in colorectal cancer. Colon cancer diagnosis and therapy: Volume 1. Cham: Springer; 2021. pp. 101–22.
176.
go back to reference Qiao X-X, Shi H-B, Xiao L. Serum exosomal hsa-circ-0004771 modulates the resistance of colorectal cancer to 5-fluorouracil via regulating miR-653/ZEB2 signaling pathway. Cancer Cell Int. 2023;23(1):243.PubMedPubMedCentralCrossRef Qiao X-X, Shi H-B, Xiao L. Serum exosomal hsa-circ-0004771 modulates the resistance of colorectal cancer to 5-fluorouracil via regulating miR-653/ZEB2 signaling pathway. Cancer Cell Int. 2023;23(1):243.PubMedPubMedCentralCrossRef
177.
go back to reference Erozenci LA, Böttger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan-) cancer biomarkers: insights from the proteome. FEBS Lett. 2019;593(13):1580–97.PubMedCrossRef Erozenci LA, Böttger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan-) cancer biomarkers: insights from the proteome. FEBS Lett. 2019;593(13):1580–97.PubMedCrossRef
178.
go back to reference Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, et al. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small. 2020;16(9):1903916.CrossRef Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, et al. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small. 2020;16(9):1903916.CrossRef
179.
go back to reference Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform. 2021;22(2):1639–55.PubMedCrossRef Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform. 2021;22(2):1639–55.PubMedCrossRef
180.
go back to reference Donoso-Quezada J, Ayala-Mar S, González-Valdez J. The role of lipids in exosome biology and intercellular communication: function, analytics and applications. Traffic. 2021;22(7):204–20.PubMedPubMedCentralCrossRef Donoso-Quezada J, Ayala-Mar S, González-Valdez J. The role of lipids in exosome biology and intercellular communication: function, analytics and applications. Traffic. 2021;22(7):204–20.PubMedPubMedCentralCrossRef
181.
go back to reference Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as biomarkers and therapeutic targets for hepatocellular carcinoma. Int J Mol Sci. 2021;22(9):4997.PubMedPubMedCentralCrossRef Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as biomarkers and therapeutic targets for hepatocellular carcinoma. Int J Mol Sci. 2021;22(9):4997.PubMedPubMedCentralCrossRef
184.
go back to reference Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013;251(1):125–42.PubMedPubMedCentralCrossRef Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013;251(1):125–42.PubMedPubMedCentralCrossRef
185.
go back to reference Janas AM, Sapoń K, Janas T, Stowell MH, Janas T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta (BBA)-Biomembranes. 2016;1858(6):1139–51. Janas AM, Sapoń K, Janas T, Stowell MH, Janas T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta (BBA)-Biomembranes. 2016;1858(6):1139–51.
186.
go back to reference Godoy PR, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, regulator of antioxidant system, to sensitize glioblastoma neurosphere cells to radiation-induced oxidative stress. Oxid Med Cell Longev. 2020;2020. Godoy PR, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, regulator of antioxidant system, to sensitize glioblastoma neurosphere cells to radiation-induced oxidative stress. Oxid Med Cell Longev. 2020;2020.
187.
go back to reference Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ, et al. Possibility of exosome-based coronavirus disease 2019 vaccine. Mol Med Rep. 2022;25(1):1–9. Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ, et al. Possibility of exosome-based coronavirus disease 2019 vaccine. Mol Med Rep. 2022;25(1):1–9.
188.
go back to reference Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Front Immunol. 2021;12. Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Front Immunol. 2021;12.
189.
go back to reference Sabanovic B, Piva F, Cecati M, Giulietti M. Promising extracellular vesicle-based vaccines against viruses, including SARS-CoV-2. Biology. 2021;10(2):94.PubMedPubMedCentralCrossRef Sabanovic B, Piva F, Cecati M, Giulietti M. Promising extracellular vesicle-based vaccines against viruses, including SARS-CoV-2. Biology. 2021;10(2):94.PubMedPubMedCentralCrossRef
190.
go back to reference Suzuki M, Yokota M, Kanemitsu Y, Min W-P, Ozaki S, Nakamura Y. Intranasal administration of regulatory dendritic cells is useful for the induction of nasal mucosal tolerance in a mice model of allergic rhinitis. World Allergy Organ J. 2020;13(8): 100447.PubMedPubMedCentralCrossRef Suzuki M, Yokota M, Kanemitsu Y, Min W-P, Ozaki S, Nakamura Y. Intranasal administration of regulatory dendritic cells is useful for the induction of nasal mucosal tolerance in a mice model of allergic rhinitis. World Allergy Organ J. 2020;13(8): 100447.PubMedPubMedCentralCrossRef
191.
go back to reference Zhong J, Xia B, Shan S, Zheng A, Zhang S, Chen J, et al. High-quality milk exosomes as oral drug delivery system. Biomaterials. 2021;277: 121126.PubMedCrossRef Zhong J, Xia B, Shan S, Zheng A, Zhang S, Chen J, et al. High-quality milk exosomes as oral drug delivery system. Biomaterials. 2021;277: 121126.PubMedCrossRef
193.
go back to reference Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, et al. Vaccines for colorectal cancer: an update. J Cell Biochem. 2019;120(6):8815–28.PubMedCrossRef Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, et al. Vaccines for colorectal cancer: an update. J Cell Biochem. 2019;120(6):8815–28.PubMedCrossRef
194.
go back to reference Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: the progress and future prospect. Int Immunopharmacol. 2020;88: 106944.PubMedCrossRef Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: the progress and future prospect. Int Immunopharmacol. 2020;88: 106944.PubMedCrossRef
195.
go back to reference Birtwistle L, Chen X-M, Pollock C. Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci. 2021;22(12):6596.PubMedPubMedCentralCrossRef Birtwistle L, Chen X-M, Pollock C. Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci. 2021;22(12):6596.PubMedPubMedCentralCrossRef
196.
go back to reference Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17(4):323–34.PubMedPubMedCentralCrossRef Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17(4):323–34.PubMedPubMedCentralCrossRef
197.
198.
Metadata
Title
Therapeutic and diagnostic applications of exosomes in colorectal cancer
Authors
Neda Shakerian
Elham Darzi-Eslam
Fatemeh Afsharnoori
Nikoo Bana
Faezeh Noorabad Ghahroodi
Mojtaba Tarin
Maysam Mard-soltani
Bahman Khalesi
Zahra Sadat Hashemi
Saeed Khalili
Publication date
01-08-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 8/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02440-3

Keynote series | Spotlight on managing health in obesity

Obesity is a major contributor to cardiorenal metabolic disease, but its impact extends throughout the body. Understand how obesity can affect other organ systems and impact treatment, and whether weight-loss measures improve outcomes.

Prof. Eva L. Feldman
Prof. Jonette Keri
Developed by: Springer Medicine
Watch now
Video

Women’s health knowledge hub

Elevate your patient care with our comprehensive, evidence-based medical education on women's health. Designed to help you provide exceptional care for your female patients at every stage of life, we provide expert insights into topics such as reproductive health, menopause, breast cancer and sex-specific health risks and precision medicine.

Read more

Keynote webinar | Spotlight on advances in lupus

  • Live
  • Webinar | 27-05-2025 | 18:00 (CEST)

Systemic lupus erythematosus is a severe autoimmune disease that can cause damage to almost every system of the body. Join this session to learn more about novel biomarkers for diagnosis and monitoring and familiarise yourself with current and emerging targeted therapies.

Join us live: Tuesday 27th May, 18:00-19:15 (CEST)

Prof. Edward Vital
Prof. Ronald F. van Vollenhoven
Developed by: Springer Medicine
Register now
Webinar