Skip to main content
Top
Published in:

Open Access 28-09-2024 | Colorectal Cancer | REVIEW

Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis

Authors: Jessica Permain, Barry Hock, Timothy Eglinton, Rachel Purcell

Published in: Cancer and Metastasis Reviews | Issue 4/2024

Login to get access

Abstract

Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Literature
1.
go back to reference Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4), 683–691.PubMedCrossRef Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4), 683–691.PubMedCrossRef
3.
go back to reference Sinicrope, F. A. (2022). Increasing incidence of early-onset colorectal cancer. New England Journal of Medicine, 386(16), 1547–1558.PubMedCrossRef Sinicrope, F. A. (2022). Increasing incidence of early-onset colorectal cancer. New England Journal of Medicine, 386(16), 1547–1558.PubMedCrossRef
4.
go back to reference Flemer, B., Lynch, D. B., Brown, J. M., Jeffery, I. B., Ryan, F. J., Claesson, M. J., . . . O'Toole, P. W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633–643. Flemer, B., Lynch, D. B., Brown, J. M., Jeffery, I. B., Ryan, F. J., Claesson, M. J., . . . O'Toole, P. W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633–643.
5.
go back to reference Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., . . . Nagarsheth, N. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170(3), 548-563. e516. Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., . . . Nagarsheth, N. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170(3), 548-563. e516.
6.
go back to reference Morley-Bunker, A., Walker, L., Currie, M., Pearson, J., & Eglinton, T. (2016). Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 18(8), 749–762.PubMedCrossRef Morley-Bunker, A., Walker, L., Currie, M., Pearson, J., & Eglinton, T. (2016). Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 18(8), 749–762.PubMedCrossRef
7.
go back to reference Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colon cancer. Gastroenterology, 138(6), 2059–2072.PubMedCrossRef Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colon cancer. Gastroenterology, 138(6), 2059–2072.PubMedCrossRef
8.
go back to reference Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of colorectal carcinogenesis. Gastroenterology, 158(2), 291–302.PubMedCrossRef Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of colorectal carcinogenesis. Gastroenterology, 158(2), 291–302.PubMedCrossRef
9.
go back to reference Conlin, A., Smith, G., Carey, F. A., Wolf, C. R., & Steele, R. J. (2005). The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut, 54(9), 1283–1286.PubMedPubMedCentralCrossRef Conlin, A., Smith, G., Carey, F. A., Wolf, C. R., & Steele, R. J. (2005). The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut, 54(9), 1283–1286.PubMedPubMedCentralCrossRef
10.
go back to reference Lemieux, E., Cagnol, S., Beaudry, K., Carrier, J., & Rivard, N. (2015). Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 34(38), 4914–4927.PubMedCrossRef Lemieux, E., Cagnol, S., Beaudry, K., Carrier, J., & Rivard, N. (2015). Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 34(38), 4914–4927.PubMedCrossRef
11.
go back to reference Rennoll, S., & Yochum, G. (2015). Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World Journal of Biological Chemistry, 6(4), 290.PubMedPubMedCentralCrossRef Rennoll, S., & Yochum, G. (2015). Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World Journal of Biological Chemistry, 6(4), 290.PubMedPubMedCentralCrossRef
12.
go back to reference Phipps, A. I., Limburg, P. J., Baron, J. A., Burnett-Hartman, A. N., Weisenberger, D. J., Laird, P. W., . . . Potter, J. D. (2015). Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 148(1), 77-87. e72. Phipps, A. I., Limburg, P. J., Baron, J. A., Burnett-Hartman, A. N., Weisenberger, D. J., Laird, P. W., . . . Potter, J. D. (2015). Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 148(1), 77-87. e72.
13.
go back to reference Kim, C. G., Ahn, J. B., Jung, M., Beom, S. H., Kim, C., Kim, J. H., . . . Kim, N. K. (2016). Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. British Journal of Cancer, 115(1), 25-33. Kim, C. G., Ahn, J. B., Jung, M., Beom, S. H., Kim, C., Kim, J. H., . . . Kim, N. K. (2016). Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. British Journal of Cancer, 115(1), 25-33.
14.
go back to reference Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(3), 233–254.PubMed Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(3), 233–254.PubMed
15.
go back to reference Leggett, B., & Whitehall, V. (2010). Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology, 138(6), 2088–2100.PubMedCrossRef Leggett, B., & Whitehall, V. (2010). Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology, 138(6), 2088–2100.PubMedCrossRef
16.
go back to reference Mezzapesa, M., Losurdo, G., Celiberto, F., Rizzi, S., d’Amati, A., Piscitelli, D., . . . Di Leo, A. (2022). Serrated colorectal lesions: an up-to-date review from histological pattern to molecular pathogenesis. International Journal of Molecular Sciences, 23(8), 4461 Mezzapesa, M., Losurdo, G., Celiberto, F., Rizzi, S., d’Amati, A., Piscitelli, D., . . . Di Leo, A. (2022). Serrated colorectal lesions: an up-to-date review from histological pattern to molecular pathogenesis. International Journal of Molecular Sciences, 23(8), 4461
17.
go back to reference Gupta, R., Sinha, S., & Paul, R. N. (2018). The impact of microsatellite stability status in colorectal cancer. Current Problems in Cancer, 42(6), 548–559.PubMedCrossRef Gupta, R., Sinha, S., & Paul, R. N. (2018). The impact of microsatellite stability status in colorectal cancer. Current Problems in Cancer, 42(6), 548–559.PubMedCrossRef
18.
go back to reference Yamagishi, H., Kuroda, H., Imai, Y., & Hiraishi, H. (2016). Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer, 35, 1–8.CrossRef Yamagishi, H., Kuroda, H., Imai, Y., & Hiraishi, H. (2016). Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer, 35, 1–8.CrossRef
19.
go back to reference Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S. L., Meagher, A., . . . Ward, R. (2002). CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology, 122(5), 1376-1387. Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S. L., Meagher, A., . . . Ward, R. (2002). CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology, 122(5), 1376-1387.
20.
go back to reference Yamane, L., Scapulatempo-Neto, C., Reis, R. M., & Guimarães, D. P. (2014). Serrated pathway in colorectal carcinogenesis. World Journal of Gastroenterology: WJG, 20(10), 2634.PubMedPubMedCentralCrossRef Yamane, L., Scapulatempo-Neto, C., Reis, R. M., & Guimarães, D. P. (2014). Serrated pathway in colorectal carcinogenesis. World Journal of Gastroenterology: WJG, 20(10), 2634.PubMedPubMedCentralCrossRef
21.
go back to reference Fu, X., & Zhang, X. (2014). BRAF mutation as a potential marker to identify the proximal colon serrated polyps with malignant potential. International Journal of Clinical and Experimental Pathology, 7(11), 7319.PubMedPubMedCentral Fu, X., & Zhang, X. (2014). BRAF mutation as a potential marker to identify the proximal colon serrated polyps with malignant potential. International Journal of Clinical and Experimental Pathology, 7(11), 7319.PubMedPubMedCentral
22.
go back to reference Borowsky, J., Dumenil, T., Bettington, M., Pearson, S.-A., Bond, C., Fennell, L., . . . Brown, I. (2018). The role of APC in WNT pathway activation in serrated neoplasia. Modern Pathology, 31(3), 495-504. Borowsky, J., Dumenil, T., Bettington, M., Pearson, S.-A., Bond, C., Fennell, L., . . . Brown, I. (2018). The role of APC in WNT pathway activation in serrated neoplasia. Modern Pathology, 31(3), 495-504.
23.
go back to reference Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., . . . Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350-1356 Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., . . . Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350-1356
24.
go back to reference Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S., & Frizelle, F. A. (2017). Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Scientific Reports, 7(1), 1–12.CrossRef Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S., & Frizelle, F. A. (2017). Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Scientific Reports, 7(1), 1–12.CrossRef
25.
go back to reference Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., . . . Tommasino, M. (2014). Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33(8), 1381-1390. Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., . . . Tommasino, M. (2014). Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33(8), 1381-1390.
26.
go back to reference Mima, K., Nishihara, R., Qian, Z. R., Cao, Y., Sukawa, Y., Nowak, J. A., . . . Song, M. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 65(12), 1973-1980. Mima, K., Nishihara, R., Qian, Z. R., Cao, Y., Sukawa, Y., Nowak, J. A., . . . Song, M. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 65(12), 1973-1980.
27.
go back to reference Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., . . . Hold, G. L. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215. Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., . . . Hold, G. L. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215.
28.
go back to reference Mima, K., Sukawa, Y., Nishihara, R., Qian, Z. R., Yamauchi, M., Inamura, K., . . . Nosho, K. (2015). Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncology, 1(5), 653-661. Mima, K., Sukawa, Y., Nishihara, R., Qian, Z. R., Yamauchi, M., Inamura, K., . . . Nosho, K. (2015). Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncology, 1(5), 653-661.
29.
go back to reference Stintzing, S., Wirapati, P., Lenz, H.-J., Neureiter, D., Von Weikersthal, L. F., Decker, T., . . . Heintges, T. (2019). Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Annals of Oncology, 30(11), 1796-1803. Stintzing, S., Wirapati, P., Lenz, H.-J., Neureiter, D., Von Weikersthal, L. F., Decker, T., . . . Heintges, T. (2019). Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Annals of Oncology, 30(11), 1796-1803.
30.
31.
go back to reference Sulit, A., Daigneault, M., Allen-Vercoe, E., Silander, O., Hock, B., McKenzie, J., . . . Purcell, R. (2023). Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. npj Biofilms and Microbiomes, 9(1), 59. Sulit, A., Daigneault, M., Allen-Vercoe, E., Silander, O., Hock, B., McKenzie, J., . . . Purcell, R. (2023). Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. npj Biofilms and Microbiomes, 9(1), 59.
32.
go back to reference Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L. A., & Feizabadi, M. M. (2020). Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Frontiers in Cellular and Infection Microbiology, 9, 449.PubMedPubMedCentralCrossRef Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L. A., & Feizabadi, M. M. (2020). Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Frontiers in Cellular and Infection Microbiology, 9, 449.PubMedPubMedCentralCrossRef
33.
go back to reference Khodaverdi, N., Zeighami, H., Jalilvand, A., Haghi, F., & Hesami, N. (2021). High frequency of enterotoxigenic Bacteroides fragilis and Enterococcus faecalis in the paraffin-embedded tissues of Iranian colorectal cancer patients. BMC Cancer, 21(1), 1–7.CrossRef Khodaverdi, N., Zeighami, H., Jalilvand, A., Haghi, F., & Hesami, N. (2021). High frequency of enterotoxigenic Bacteroides fragilis and Enterococcus faecalis in the paraffin-embedded tissues of Iranian colorectal cancer patients. BMC Cancer, 21(1), 1–7.CrossRef
34.
go back to reference Purcell, R. V., Pearson, J., Aitchison, A., Dixon, L., Frizelle, F. A., & Keenan, J. I. (2017). Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE, 12(2), e0171602.PubMedPubMedCentralCrossRef Purcell, R. V., Pearson, J., Aitchison, A., Dixon, L., Frizelle, F. A., & Keenan, J. I. (2017). Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE, 12(2), e0171602.PubMedPubMedCentralCrossRef
35.
go back to reference Purcell, R. V., Permain, J., & Keenan, J. I. (2022). Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathogens, 14(1), 1–7.CrossRef Purcell, R. V., Permain, J., & Keenan, J. I. (2022). Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathogens, 14(1), 1–7.CrossRef
36.
go back to reference Li, J., Huang, L., Zhao, H., Yan, Y., & Lu, J. (2020). The role of interleukins in colorectal cancer. International Journal of Biological Sciences, 16(13), 2323.PubMedPubMedCentralCrossRef Li, J., Huang, L., Zhao, H., Yan, Y., & Lu, J. (2020). The role of interleukins in colorectal cancer. International Journal of Biological Sciences, 16(13), 2323.PubMedPubMedCentralCrossRef
37.
go back to reference Ternes, D., Tsenkova, M., Pozdeev, V. I., Meyers, M., Koncina, E., Atatri, S., . . . Heinken, A. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nature Metabolism, 4(4), 458-475. Ternes, D., Tsenkova, M., Pozdeev, V. I., Meyers, M., Koncina, E., Atatri, S., . . . Heinken, A. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nature Metabolism, 4(4), 458-475.
39.
go back to reference De Rycke, J., & Oswald, E. (2001). Cytolethal distending toxin (CDT): A bacterial weapon to control host cell proliferation? FEMS Microbiology Letters, 203(2), 141–148.PubMedCrossRef De Rycke, J., & Oswald, E. (2001). Cytolethal distending toxin (CDT): A bacterial weapon to control host cell proliferation? FEMS Microbiology Letters, 203(2), 141–148.PubMedCrossRef
40.
go back to reference Ge, Z., Feng, Y., Ge, L., Parry, N., Muthupalani, S., & Fox, J. G. (2017). Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cellular Microbiology, 19(7), e12728.CrossRef Ge, Z., Feng, Y., Ge, L., Parry, N., Muthupalani, S., & Fox, J. G. (2017). Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cellular Microbiology, 19(7), e12728.CrossRef
41.
go back to reference Liyanage, N. P., Manthey, K. C., Dassanayake, R. P., Kuszynski, C. A., Oakley, G. G., & Duhamel, G. E. (2010). Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter, 15(2), 98–107.PubMedCrossRef Liyanage, N. P., Manthey, K. C., Dassanayake, R. P., Kuszynski, C. A., Oakley, G. G., & Duhamel, G. E. (2010). Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter, 15(2), 98–107.PubMedCrossRef
42.
go back to reference Tremblay, W., Mompart, F., Lopez, E., Quaranta, M., Bergoglio, V., Hashim, S., . . . Trouche, D. (2021). Cytolethal distending toxin promotes replicative stress leading to genetic instability transmitted to daughter cells. Frontiers in Cell and Developmental Biology, 9, 656795. Tremblay, W., Mompart, F., Lopez, E., Quaranta, M., Bergoglio, V., Hashim, S., . . . Trouche, D. (2021). Cytolethal distending toxin promotes replicative stress leading to genetic instability transmitted to daughter cells. Frontiers in Cell and Developmental Biology, 9, 656795.
43.
go back to reference Guidi, R., Guerra, L., Levi, L., Stenerlöw, B., Fox, J. G., Josenhans, C., . . . Frisan, T. (2013). Chronic exposure to the cytolethal distending toxins of Gram‐negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 15(1), 98-113. Guidi, R., Guerra, L., Levi, L., Stenerlöw, B., Fox, J. G., Josenhans, C., . . . Frisan, T. (2013). Chronic exposure to the cytolethal distending toxins of Gram‐negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 15(1), 98-113.
44.
go back to reference He, Z., Gharaibeh, R. Z., Newsome, R. C., Pope, J. L., Dougherty, M. W., Tomkovich, S., . . . Hendrixson, D. R. (2019). Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 68(2), 289-300. He, Z., Gharaibeh, R. Z., Newsome, R. C., Pope, J. L., Dougherty, M. W., Tomkovich, S., . . . Hendrixson, D. R. (2019). Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 68(2), 289-300.
46.
go back to reference Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrède, J.-P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107(25), 11537–11542.CrossRef Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrède, J.-P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107(25), 11537–11542.CrossRef
47.
go back to reference Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., . . . Stege, P. B. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 580(7802), 269–273. Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., . . . Stege, P. B. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 580(7802), 269–273.
48.
go back to reference Boleij, A., Hechenbleikner, E. M., Goodwin, A. C., Badani, R., Stein, E. M., Lazarev, M. G., . . . Wick, E. C. (2015). The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases, 60(2), 208-215. Boleij, A., Hechenbleikner, E. M., Goodwin, A. C., Badani, R., Stein, E. M., Lazarev, M. G., . . . Wick, E. C. (2015). The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases, 60(2), 208-215.
49.
go back to reference Choi, V. M. (2015). Characterization of virulence-associated protein processing genes in Bacteroides fragilis. The University of Chicago. Choi, V. M. (2015). Characterization of virulence-associated protein processing genes in Bacteroides fragilis. The University of Chicago.
50.
go back to reference Goodwin, A. C., Shields, C. E. D., Wu, S., Huso, D. L., Wu, X., Murray-Stewart, T. R., . . . Sears, C. L. (2011). Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings of the National Academy of Sciences, 108(37), 15354-15359. Goodwin, A. C., Shields, C. E. D., Wu, S., Huso, D. L., Wu, X., Murray-Stewart, T. R., . . . Sears, C. L. (2011). Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings of the National Academy of Sciences, 108(37), 15354-15359.
51.
go back to reference Wu, S., Morin, P. J., Maouyo, D., & Sears, C. L. (2003). Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology, 124(2), 392–400.PubMedCrossRef Wu, S., Morin, P. J., Maouyo, D., & Sears, C. L. (2003). Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology, 124(2), 392–400.PubMedCrossRef
52.
go back to reference Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., . . . Xu, H. (2022). Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144. Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., . . . Xu, H. (2022). Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144.
53.
go back to reference Lee, C.-G., Hwang, S., Gwon, S.-Y., Park, C., Jo, M., Hong, J.-E., & Rhee, K.-J. (2022). Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the e-Cadherin/β-Catenin/NF-κB dependent pathway. Biomedicines, 10(4), 827.PubMedPubMedCentralCrossRef Lee, C.-G., Hwang, S., Gwon, S.-Y., Park, C., Jo, M., Hong, J.-E., & Rhee, K.-J. (2022). Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the e-Cadherin/β-Catenin/NF-κB dependent pathway. Biomedicines, 10(4), 827.PubMedPubMedCentralCrossRef
54.
go back to reference Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., . . . Wada, T. (2005). IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine, 29(6), 275-282. Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., . . . Wada, T. (2005). IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine, 29(6), 275-282.
55.
go back to reference Fousek, K., Horn, L. A., & Palena, C. (2021). Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacology & Therapeutics, 219, 107692.CrossRef Fousek, K., Horn, L. A., & Palena, C. (2021). Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacology & Therapeutics, 219, 107692.CrossRef
56.
go back to reference Chen, X., Wang, Y., Xia, H., Wang, Q., Jiang, X., Lin, Z., . . . Hu, M. (2012). Loss of E-cadherin promotes the growth, invasion and drug resistance of colorectal cancer cells and is associated with liver metastasis. Molecular Biology Reports, 39, 6707-6714. Chen, X., Wang, Y., Xia, H., Wang, Q., Jiang, X., Lin, Z., . . . Hu, M. (2012). Loss of E-cadherin promotes the growth, invasion and drug resistance of colorectal cancer cells and is associated with liver metastasis. Molecular Biology Reports, 39, 6707-6714.
57.
go back to reference Huang, C.-Y., & Wang, M.-C. (2020). Clostridium perfringens bacteremia associated with colorectal cancer in an elderly woman. The Turkish Journal of Gastroenterology, 31(12), 960.PubMedPubMedCentralCrossRef Huang, C.-Y., & Wang, M.-C. (2020). Clostridium perfringens bacteremia associated with colorectal cancer in an elderly woman. The Turkish Journal of Gastroenterology, 31(12), 960.PubMedPubMedCentralCrossRef
58.
go back to reference Kohya, R., Murai, T., Taguchi, Y., Sawai, K., Takehara, M., Nagahama, M., . . . Ono, Y. (2022). An autopsy case of rapidly aggravated Clostridium perfringens septicemia with colorectal cancer. Case Reports in Infectious Diseases, 2022. https://doi.org/10.1155/2022/1071582 Kohya, R., Murai, T., Taguchi, Y., Sawai, K., Takehara, M., Nagahama, M., . . . Ono, Y. (2022). An autopsy case of rapidly aggravated Clostridium perfringens septicemia with colorectal cancer. Case Reports in Infectious Diseases, 2022. https://​doi.​org/​10.​1155/​2022/​1071582
59.
go back to reference Fujiwara-Tani, R., Fujii, K., Mori, S., Kishi, S., Sasaki, T., Ohmori, H., Nakashima, C., et al. (2020). Role of Clostridium perfringens enterotoxin on YAP activation in colonic sessile serrated adenoma/polyps with dysplasia. International Journal of Molecular Sciences, 21(11), 3840. MDPI AG.PubMedPubMedCentralCrossRef Fujiwara-Tani, R., Fujii, K., Mori, S., Kishi, S., Sasaki, T., Ohmori, H., Nakashima, C., et al. (2020). Role of Clostridium perfringens enterotoxin on YAP activation in colonic sessile serrated adenoma/polyps with dysplasia. International Journal of Molecular Sciences, 21(11), 3840. MDPI AG.PubMedPubMedCentralCrossRef
60.
go back to reference Fujiwara-Tani, R., Mori, S., Ogata, R., Sasaki, R., Ikemoto, A., Kishi, S., ... & Kuniyasu, H. (2023). Claudin-4: A new molecular target for epithelial cancer therapy. International Journal of Molecular Sciences, 24(6), 5494. Fujiwara-Tani, R., Mori, S., Ogata, R., Sasaki, R., Ikemoto, A., Kishi, S., ... & Kuniyasu, H. (2023). Claudin-4: A new molecular target for epithelial cancer therapy. International Journal of Molecular Sciences, 24(6), 5494.
61.
go back to reference Allali, I., Boukhatem, N., Bouguenouch, L., Hardi, H., Boudouaya, H. A., Cadenas, M. B., ... & Ghazal, H. (2018). Gut microbiome of Moroccan colorectal cancer patients. Medical Microbiology and Immunology, 207, 211-225. Allali, I., Boukhatem, N., Bouguenouch, L., Hardi, H., Boudouaya, H. A., Cadenas, M. B., ... & Ghazal, H. (2018). Gut microbiome of Moroccan colorectal cancer patients. Medical Microbiology and Immunology, 207, 211-225.
62.
go back to reference Jahani-Sherafat, S., Azimirad, M., Alebouyeh, M., Amoli, H. A., Hosseini, P., Ghasemian-Safaei, H., & Moghim, S. (2019). The rate and importance of Clostridium difficile in colorectal cancer patients. Gastroenterology and Hepatology From bed to Bench, 12(4), 358.PubMedPubMedCentral Jahani-Sherafat, S., Azimirad, M., Alebouyeh, M., Amoli, H. A., Hosseini, P., Ghasemian-Safaei, H., & Moghim, S. (2019). The rate and importance of Clostridium difficile in colorectal cancer patients. Gastroenterology and Hepatology From bed to Bench, 12(4), 358.PubMedPubMedCentral
63.
go back to reference Caroff, M., & Karibian, D. (2003). Structure of bacterial lipopolysaccharides. Carbohydrate Research, 338(23), 2431–2447.PubMedCrossRef Caroff, M., & Karibian, D. (2003). Structure of bacterial lipopolysaccharides. Carbohydrate Research, 338(23), 2431–2447.PubMedCrossRef
64.
go back to reference Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145–151.PubMedCrossRef Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145–151.PubMedCrossRef
65.
go back to reference Miao, E. A., Andersen-Nissen, E., Warren, S. E., & Aderem, A. (2007). TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. In Seminars in immunopathology (Vol. 29, pp. 275–288). Springer-Verlag. Miao, E. A., Andersen-Nissen, E., Warren, S. E., & Aderem, A. (2007). TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. In Seminars in immunopathology (Vol. 29, pp. 275–288). Springer-Verlag.
67.
go back to reference Mantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: Effector response to tumour and role of the microenvironment. The lancet, 371(9614), 771–783.CrossRef Mantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: Effector response to tumour and role of the microenvironment. The lancet, 371(9614), 771–783.CrossRef
68.
go back to reference Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., ... & Garrett, W. S. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215. Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., ... & Garrett, W. S. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215.
69.
go back to reference Orberg, E. T., Fan, H., Tam, A. J., Dejea, C. M., Shields, C. D., Wu, S., ... & Housseau, F. (2017). The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunology, 10(2), 421-433. Orberg, E. T., Fan, H., Tam, A. J., Dejea, C. M., Shields, C. D., Wu, S., ... & Housseau, F. (2017). The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunology, 10(2), 421-433.
70.
go back to reference Liu, X., Chen, Y., Zhang, S., & Dong, L. (2021). Gut microbiota-mediated immunomodulation in tumor. Journal of Experimental & Clinical Cancer Research, 40(1), 1–20.CrossRef Liu, X., Chen, Y., Zhang, S., & Dong, L. (2021). Gut microbiota-mediated immunomodulation in tumor. Journal of Experimental & Clinical Cancer Research, 40(1), 1–20.CrossRef
71.
go back to reference Hu, L., Liu, Y., Kong, X., Wu, R., Peng, Q., Zhang, Y., ... & Duan, L. (2021). Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κ B/S100A9 cascade. Frontiers in Immunology, 12, 658681. Hu, L., Liu, Y., Kong, X., Wu, R., Peng, Q., Zhang, Y., ... & Duan, L. (2021). Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κ B/S100A9 cascade. Frontiers in Immunology, 12, 658681.
72.
go back to reference Batah, J., Kobeissy, H., Bui Pham, P. T., Denève-Larrazet, C., Kuehne, S., Collignon, A., ... & Kansau, I. (2017). Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Scientific Reports, 7(1), 3256. Batah, J., Kobeissy, H., Bui Pham, P. T., Denève-Larrazet, C., Kuehne, S., Collignon, A., ... & Kansau, I. (2017). Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Scientific Reports, 7(1), 3256.
73.
go back to reference Waldner, M. J., Foersch, S., & Neurath, M. F. (2012). Interleukin-6-a key regulator of colorectal cancer development. International Journal of Biological Sciences, 8(9), 1248.PubMedPubMedCentralCrossRef Waldner, M. J., Foersch, S., & Neurath, M. F. (2012). Interleukin-6-a key regulator of colorectal cancer development. International Journal of Biological Sciences, 8(9), 1248.PubMedPubMedCentralCrossRef
74.
go back to reference Tominaga, K., Yoshimoto, T., Torigoe, K., Kurimoto, M., Matsui, K., Hada, T., ... & Nakanishi, K. (2000). IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. International Immunology, 12(2), 151-160. Tominaga, K., Yoshimoto, T., Torigoe, K., Kurimoto, M., Matsui, K., Hada, T., ... & Nakanishi, K. (2000). IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. International Immunology, 12(2), 151-160.
75.
go back to reference Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology, 3(2), 133–146.PubMedCrossRef Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology, 3(2), 133–146.PubMedCrossRef
76.
go back to reference Oft, M. (2014). IL-10: Master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunology Research, 2(3), 194–199.PubMedCrossRef Oft, M. (2014). IL-10: Master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunology Research, 2(3), 194–199.PubMedCrossRef
77.
go back to reference Dai, Z., Coker, O. O., Nakatsu, G., Wu, W. K., Zhao, L., Chen, Z., ... & Yu, J. (2018). Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome, 6(1), 1-12. Dai, Z., Coker, O. O., Nakatsu, G., Wu, W. K., Zhao, L., Chen, Z., ... & Yu, J. (2018). Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome, 6(1), 1-12.
78.
go back to reference Wu, S., Rhee, K. J., Zhang, M., Franco, A., & Sears, C. L. (2007). Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. Journal of Cell Science, 120(11), 1944–1952.PubMedCrossRef Wu, S., Rhee, K. J., Zhang, M., Franco, A., & Sears, C. L. (2007). Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. Journal of Cell Science, 120(11), 1944–1952.PubMedCrossRef
79.
go back to reference Page, M. J., Kell, D. B., & Pretorius, E. (2022). The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress, 6, 24705470221076390.PubMedPubMedCentralCrossRef Page, M. J., Kell, D. B., & Pretorius, E. (2022). The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress, 6, 24705470221076390.PubMedPubMedCentralCrossRef
80.
go back to reference Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., ... & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in immunology, 277. Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., ... & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in immunology, 277.
81.
go back to reference Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., ... & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451-455. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., ... & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451-455.
82.
go back to reference Li, C., Jiang, P., Wei, S., Xu, X., & Wang, J. (2020). Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer, 19, 1–23.PubMedPubMedCentralCrossRef Li, C., Jiang, P., Wei, S., Xu, X., & Wang, J. (2020). Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer, 19, 1–23.PubMedPubMedCentralCrossRef
83.
go back to reference Keum, N., & Giovannucci, E. (2019). Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature reviews Gastroenterology & Hepatology, 16(12), 713–732.CrossRef Keum, N., & Giovannucci, E. (2019). Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature reviews Gastroenterology & Hepatology, 16(12), 713–732.CrossRef
84.
go back to reference Pulendran, B., Kumar, P., Cutler, C. W., Mohamadzadeh, M., Van Dyke, T., & Banchereau, J. (2001). Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. The Journal of Immunology, 167(9), 5067–5076.PubMedCrossRef Pulendran, B., Kumar, P., Cutler, C. W., Mohamadzadeh, M., Van Dyke, T., & Banchereau, J. (2001). Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. The Journal of Immunology, 167(9), 5067–5076.PubMedCrossRef
85.
go back to reference Darveau, R. P., Pham, T. T. T., Lemley, K., Reife, R. A., Bainbridge, B. W., Coats, S. R., ... & Hajjar, A. M. (2004). Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infection and Immunity, 72(9), 5041-5051. Darveau, R. P., Pham, T. T. T., Lemley, K., Reife, R. A., Bainbridge, B. W., Coats, S. R., ... & Hajjar, A. M. (2004). Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infection and Immunity, 72(9), 5041-5051.
86.
go back to reference Czajka-Francuz, P., Cisoń-Jurek, S., Czajka, A., Kozaczka, M., Wojnar, J., Chudek, J., & Francuz, T. (2021). Systemic Interleukins’ profile in early and advanced colorectal cancer. International Journal of Molecular Sciences, 23(1), 124.PubMedPubMedCentralCrossRef Czajka-Francuz, P., Cisoń-Jurek, S., Czajka, A., Kozaczka, M., Wojnar, J., Chudek, J., & Francuz, T. (2021). Systemic Interleukins’ profile in early and advanced colorectal cancer. International Journal of Molecular Sciences, 23(1), 124.PubMedPubMedCentralCrossRef
87.
go back to reference Gao, Y., Bi, D., Xie, R., Li, M., Guo, J., Liu, H., ... & Qin, H. (2021). Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduction and Targeted Therapy, 6(1), 398. Gao, Y., Bi, D., Xie, R., Li, M., Guo, J., Liu, H., ... & Qin, H. (2021). Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduction and Targeted Therapy, 6(1), 398.
88.
go back to reference Mager, L. F., Burkhard, R., Pett, N., Cooke, N. C., Brown, K., Ramay, H., ... & McCoy, K. D. (2020). Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 369(6510), 1481-1489. Mager, L. F., Burkhard, R., Pett, N., Cooke, N. C., Brown, K., Ramay, H., ... & McCoy, K. D. (2020). Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 369(6510), 1481-1489.
89.
go back to reference Lopès, A., Billard, E., Casse, A. H., Villéger, R., Veziant, J., Roche, G., ... & Bonnet, M. (2020). Colibactin‐positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. International Journal of Cancer, 146(11), 3147-3159. Lopès, A., Billard, E., Casse, A. H., Villéger, R., Veziant, J., Roche, G., ... & Bonnet, M. (2020). Colibactin‐positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. International Journal of Cancer, 146(11), 3147-3159.
90.
91.
go back to reference Mouradov, D., Greenfield, P., Li, S., In, E. J., Storey, C., Sakthianandeswaren, A., ... & Sieber, O. M. (2023). Oncomicrobial community profiling identifies clinicomolecular and prognostic subtypes of colorectal cancer. Gastroenterology, 165(1), 104–120. Mouradov, D., Greenfield, P., Li, S., In, E. J., Storey, C., Sakthianandeswaren, A., ... & Sieber, O. M. (2023). Oncomicrobial community profiling identifies clinicomolecular and prognostic subtypes of colorectal cancer. Gastroenterology, 165(1), 104–120.
92.
go back to reference Zhang, J., Hoedt, E. C., Liu, Q., Berendsen, E., Teh, J. J., Hamilton, A., ... & Ng, S. C. (2021). Elucidation of Proteus mirabilis as a key bacterium in Crohn’s disease inflammation. Gastroenterology, 160(1), 317-330. Zhang, J., Hoedt, E. C., Liu, Q., Berendsen, E., Teh, J. J., Hamilton, A., ... & Ng, S. C. (2021). Elucidation of Proteus mirabilis as a key bacterium in Crohn’s disease inflammation. Gastroenterology, 160(1), 317-330.
93.
go back to reference Zhang, H., Luo, Y., Zhao, X., & Liu, X. (2024). Engineering Proteus mirabilis improves antitumor efficacy via enhancing cytotoxic T cell responses. Molecular Therapy Oncology, 32(1), 200770.PubMedPubMedCentralCrossRef Zhang, H., Luo, Y., Zhao, X., & Liu, X. (2024). Engineering Proteus mirabilis improves antitumor efficacy via enhancing cytotoxic T cell responses. Molecular Therapy Oncology, 32(1), 200770.PubMedPubMedCentralCrossRef
94.
go back to reference Jiang, S. S., Xie, Y. L., Xiao, X. Y., Kang, Z. R., Lin, X. L., Zhang, L., ... & Fang, J. Y. (2023). Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host & Microbe, 31(5), 781-797. Jiang, S. S., Xie, Y. L., Xiao, X. Y., Kang, Z. R., Lin, X. L., Zhang, L., ... & Fang, J. Y. (2023). Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host & Microbe, 31(5), 781-797.
95.
go back to reference DeStefano Shields, C. E., White, J. R., Chung, L., Wenzel, A., Hicks, J. L., Tam, A. J., ... & Sears, C. L. (2021). Bacterial-driven inflammation and mutant BRAF expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discovery, 11(7), 1792-1807. DeStefano Shields, C. E., White, J. R., Chung, L., Wenzel, A., Hicks, J. L., Tam, A. J., ... & Sears, C. L. (2021). Bacterial-driven inflammation and mutant BRAF expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discovery, 11(7), 1792-1807.
Metadata
Title
Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis
Authors
Jessica Permain
Barry Hock
Timothy Eglinton
Rachel Purcell
Publication date
28-09-2024
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2024
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-024-10215-5

ASH 2024 Annual Meeting Coverage

inMIND supports tafasitamab addition in follicular lymphoma

Combining tafasitamab with lenalidomide and rituximab significantly improves progression-free survival for patients with relapsed or refractory follicular lymphoma.

Featuring the official presentation video

Read more
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now