Skip to main content
Top
Published in:

20-09-2023 | Chronic Pain Syndrome | Anesthetic Techniques in Pain Management (D Wang, Section Editor)

Current Neurostimulation Therapies for Chronic Pain Conditions

Authors: Nathan A. Shlobin, Chengyuan Wu

Published in: Current Pain and Headache Reports | Issue 11/2023

Login to get access

Abstract

Purpose of Review

Neurostimulation treatment options have become more commonly used for chronic pain conditions refractory to these options. In this review, we characterize current neurostimulation therapies for chronic pain conditions and provide an analysis of their effectiveness and clinical adoption. This manuscript will inform clinicians of treatment options for chronic pain.

Recent Findings

Non-invasive neurostimulation includes transcranial direct current stimulation and repetitive transcranial magnetic stimulation, while more invasive options include spinal cord stimulation (SCS), peripheral nerve stimulation (PNS), dorsal root ganglion stimulation, motor cortex stimulation, and deep brain stimulation. Developments in transcranial direct current stimulation, repetitive transcranial magnetic stimulation, spinal cord stimulation, and peripheral nerve stimulation render these modalities most promising for the alleviating chronic pain.

Summary

Neurostimulation for chronic pain involves non-invasive and invasive modalities with varying efficacy. Well-designed randomized controlled trials are required to delineate the outcomes of neurostimulatory modalities more precisely.
Literature
2.
go back to reference Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333.PubMedCrossRef Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333.PubMedCrossRef
3.
go back to reference Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. Morb Mortal Wkly Rep. 2018;67(36):1001.CrossRef Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. Morb Mortal Wkly Rep. 2018;67(36):1001.CrossRef
4.
go back to reference Sauver JLS, Warner DO, Yawn BP, Jacobson DJ, McGree ME, Pankratz JJ, et al. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clinic Proceedings: Elsevier; 2013. p. 56–67. Sauver JLS, Warner DO, Yawn BP, Jacobson DJ, McGree ME, Pankratz JJ, et al. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clinic Proceedings: Elsevier; 2013. p. 56–67.
5.
go back to reference Murray CJ, Abraham J, Ali MK, Alvarado M, Atkinson C, Baddour LM, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–606.PubMedCrossRef Murray CJ, Abraham J, Ali MK, Alvarado M, Atkinson C, Baddour LM, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–606.PubMedCrossRef
6.
go back to reference Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization study in primary care. JAMA. 1998;280(2):147–51.PubMedCrossRef Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization study in primary care. JAMA. 1998;280(2):147–51.PubMedCrossRef
7.
go back to reference Smith BH, Elliott AM, Chambers WA, Smith WC, Hannaford PC, Penny K. The impact of chronic pain in the community. Fam Pract. 2001;18(3):292–9.PubMedCrossRef Smith BH, Elliott AM, Chambers WA, Smith WC, Hannaford PC, Penny K. The impact of chronic pain in the community. Fam Pract. 2001;18(3):292–9.PubMedCrossRef
8.
go back to reference Simon LS. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. J Pain Palliat Care Pharmacother. 2012;26(2):197–8.CrossRef Simon LS. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. J Pain Palliat Care Pharmacother. 2012;26(2):197–8.CrossRef
9.
go back to reference Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain. 2009;10(11):1113–20.PubMedCrossRef Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain. 2009;10(11):1113–20.PubMedCrossRef
10.
go back to reference Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–97.PubMedCrossRef Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–97.PubMedCrossRef
11.
go back to reference Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci. 2017;11:641.PubMedPubMedCentralCrossRef Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci. 2017;11:641.PubMedPubMedCentralCrossRef
12.
go back to reference Wan R, Wang Y, Feng B, Jiang X, Xu Y, Zhang Z, et al. Effect of high-definition transcranial direct current stimulation on conditioned pain modulation in healthy adults: a crossover randomized controlled trial. Neuroscience. 2021;479:60–9.PubMedCrossRef Wan R, Wang Y, Feng B, Jiang X, Xu Y, Zhang Z, et al. Effect of high-definition transcranial direct current stimulation on conditioned pain modulation in healthy adults: a crossover randomized controlled trial. Neuroscience. 2021;479:60–9.PubMedCrossRef
13.
go back to reference Jiang X, Wang Y, Wan R, Feng B, Zhang Z, Lin Y, et al. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: a single-blinded crossover controlled study. Neurosci Lett. 2022;767:136304.PubMedCrossRef Jiang X, Wang Y, Wan R, Feng B, Zhang Z, Lin Y, et al. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: a single-blinded crossover controlled study. Neurosci Lett. 2022;767:136304.PubMedCrossRef
14.
go back to reference Young J, Zoghi M, Khan F, Galea MP. The effect of transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis: randomized controlled trial. Pain Med. 2020;21(12):3451–7.PubMedCrossRef Young J, Zoghi M, Khan F, Galea MP. The effect of transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis: randomized controlled trial. Pain Med. 2020;21(12):3451–7.PubMedCrossRef
15.
go back to reference Harvey M-P, Martel M, Houde F, Daguet I, Riesco E, Léonard G. Relieving chronic musculoskeletal pain in older adults using transcranial direct current stimulation: effects on pain intensity, quality, and pain-related outcomes. Front Pain Res. 2022;3:817984.CrossRef Harvey M-P, Martel M, Houde F, Daguet I, Riesco E, Léonard G. Relieving chronic musculoskeletal pain in older adults using transcranial direct current stimulation: effects on pain intensity, quality, and pain-related outcomes. Front Pain Res. 2022;3:817984.CrossRef
16.
go back to reference Mechsner S, Grünert J, Wiese JJ, Vormbäumen J, Sehouli J, Siegmund B, et al. Transcranial direct current stimulation to reduce chronic pelvic pain in endometriosis: phase II randomized controlled clinical trial. Pain Med. 2023:pnad031. Mechsner S, Grünert J, Wiese JJ, Vormbäumen J, Sehouli J, Siegmund B, et al. Transcranial direct current stimulation to reduce chronic pelvic pain in endometriosis: phase II randomized controlled clinical trial. Pain Med. 2023:pnad031.
17.
go back to reference Dalla Volta G, Marceglia S, Zavarise P, Antonaci F. Cathodal tDCS guided by thermography as adjunctive therapy in chronic migraine patients: a sham-controlled pilot study. Front Neurol. 2020;11:121.PubMedPubMedCentralCrossRef Dalla Volta G, Marceglia S, Zavarise P, Antonaci F. Cathodal tDCS guided by thermography as adjunctive therapy in chronic migraine patients: a sham-controlled pilot study. Front Neurol. 2020;11:121.PubMedPubMedCentralCrossRef
18.
go back to reference McPhee ME, Graven-Nielsen T. Medial prefrontal high-definition transcranial direct current stimulation to improve pain modulation in chronic low back pain: a pilot randomized double-blinded placebo-controlled crossover trial. J Pain. 2021;22(8):952–67.PubMedCrossRef McPhee ME, Graven-Nielsen T. Medial prefrontal high-definition transcranial direct current stimulation to improve pain modulation in chronic low back pain: a pilot randomized double-blinded placebo-controlled crossover trial. J Pain. 2021;22(8):952–67.PubMedCrossRef
19.
go back to reference Wen Y-R, Shi J, Hu Z-Y, Lin Y-Y, Lin Y-T, Jiang X, et al. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci. 2022;15:1056966.PubMedPubMedCentralCrossRef Wen Y-R, Shi J, Hu Z-Y, Lin Y-Y, Lin Y-T, Jiang X, et al. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci. 2022;15:1056966.PubMedPubMedCentralCrossRef
20.
go back to reference Alwardat M, Pisani A, Etoom M, Carpenedo R, Chine E, Dauri M, et al. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J Neural Transm. 2020;127:1257–70.PubMedCrossRef Alwardat M, Pisani A, Etoom M, Carpenedo R, Chine E, Dauri M, et al. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J Neural Transm. 2020;127:1257–70.PubMedCrossRef
21.
go back to reference Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AK. Is transcranial direct current stimulation (tDCS) effective for the treatment of pain in fibromyalgia? A systematic review and meta-analysis. J Pain. 2020;21(11–12):1085–100.PubMedCrossRef Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AK. Is transcranial direct current stimulation (tDCS) effective for the treatment of pain in fibromyalgia? A systematic review and meta-analysis. J Pain. 2020;21(11–12):1085–100.PubMedCrossRef
22.
go back to reference Teixeira PE, Pacheco-Barrios K, Branco LC, de Melo PS, Marduy A, Caumo W, et al. The analgesic effect of transcranial direct current stimulation in fibromyalgia: a systematic review, meta-analysis, and meta-regression of potential influencers of clinical effect. Neuromodulation. 2022. Teixeira PE, Pacheco-Barrios K, Branco LC, de Melo PS, Marduy A, Caumo W, et al. The analgesic effect of transcranial direct current stimulation in fibromyalgia: a systematic review, meta-analysis, and meta-regression of potential influencers of clinical effect. Neuromodulation. 2022.
23.
go back to reference McCallion E, Robinson CS, Clark VP, Witkiewitz K. Efficacy of transcranial direct current stimulation-enhanced mindfulness-based program for chronic pain: a single-blind randomized sham controlled pilot study. Mindfulness. 2020;11:895–904.CrossRef McCallion E, Robinson CS, Clark VP, Witkiewitz K. Efficacy of transcranial direct current stimulation-enhanced mindfulness-based program for chronic pain: a single-blind randomized sham controlled pilot study. Mindfulness. 2020;11:895–904.CrossRef
24.
go back to reference Gupta S, Goel D, Garg S, Tikka SK, Mishra P, Tyagi P. Effect of adjunctive transcranial direct current stimulation and cognitive behavior therapy on headache disability in episodic frequent or chronic tension-type headache: a pilot, exploratory study. Indian J Pain. 2022;36(3):140–6.CrossRef Gupta S, Goel D, Garg S, Tikka SK, Mishra P, Tyagi P. Effect of adjunctive transcranial direct current stimulation and cognitive behavior therapy on headache disability in episodic frequent or chronic tension-type headache: a pilot, exploratory study. Indian J Pain. 2022;36(3):140–6.CrossRef
25.
go back to reference Young NA, Sharma M, Deogaonkar M. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin. 2014;25(4):819–32.CrossRef Young NA, Sharma M, Deogaonkar M. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin. 2014;25(4):819–32.CrossRef
27.
go back to reference Xiong H-Y, Zheng J-J, Wang X-Q. Non-invasive brain stimulation for chronic pain: state of the art and future directions. Front Mol Neurosci. 2022;15:888716.PubMedPubMedCentralCrossRef Xiong H-Y, Zheng J-J, Wang X-Q. Non-invasive brain stimulation for chronic pain: state of the art and future directions. Front Mol Neurosci. 2022;15:888716.PubMedPubMedCentralCrossRef
28.
go back to reference Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain. 2021;144(11):3328–39.PubMedCrossRef Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain. 2021;144(11):3328–39.PubMedCrossRef
29.
go back to reference Wang H, Hu Y, Deng J, Ye Y, Huang M, Che X, et al. A randomised sham-controlled study evaluating rTMS analgesic efficacy for postherpetic neuralgia. Front Neurosci. 2023;17:1158737.PubMedPubMedCentralCrossRef Wang H, Hu Y, Deng J, Ye Y, Huang M, Che X, et al. A randomised sham-controlled study evaluating rTMS analgesic efficacy for postherpetic neuralgia. Front Neurosci. 2023;17:1158737.PubMedPubMedCentralCrossRef
30.
go back to reference Pinot-Monange A, Moisset X, Chauvet P, Gremeau A-S, Comptour A, Canis M, et al. Repetitive transcranial magnetic stimulation therapy (rTMS) for endometriosis patients with refractory pelvic chronic pain: a pilot study. J Clin Med. 2019;8(4):508.PubMedPubMedCentralCrossRef Pinot-Monange A, Moisset X, Chauvet P, Gremeau A-S, Comptour A, Canis M, et al. Repetitive transcranial magnetic stimulation therapy (rTMS) for endometriosis patients with refractory pelvic chronic pain: a pilot study. J Clin Med. 2019;8(4):508.PubMedPubMedCentralCrossRef
31.
go back to reference Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol. 2020;60. Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol. 2020;60.
32.
go back to reference Forogh B, Haqiqatshenas H, Ahadi T, Ebadi S, Alishahi V, Sajadi S. Repetitive transcranial magnetic stimulation (rTMS) versus transcranial direct current stimulation (tDCS) in the management of patients with fibromyalgia: a randomized controlled trial. Neurophysiol Clin. 2021;51(4):339–47.PubMedCrossRef Forogh B, Haqiqatshenas H, Ahadi T, Ebadi S, Alishahi V, Sajadi S. Repetitive transcranial magnetic stimulation (rTMS) versus transcranial direct current stimulation (tDCS) in the management of patients with fibromyalgia: a randomized controlled trial. Neurophysiol Clin. 2021;51(4):339–47.PubMedCrossRef
33.
go back to reference De Martino E, Fernandes AM, Galhardoni R, Souza CDO, De Andrade DC, Graven-Nielsen T. Sessions of prolonged continuous theta burst stimulation or high-frequency 10 Hz stimulation to left dorsolateral prefrontal cortex for 3 days decreased pain sensitivity by modulation of the efficacy of conditioned pain modulation. J Pain. 2019;20(12):1459–69.PubMedCrossRef De Martino E, Fernandes AM, Galhardoni R, Souza CDO, De Andrade DC, Graven-Nielsen T. Sessions of prolonged continuous theta burst stimulation or high-frequency 10 Hz stimulation to left dorsolateral prefrontal cortex for 3 days decreased pain sensitivity by modulation of the efficacy of conditioned pain modulation. J Pain. 2019;20(12):1459–69.PubMedCrossRef
34.
go back to reference Lefaucheur J-P, Nguyen J-P. A practical algorithm for using rTMS to treat patients with chronic pain. Neurophysiol Clin. 2019;49(4):301–7.PubMedCrossRef Lefaucheur J-P, Nguyen J-P. A practical algorithm for using rTMS to treat patients with chronic pain. Neurophysiol Clin. 2019;49(4):301–7.PubMedCrossRef
35.
go back to reference Ahdab R, Ayache S, Brugières P, Goujon C, Lefaucheur J-P. Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin/Clin Neurophysiol. 2010;40(1):27–36.CrossRef Ahdab R, Ayache S, Brugières P, Goujon C, Lefaucheur J-P. Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin/Clin Neurophysiol. 2010;40(1):27–36.CrossRef
36.
go back to reference Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528.PubMedCrossRef Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528.PubMedCrossRef
37.
go back to reference Zhu Y, Li D, Zhou Y, Hu Y, Xu Z, Lei L, et al. Systematic review and meta-analysis of high-frequency rTMS over the dorsolateral prefrontal cortex. on chronic pain and chronic-pain-accompanied depression. ACS Chem Neurosci. 2022;13(17):2547–56.PubMedCrossRef Zhu Y, Li D, Zhou Y, Hu Y, Xu Z, Lei L, et al. Systematic review and meta-analysis of high-frequency rTMS over the dorsolateral prefrontal cortex. on chronic pain and chronic-pain-accompanied depression. ACS Chem Neurosci. 2022;13(17):2547–56.PubMedCrossRef
38.
go back to reference Che X, Cash RF, Luo X, Luo H, Lu X, Xu F, et al. High-frequency rTMS over the dorsolateral prefrontal cortex on chronic and provoked pain: a systematic review and meta-analysis. Brain Stimul. 2021;14(5):1135–46.PubMedCrossRef Che X, Cash RF, Luo X, Luo H, Lu X, Xu F, et al. High-frequency rTMS over the dorsolateral prefrontal cortex on chronic and provoked pain: a systematic review and meta-analysis. Brain Stimul. 2021;14(5):1135–46.PubMedCrossRef
39.
go back to reference Kalita J, Kumar S, Singh VK, Misra UK. A randomized controlled trial of high rate rTMS Versus rTMS and amitriptyline in chronic migraine. Pain Physician. 2021;24(6):E733.PubMedCrossRef Kalita J, Kumar S, Singh VK, Misra UK. A randomized controlled trial of high rate rTMS Versus rTMS and amitriptyline in chronic migraine. Pain Physician. 2021;24(6):E733.PubMedCrossRef
40.
go back to reference Melzack R, Wall PD. Pain mechanisms: a new theory: a gate control system modulates sensory input from the skin before it evokes pain perception and response. Science. 1965;150(3699):971–9.PubMedCrossRef Melzack R, Wall PD. Pain mechanisms: a new theory: a gate control system modulates sensory input from the skin before it evokes pain perception and response. Science. 1965;150(3699):971–9.PubMedCrossRef
41.
go back to reference Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep. 2012;16:217–25.PubMedCrossRef Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep. 2012;16:217–25.PubMedCrossRef
42.
go back to reference Isagulyan E, Slavin K, Konovalov N, Dorochov E, Tomsky A, Dekopov A, et al. Spinal cord stimulation in chronic pain: technical advances. Korean J Pain. 2020;33(2):99–107.PubMedPubMedCentralCrossRef Isagulyan E, Slavin K, Konovalov N, Dorochov E, Tomsky A, Dekopov A, et al. Spinal cord stimulation in chronic pain: technical advances. Korean J Pain. 2020;33(2):99–107.PubMedPubMedCentralCrossRef
43.
go back to reference Rigoard P, Billot M, Ingrand P, Durand-Zaleski I, Roulaud M, Peruzzi P, et al. How should we use multicolumn spinal cord stimulation to optimize back pain spatial neural targeting? A prospective, multicenter, randomized, double-blind, controlled trial (ESTIMET study). Neuromodulation. 2021;24(1):86–101.PubMedCrossRef Rigoard P, Billot M, Ingrand P, Durand-Zaleski I, Roulaud M, Peruzzi P, et al. How should we use multicolumn spinal cord stimulation to optimize back pain spatial neural targeting? A prospective, multicenter, randomized, double-blind, controlled trial (ESTIMET study). Neuromodulation. 2021;24(1):86–101.PubMedCrossRef
44.
go back to reference Rigoard P, Basu S, Desai M, Taylor R, Annemans L, Tan Y, et al. Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial. Pain. 2019;160(6):1410.PubMedPubMedCentralCrossRef Rigoard P, Basu S, Desai M, Taylor R, Annemans L, Tan Y, et al. Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial. Pain. 2019;160(6):1410.PubMedPubMedCentralCrossRef
46.
go back to reference Lee KY, Bae C, Lee D, Kagan Z, Bradley K, Chung JM, et al. Low-intensity, kilohertz frequency spinal cord stimulation differently affects excitatory and inhibitory neurons in the rodent superficial dorsal horn. Neuroscience. 2020;428:132–9.PubMedCrossRef Lee KY, Bae C, Lee D, Kagan Z, Bradley K, Chung JM, et al. Low-intensity, kilohertz frequency spinal cord stimulation differently affects excitatory and inhibitory neurons in the rodent superficial dorsal horn. Neuroscience. 2020;428:132–9.PubMedCrossRef
47.
go back to reference Amirdelfan K, Vallejo R, Benyamin R, Yu C, Yang T, Bundschu R, et al. High-frequency spinal cord stimulation at 10 kHz for the treatment of combined neck and arm pain: results from a prospective multicenter study. Neurosurgery. 2020;87(2):176.PubMedCrossRef Amirdelfan K, Vallejo R, Benyamin R, Yu C, Yang T, Bundschu R, et al. High-frequency spinal cord stimulation at 10 kHz for the treatment of combined neck and arm pain: results from a prospective multicenter study. Neurosurgery. 2020;87(2):176.PubMedCrossRef
48.
go back to reference Kapural L, Jameson J, Johnson C, Kloster D, Calodney A, Kosek P, et al. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J Neurosurg Spine. 2022;1(aop):1–12. Kapural L, Jameson J, Johnson C, Kloster D, Calodney A, Kosek P, et al. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J Neurosurg Spine. 2022;1(aop):1–12.
49.
go back to reference Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA Neurol. 2021;78(6):687–98.PubMedPubMedCentralCrossRef Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA Neurol. 2021;78(6):687–98.PubMedPubMedCentralCrossRef
50.
go back to reference Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. High-frequency 10-kHz spinal cord stimulation improves health-related quality of life in patients with refractory painful diabetic neuropathy: 12-month results from a randomized controlled trial. Mayo Clin Proc Innov Qual Outcomes. 2022;6(4):347–60.PubMedPubMedCentralCrossRef Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. High-frequency 10-kHz spinal cord stimulation improves health-related quality of life in patients with refractory painful diabetic neuropathy: 12-month results from a randomized controlled trial. Mayo Clin Proc Innov Qual Outcomes. 2022;6(4):347–60.PubMedPubMedCentralCrossRef
51.
go back to reference Conic RR, Caylor J, Cui CL, Reyes Z, Nelson E, Yin S, et al. Sex-specific differences in the efficacy of traditional low frequency versus high frequency spinal cord stimulation for chronic pain. Bioelectron Med. 2022;8(1):1–14.CrossRef Conic RR, Caylor J, Cui CL, Reyes Z, Nelson E, Yin S, et al. Sex-specific differences in the efficacy of traditional low frequency versus high frequency spinal cord stimulation for chronic pain. Bioelectron Med. 2022;8(1):1–14.CrossRef
52.
go back to reference Kilchukov M, Kiselev R, Gorbatykh A, Klinkova A, Murtazin V, Kamenskaya O, et al. High-frequency versus low-frequency spinal cord stimulation in treatment of chronic limb-threatening ischemia: short-term results of a randomized trial. Stereotact Funct Neurosurg. 2023;101(1):1–11.PubMedCrossRef Kilchukov M, Kiselev R, Gorbatykh A, Klinkova A, Murtazin V, Kamenskaya O, et al. High-frequency versus low-frequency spinal cord stimulation in treatment of chronic limb-threatening ischemia: short-term results of a randomized trial. Stereotact Funct Neurosurg. 2023;101(1):1–11.PubMedCrossRef
53.
go back to reference Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R. Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med. 2019;20(Supplement_1):S13–22.PubMedPubMedCentralCrossRef Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R. Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med. 2019;20(Supplement_1):S13–22.PubMedPubMedCentralCrossRef
54.
go back to reference Demartini L, Terranova G, Innamorato MA, Dario A, Sofia M, Angelini C, et al. Comparison of tonic vs. burst spinal cord stimulation during trial period. Neuromodulation. 2019;22(3):327–32.PubMedCrossRef Demartini L, Terranova G, Innamorato MA, Dario A, Sofia M, Angelini C, et al. Comparison of tonic vs. burst spinal cord stimulation during trial period. Neuromodulation. 2019;22(3):327–32.PubMedCrossRef
55.
go back to reference D’Souza RS, Strand N. Neuromodulation with burst and tonic stimulation decreases opioid consumption: a post hoc analysis of the success using neuromodulation with BURST (SUNBURST) randomized controlled trial. Neuromodulation. 2021;24(1):135–41.PubMedCrossRef D’Souza RS, Strand N. Neuromodulation with burst and tonic stimulation decreases opioid consumption: a post hoc analysis of the success using neuromodulation with BURST (SUNBURST) randomized controlled trial. Neuromodulation. 2021;24(1):135–41.PubMedCrossRef
56.
go back to reference Braun E, Khatri N, Kim B, Nazir N, Orr WN, Ballew A, et al. A prospective, randomized single-blind crossover study comparing high-frequency 10,000 Hz and burst spinal cord stimulation. Neuromodulation. 2022. Braun E, Khatri N, Kim B, Nazir N, Orr WN, Ballew A, et al. A prospective, randomized single-blind crossover study comparing high-frequency 10,000 Hz and burst spinal cord stimulation. Neuromodulation. 2022.
57.
go back to reference Vesper J, Slotty P, Schu S, Poeggel-Kraemer K, Littges H, Van Looy P, et al. Burst SCS microdosing is as efficacious as standard burst SCS in treating chronic back and leg pain: results from a randomized controlled trial. Neuromodulation. 2019;22(2):190–3.PubMedCrossRef Vesper J, Slotty P, Schu S, Poeggel-Kraemer K, Littges H, Van Looy P, et al. Burst SCS microdosing is as efficacious as standard burst SCS in treating chronic back and leg pain: results from a randomized controlled trial. Neuromodulation. 2019;22(2):190–3.PubMedCrossRef
58.
go back to reference Vallejo R, Kelley CA, Gupta A, Smith WJ, Vallejo A, Cedeño DL. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057.PubMedPubMedCentralCrossRef Vallejo R, Kelley CA, Gupta A, Smith WJ, Vallejo A, Cedeño DL. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057.PubMedPubMedCentralCrossRef
59.
go back to reference Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: comparing high rate, low rate, and differential target multiplexed programming. Mol Pain. 2021;17:1744806921999013.PubMedPubMedCentralCrossRef Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: comparing high rate, low rate, and differential target multiplexed programming. Mol Pain. 2021;17:1744806921999013.PubMedPubMedCentralCrossRef
60.
go back to reference Fishman M, Cordner H, Justiz R, Provenzano D, Merrell C, Shah B, et al. Twelve-month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21(8):912–23.PubMedPubMedCentralCrossRef Fishman M, Cordner H, Justiz R, Provenzano D, Merrell C, Shah B, et al. Twelve-month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21(8):912–23.PubMedPubMedCentralCrossRef
61.
go back to reference Parker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain. 2012;153(3):593–601.PubMedCrossRef Parker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain. 2012;153(3):593–601.PubMedCrossRef
62.
go back to reference Brooker C, Russo M, Cousins MJ, Taylor N, Holford L, Martin R, et al. ECAP-Controlled closed-loop spinal cord stimulation efficacy and opioid reduction over 24-months: final results of the prospective, multicenter, open-label avalon study. Pain Pract. 2021;21(6):680–91.PubMedPubMedCentralCrossRef Brooker C, Russo M, Cousins MJ, Taylor N, Holford L, Martin R, et al. ECAP-Controlled closed-loop spinal cord stimulation efficacy and opioid reduction over 24-months: final results of the prospective, multicenter, open-label avalon study. Pain Pract. 2021;21(6):680–91.PubMedPubMedCentralCrossRef
63.
go back to reference Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 2020;19(2):123–34.PubMedCrossRef Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 2020;19(2):123–34.PubMedCrossRef
64.
go back to reference Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60.PubMedPubMedCentralCrossRef Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60.PubMedPubMedCentralCrossRef
65.
go back to reference Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, et al. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med. 2023;48(6):273–87.PubMedCrossRef Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, et al. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med. 2023;48(6):273–87.PubMedCrossRef
66.
go back to reference Chao D, Zhang Z, Mecca CM, Hogan QH, Pan B. Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents. Pain. 2020;161(12):2872.PubMedPubMedCentralCrossRef Chao D, Zhang Z, Mecca CM, Hogan QH, Pan B. Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents. Pain. 2020;161(12):2872.PubMedPubMedCentralCrossRef
67.
go back to reference Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111–24.PubMedCrossRef Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111–24.PubMedCrossRef
68.
go back to reference Graham RD, Sankarasubramanian V, Lempka SF. Dorsal root ganglion stimulation for chronic pain: hypothesized mechanisms of action. J Pain. 2022;23(2):196–211.PubMedCrossRef Graham RD, Sankarasubramanian V, Lempka SF. Dorsal root ganglion stimulation for chronic pain: hypothesized mechanisms of action. J Pain. 2022;23(2):196–211.PubMedCrossRef
69.
go back to reference Kent AR, Min X, Hogan QH, Kramer JM. Mechanisms of dorsal root ganglion stimulation in pain suppression: a computational modeling analysis. Neuromodulation. 2018;21(3):234–46.PubMedCrossRef Kent AR, Min X, Hogan QH, Kramer JM. Mechanisms of dorsal root ganglion stimulation in pain suppression: a computational modeling analysis. Neuromodulation. 2018;21(3):234–46.PubMedCrossRef
70.
go back to reference Huygen FJ, Kallewaard JW, Nijhuis H, Liem L, Vesper J, Fahey ME, et al. Effectiveness and safety of dorsal root ganglion stimulation for the treatment of chronic pain: a pooled analysis. Neuromodulation. 2020;23(2):213–21.PubMedCrossRef Huygen FJ, Kallewaard JW, Nijhuis H, Liem L, Vesper J, Fahey ME, et al. Effectiveness and safety of dorsal root ganglion stimulation for the treatment of chronic pain: a pooled analysis. Neuromodulation. 2020;23(2):213–21.PubMedCrossRef
71.
go back to reference Stelter B, Karri J, Marathe A, Abd-Elsayed A. Dorsal root ganglion stimulation for the treatment of non-complex regional pain syndrome related chronic pain syndromes: a systematic review. Neuromodulation. 2021;24(4):622–33.PubMedCrossRef Stelter B, Karri J, Marathe A, Abd-Elsayed A. Dorsal root ganglion stimulation for the treatment of non-complex regional pain syndrome related chronic pain syndromes: a systematic review. Neuromodulation. 2021;24(4):622–33.PubMedCrossRef
72.
go back to reference Kallewaard JW, Nijhuis H, Huygen F, Wille F, Zuidema X, van de Minkelis J, et al. Prospective cohort analysis of DRG stimulation for failed back surgery syndrome pain following lumbar discectomy. Pain Pract. 2019;19(2):204–10.PubMedCrossRef Kallewaard JW, Nijhuis H, Huygen F, Wille F, Zuidema X, van de Minkelis J, et al. Prospective cohort analysis of DRG stimulation for failed back surgery syndrome pain following lumbar discectomy. Pain Pract. 2019;19(2):204–10.PubMedCrossRef
73.
go back to reference Kretzschmar M, Reining M, Schwarz MA. Three-year outcomes after dorsal root ganglion stimulation in the treatment of neuropathic pain after peripheral nerve injury of upper and lower extremities. Neuromodulation. 2021;24(4):700–7.PubMedCrossRef Kretzschmar M, Reining M, Schwarz MA. Three-year outcomes after dorsal root ganglion stimulation in the treatment of neuropathic pain after peripheral nerve injury of upper and lower extremities. Neuromodulation. 2021;24(4):700–7.PubMedCrossRef
74.
go back to reference Kallewaard JW, Edelbroek C, Terheggen M, Raza A, Geurts JW. A prospective study of dorsal root ganglion stimulation for non-operated discogenic low back pain. Neuromodulation. 2020;23(2):196–202.PubMedCrossRef Kallewaard JW, Edelbroek C, Terheggen M, Raza A, Geurts JW. A prospective study of dorsal root ganglion stimulation for non-operated discogenic low back pain. Neuromodulation. 2020;23(2):196–202.PubMedCrossRef
75.
go back to reference Mons MR, Chapman KB, Terwiel C, Joosten EA, Kallewaard JW. Burst spinal cord stimulation as compared with L2 dorsal root ganglion stimulation in pain relief for nonoperated discogenic low back pain: analysis of two prospective studies. Neuromodulation. 2023. Mons MR, Chapman KB, Terwiel C, Joosten EA, Kallewaard JW. Burst spinal cord stimulation as compared with L2 dorsal root ganglion stimulation in pain relief for nonoperated discogenic low back pain: analysis of two prospective studies. Neuromodulation. 2023.
76.
go back to reference Parker T, Raghu A, Huang Y, Gillies MJ, FitzGerald JJ, Aziz T, et al. Paired acute invasive/non-invasive stimulation (PAINS) study: a phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimul. 2021;14(6):1576–85.PubMedCrossRef Parker T, Raghu A, Huang Y, Gillies MJ, FitzGerald JJ, Aziz T, et al. Paired acute invasive/non-invasive stimulation (PAINS) study: a phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimul. 2021;14(6):1576–85.PubMedCrossRef
77.
go back to reference Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, et al. Best practices for dorsal root ganglion stimulation for chronic pain: guidelines from the American Society of Pain and Neuroscience. J Pain Res. 2023:839–79. Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, et al. Best practices for dorsal root ganglion stimulation for chronic pain: guidelines from the American Society of Pain and Neuroscience. J Pain Res. 2023:839–79.
78.
79.
go back to reference Ristić D, Spangenberg P, Ellrich J. Analgesic and antinociceptive effects of peripheral nerve neurostimulation in an advanced human experimental model. Eur J Pain. 2008;12(4):480–90.PubMedCrossRef Ristić D, Spangenberg P, Ellrich J. Analgesic and antinociceptive effects of peripheral nerve neurostimulation in an advanced human experimental model. Eur J Pain. 2008;12(4):480–90.PubMedCrossRef
80.
go back to reference Deer TR, Esposito MF, McRoberts WP, Grider JS, Sayed D, Verrills P, et al. A systematic literature review of peripheral nerve stimulation therapies for the treatment of pain. Pain Med. 2020;21(8):1590–603.PubMedCrossRef Deer TR, Esposito MF, McRoberts WP, Grider JS, Sayed D, Verrills P, et al. A systematic literature review of peripheral nerve stimulation therapies for the treatment of pain. Pain Med. 2020;21(8):1590–603.PubMedCrossRef
81.
go back to reference Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral nerve stimulation for chronic pain: a systematic review of effectiveness and safety. Pain Ther. 2021;10:985–1002.PubMedPubMedCentralCrossRef Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral nerve stimulation for chronic pain: a systematic review of effectiveness and safety. Pain Ther. 2021;10:985–1002.PubMedPubMedCentralCrossRef
82.
go back to reference Lin C-P, Chang K-V, Wu W-T, Özçakar L. Ultrasound-guided peripheral nerve stimulation for knee pain: a mini-review of the neuroanatomy and the evidence from clinical studies. Pain Med. 2020;21(Supplement_1):S56–63.PubMedCrossRef Lin C-P, Chang K-V, Wu W-T, Özçakar L. Ultrasound-guided peripheral nerve stimulation for knee pain: a mini-review of the neuroanatomy and the evidence from clinical studies. Pain Med. 2020;21(Supplement_1):S56–63.PubMedCrossRef
83.
go back to reference Leplus A, Fontaine D, Donnet A, Regis J, Lucas C, Buisset N, et al. Long-term efficacy of occipital nerve stimulation for medically intractable cluster headache. Neurosurgery. 2021;88(2):375–83.PubMedCrossRef Leplus A, Fontaine D, Donnet A, Regis J, Lucas C, Buisset N, et al. Long-term efficacy of occipital nerve stimulation for medically intractable cluster headache. Neurosurgery. 2021;88(2):375–83.PubMedCrossRef
84.
go back to reference Raoul S, Nguyen JM, Kuhn E, de Chauvigny E, Lejczak S, Nguyen J-P, et al. Efficacy of occipital nerve stimulation to treat refractory occipital headaches: a single-institution study of 60 patients. Neuromodulation. 2020;23(6):789–95.PubMedCrossRef Raoul S, Nguyen JM, Kuhn E, de Chauvigny E, Lejczak S, Nguyen J-P, et al. Efficacy of occipital nerve stimulation to treat refractory occipital headaches: a single-institution study of 60 patients. Neuromodulation. 2020;23(6):789–95.PubMedCrossRef
85.
go back to reference Lagrata S, Cheema S, Watkins L, Matharu M. Long-term outcomes of occipital nerve stimulation for new daily persistent headache with migrainous features. Neuromodulation. 2021;24(6):1093–9.PubMedCrossRef Lagrata S, Cheema S, Watkins L, Matharu M. Long-term outcomes of occipital nerve stimulation for new daily persistent headache with migrainous features. Neuromodulation. 2021;24(6):1093–9.PubMedCrossRef
86.
go back to reference Wilbrink LA, de Coo IF, Doesborg PG, Mulleners WM, Teernstra OP, Bartels EC, et al. Safety and efficacy of occipital nerve stimulation for attack prevention in medically intractable chronic cluster headache (ICON): a randomised, double-blind, multicentre, phase 3, electrical dose-controlled trial. Lancet Neurol. 2021;20(7):515–25.PubMedCrossRef Wilbrink LA, de Coo IF, Doesborg PG, Mulleners WM, Teernstra OP, Bartels EC, et al. Safety and efficacy of occipital nerve stimulation for attack prevention in medically intractable chronic cluster headache (ICON): a randomised, double-blind, multicentre, phase 3, electrical dose-controlled trial. Lancet Neurol. 2021;20(7):515–25.PubMedCrossRef
87.
go back to reference Garcia-Ortega R, Edwards T, Moir L, Aziz TZ, Green AL, FitzGerald JJ. Burst occipital nerve stimulation for chronic migraine and chronic cluster headache. Neuromodulation. 2019;22(5):638–44.PubMedCrossRef Garcia-Ortega R, Edwards T, Moir L, Aziz TZ, Green AL, FitzGerald JJ. Burst occipital nerve stimulation for chronic migraine and chronic cluster headache. Neuromodulation. 2019;22(5):638–44.PubMedCrossRef
88.
go back to reference Ashkan K, Sokratous G, Göbel H, Mehta V, Gendolla A, Dowson A, et al. Peripheral nerve stimulation registry for intractable migraine headache (RELIEF): a real-life perspective on the utility of occipital nerve stimulation for chronic migraine. Acta Neurochir. 2020;162:3201–11.PubMedCrossRef Ashkan K, Sokratous G, Göbel H, Mehta V, Gendolla A, Dowson A, et al. Peripheral nerve stimulation registry for intractable migraine headache (RELIEF): a real-life perspective on the utility of occipital nerve stimulation for chronic migraine. Acta Neurochir. 2020;162:3201–11.PubMedCrossRef
89.
go back to reference Gilmore CA, Kapural L, McGee MJ, Boggs JW. Percutaneous peripheral nerve stimulation for chronic low back pain: prospective case series with 1 year of sustained relief following short-term implant. Pain Pract. 2020;20(3):310–20.PubMedCrossRef Gilmore CA, Kapural L, McGee MJ, Boggs JW. Percutaneous peripheral nerve stimulation for chronic low back pain: prospective case series with 1 year of sustained relief following short-term implant. Pain Pract. 2020;20(3):310–20.PubMedCrossRef
90.
go back to reference Gilmore CA, Ilfeld BM, Rosenow JM, Li S, Desai MJ, Hunter CW, et al. Percutaneous 60-day peripheral nerve stimulation implant provides sustained relief of chronic pain following amputation: 12-month follow-up of a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45(1):44–51.CrossRef Gilmore CA, Ilfeld BM, Rosenow JM, Li S, Desai MJ, Hunter CW, et al. Percutaneous 60-day peripheral nerve stimulation implant provides sustained relief of chronic pain following amputation: 12-month follow-up of a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45(1):44–51.CrossRef
91.
go back to reference Strand N, D’Souza RS, Hagedorn JM, Pritzlaff S, Sayed D, Azeem N, et al. Evidence-based clinical guidelines from the American Society of Pain and Neuroscience for the use of implantable peripheral nerve stimulation in the treatment of chronic pain. J Pain Res. 2022:2483–504. Strand N, D’Souza RS, Hagedorn JM, Pritzlaff S, Sayed D, Azeem N, et al. Evidence-based clinical guidelines from the American Society of Pain and Neuroscience for the use of implantable peripheral nerve stimulation in the treatment of chronic pain. J Pain Res. 2022:2483–504.
92.
go back to reference DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front Neurosci. 2016;10:18.PubMedPubMedCentralCrossRef DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front Neurosci. 2016;10:18.PubMedPubMedCentralCrossRef
93.
go back to reference Galafassi GZ, de Aguiar PHSP, Simm RF, Franceschini PR, Prist Filho M, Pagura JR, et al. Neuromodulation for medically refractory neuropathic pain: spinal cord stimulation, deep brain stimulation, motor cortex stimulation, and posterior insula stimulation. World Neurosurg. 2021;146:246–60.PubMedCrossRef Galafassi GZ, de Aguiar PHSP, Simm RF, Franceschini PR, Prist Filho M, Pagura JR, et al. Neuromodulation for medically refractory neuropathic pain: spinal cord stimulation, deep brain stimulation, motor cortex stimulation, and posterior insula stimulation. World Neurosurg. 2021;146:246–60.PubMedCrossRef
94.
go back to reference Henssen D, Kurt E, van Walsum A-MVC, Kozicz T, van Dongen R, Bartels R. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep. 2020;10(1):7195.PubMedPubMedCentralCrossRef Henssen D, Kurt E, van Walsum A-MVC, Kozicz T, van Dongen R, Bartels R. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep. 2020;10(1):7195.PubMedPubMedCentralCrossRef
95.
go back to reference Hamani C, Fonoff ET, Parravano DC, Silva VA, Galhardoni R, Monaco BA, et al. Motor cortex stimulation for chronic neuropathic pain: results of a double-blind randomized study. Brain. 2021;144(10):2994–3004.PubMedCrossRef Hamani C, Fonoff ET, Parravano DC, Silva VA, Galhardoni R, Monaco BA, et al. Motor cortex stimulation for chronic neuropathic pain: results of a double-blind randomized study. Brain. 2021;144(10):2994–3004.PubMedCrossRef
96.
go back to reference Tan H, Yamamoto EA, Elkholy MA, Raslan AM. Treating chronic pain with deep brain stimulation. Curr Pain Headache Rep. 2023;27(1):11–7.PubMedCrossRef Tan H, Yamamoto EA, Elkholy MA, Raslan AM. Treating chronic pain with deep brain stimulation. Curr Pain Headache Rep. 2023;27(1):11–7.PubMedCrossRef
97.
go back to reference Frizon LA, Yamamoto EA, Nagel SJ, Simonson MT, Hogue O, Machado AG. Deep brain stimulation for pain in the modern era: a systematic review. Neurosurgery. 2020;86(2):191–202.PubMedCrossRef Frizon LA, Yamamoto EA, Nagel SJ, Simonson MT, Hogue O, Machado AG. Deep brain stimulation for pain in the modern era: a systematic review. Neurosurgery. 2020;86(2):191–202.PubMedCrossRef
98.
go back to reference Qassim H, Zhao Y, Ströbel A, Regensburger M, Buchfelder M, de Oliveira DS, et al. Deep brain stimulation for chronic facial pain: an individual participant data (IPD) meta-analysis. Brain Sci. 2023;13(3):492.PubMedPubMedCentralCrossRef Qassim H, Zhao Y, Ströbel A, Regensburger M, Buchfelder M, de Oliveira DS, et al. Deep brain stimulation for chronic facial pain: an individual participant data (IPD) meta-analysis. Brain Sci. 2023;13(3):492.PubMedPubMedCentralCrossRef
99.
go back to reference Flouty O, Yamamoto K, Germann J, Harmsen IE, Jung HH, Cheyuo C, et al. Idiopathic Parkinson’s disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis. J Neurosurg. 2022;137(6):1821–30.PubMedCrossRef Flouty O, Yamamoto K, Germann J, Harmsen IE, Jung HH, Cheyuo C, et al. Idiopathic Parkinson’s disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis. J Neurosurg. 2022;137(6):1821–30.PubMedCrossRef
100.
go back to reference Aibar-Durán JÁ, Holzapfel MJÁ, Rodríguez RR, Nieto RB, Arnall CR, Teixido JM. Occipital nerve stimulation and deep brain stimulation for refractory cluster headache: a prospective analysis of efficacy over time. J Neurosurg. 2020;134(2):393–400.PubMedCrossRef Aibar-Durán JÁ, Holzapfel MJÁ, Rodríguez RR, Nieto RB, Arnall CR, Teixido JM. Occipital nerve stimulation and deep brain stimulation for refractory cluster headache: a prospective analysis of efficacy over time. J Neurosurg. 2020;134(2):393–400.PubMedCrossRef
101.
go back to reference Polanski WH, Zolal A, Klein J, Kitzler HH, Schackert G, Eisner W, et al. Somatosensory functional MRI tractography for individualized targeting of deep brain stimulation in patients with chronic pain after brachial plexus injury. Acta Neurochir. 2019;161:2485–90.PubMedCrossRef Polanski WH, Zolal A, Klein J, Kitzler HH, Schackert G, Eisner W, et al. Somatosensory functional MRI tractography for individualized targeting of deep brain stimulation in patients with chronic pain after brachial plexus injury. Acta Neurochir. 2019;161:2485–90.PubMedCrossRef
102.
go back to reference Bergeron D, Obaid S, Fournier-Gosselin M-P, Bouthillier A, Nguyen DK. Deep brain stimulation of the posterior insula in chronic pain: a theoretical framework. Brain Sci. 2021;11(5):639.PubMedPubMedCentralCrossRef Bergeron D, Obaid S, Fournier-Gosselin M-P, Bouthillier A, Nguyen DK. Deep brain stimulation of the posterior insula in chronic pain: a theoretical framework. Brain Sci. 2021;11(5):639.PubMedPubMedCentralCrossRef
103.
go back to reference Kashanian A, Tsolaki E, Pouratian N, Bari AA. Deep brain stimulation of the subgenual cingulate cortex for the treatment of chronic low back pain. Neuromodulation. 2022;25(2):202–10.PubMedCrossRef Kashanian A, Tsolaki E, Pouratian N, Bari AA. Deep brain stimulation of the subgenual cingulate cortex for the treatment of chronic low back pain. Neuromodulation. 2022;25(2):202–10.PubMedCrossRef
Metadata
Title
Current Neurostimulation Therapies for Chronic Pain Conditions
Authors
Nathan A. Shlobin
Chengyuan Wu
Publication date
20-09-2023

Other articles of this Issue 11/2023

Non-Pharmacological Treatment for Chronic Migraine

  • Migraine
  • Chronic Daily Headache (S-J Wang and S-P Chen, Section Editors)

SPECT/CT Scan: A New Diagnostic Tool in Pain Medicine

Primary Cough Headache

  • Headache
  • Uncommon and/or Unusual Headaches and Syndromes (F Cohen, Section Editor)

Overlap and Differences in Migraine and Idiopathic Intracranial Hypertension

  • Migraine
  • Chronic Daily Headache (S-J Wang and S-P Chen, Section Editors)

The Gut-brain Connection and Episodic Migraine: an Update

  • Open Access
  • Migraine
  • Episodic Migraine (S Parikh, Section Editor)

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more