Skip to main content
Top
Published in:

Open Access 22-08-2024 | Chronic Obstructive Lung Disease | Review

Artificial intelligence in COPD CT images: identification, staging, and quantitation

Authors: Yanan Wu, Shuyue Xia, Zhenyu Liang, Rongchang Chen, Shouliang Qi

Published in: Respiratory Research | Issue 1/2024

Login to get access

Abstract

Chronic obstructive pulmonary disease (COPD) stands as a significant global health challenge, with its intricate pathophysiological manifestations often demanding advanced diagnostic strategies. The recent applications of artificial intelligence (AI) within the realm of medical imaging, especially in computed tomography, present a promising avenue for transformative changes in COPD diagnosis and management. This review delves deep into the capabilities and advancements of AI, particularly focusing on machine learning and deep learning, and their applications in COPD identification, staging, and imaging phenotypes. Emphasis is laid on the AI-powered insights into emphysema, airway dynamics, and vascular structures. The challenges linked with data intricacies and the integration of AI in the clinical landscape are discussed. Lastly, the review casts a forward-looking perspective, highlighting emerging innovations in AI for COPD imaging and the potential of interdisciplinary collaborations, hinting at a future where AI doesn’t just support but pioneers breakthroughs in COPD care. Through this review, we aim to provide a comprehensive understanding of the current state and future potential of AI in shaping the landscape of COPD diagnosis and management.
Literature
1.
go back to reference Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Am J Respir Crit Care Med. 2023;207(7):819–37.PubMedPubMedCentralCrossRef Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Am J Respir Crit Care Med. 2023;207(7):819–37.PubMedPubMedCentralCrossRef
2.
go back to reference Washko GR, Coxson HO, O’Donnell DE, Aaron SD. CT imaging of chronic obstructive pulmonary disease: insights, disappointments, and promise. Lancet Respir Med. 2017;5(11):903–8.PubMedCrossRef Washko GR, Coxson HO, O’Donnell DE, Aaron SD. CT imaging of chronic obstructive pulmonary disease: insights, disappointments, and promise. Lancet Respir Med. 2017;5(11):903–8.PubMedCrossRef
3.
go back to reference Doke PP. Chronic respiratory diseases: a rapidly emerging public health menace. Indian J Public Health. 2023;67(2):192–6.PubMedCrossRef Doke PP. Chronic respiratory diseases: a rapidly emerging public health menace. Indian J Public Health. 2023;67(2):192–6.PubMedCrossRef
4.
go back to reference Momtazmanesh S, Moghaddam SS, Ghamari SH, Rad EM, Rezaei N, Shobeiri P, et al. Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine. 2023;59:101936. Momtazmanesh S, Moghaddam SS, Ghamari SH, Rad EM, Rezaei N, Shobeiri P, et al. Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine. 2023;59:101936.
5.
go back to reference Washko GR, Coxson HO, O"Donnell DE, Aaron SD. CT imaging of chronic obstructive pulmonary disease: insights, disappointments, and promise. Lancet Respir Med. 2017;5(11):903–8. Washko GR, Coxson HO, O"Donnell DE, Aaron SD. CT imaging of chronic obstructive pulmonary disease: insights, disappointments, and promise. Lancet Respir Med. 2017;5(11):903–8.
6.
go back to reference Bhatt SP, Washko GR, Hoffman EA, Newell JD, Bodduluri S, Diaz AA, et al. Imaging Advances in Chronic Obstructive Pulmonary Disease: Insights from COPDGene. Am J Respir Crit Care Med. 2018;199(3):286–301.CrossRef Bhatt SP, Washko GR, Hoffman EA, Newell JD, Bodduluri S, Diaz AA, et al. Imaging Advances in Chronic Obstructive Pulmonary Disease: Insights from COPDGene. Am J Respir Crit Care Med. 2018;199(3):286–301.CrossRef
8.
go back to reference Bailey KL. The importance of the assessment of pulmonary function in COPD. Med Clin N Am. 2012;96(4):745–52.PubMedCrossRef Bailey KL. The importance of the assessment of pulmonary function in COPD. Med Clin N Am. 2012;96(4):745–52.PubMedCrossRef
9.
go back to reference Bodduluri S, Nakhmani A, Kandhare P, Patel T, Reinhardt J, Wilson C, et al. CT-Based Airway Surface Area to Volume Ratio Is Associated with Lung Function Decline in Chronic Obstructive Pulmonary Disease (COPD). In: A98. PHENOTYPING COPD AND PREDICTING THE DISEASE PROGRESSION. New York: American Thoracic Society; 2019. p. A2411. Bodduluri S, Nakhmani A, Kandhare P, Patel T, Reinhardt J, Wilson C, et al. CT-Based Airway Surface Area to Volume Ratio Is Associated with Lung Function Decline in Chronic Obstructive Pulmonary Disease (COPD). In: A98. PHENOTYPING COPD AND PREDICTING THE DISEASE PROGRESSION. New York: American Thoracic Society; 2019. p. A2411.
10.
go back to reference Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205.PubMedCrossRef Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205.PubMedCrossRef
11.
12.
go back to reference Gawlitza J, Sturm T, Spohrer K, Henzler T, Akin I, Schönberg S, et al. Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD. Diagnostics. 2019;9(1):33.PubMedPubMedCentralCrossRef Gawlitza J, Sturm T, Spohrer K, Henzler T, Akin I, Schönberg S, et al. Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD. Diagnostics. 2019;9(1):33.PubMedPubMedCentralCrossRef
13.
go back to reference Konietzke P, Wielpütz MO, Wagner WL, Wuennemann F, Kauczor HU, Heussel CP, et al. Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. Eur Radiol. 2020;30:2502–12.PubMedCrossRef Konietzke P, Wielpütz MO, Wagner WL, Wuennemann F, Kauczor HU, Heussel CP, et al. Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. Eur Radiol. 2020;30:2502–12.PubMedCrossRef
14.
go back to reference Bodduluri S, Reinhardt JM, Hoffman EA, Newell JD, Bhatt SP. Recent Advances in Computed Tomography Imaging in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2018;15(3):281–9.PubMedPubMedCentralCrossRef Bodduluri S, Reinhardt JM, Hoffman EA, Newell JD, Bhatt SP. Recent Advances in Computed Tomography Imaging in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2018;15(3):281–9.PubMedPubMedCentralCrossRef
15.
go back to reference Kauczor HU, Wielpütz MO, Jobst BJ, Weinheimer O, Gompelmann D, Herth FJ, et al. Computed tomography imaging for novel therapies of chronic obstructive pulmonary disease. J Thorac Imaging. 2019;34(3):202–13.PubMedCrossRef Kauczor HU, Wielpütz MO, Jobst BJ, Weinheimer O, Gompelmann D, Herth FJ, et al. Computed tomography imaging for novel therapies of chronic obstructive pulmonary disease. J Thorac Imaging. 2019;34(3):202–13.PubMedCrossRef
16.
go back to reference Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for pulmonary medical imaging. Front Med. 2019;14(4):1–20. Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for pulmonary medical imaging. Front Med. 2019;14(4):1–20.
17.
go back to reference Chassagnon G, Vakalopolou M, Paragios N, Revel MP. Deep learning: definition and perspectives for thoracic imaging. Eur Radiol. 2019;30:1–10. Chassagnon G, Vakalopolou M, Paragios N, Revel MP. Deep learning: definition and perspectives for thoracic imaging. Eur Radiol. 2019;30:1–10.
18.
go back to reference Williams LH, Drew T. What do we know about volumetric medical image interpretation?: A review of the basic science and medical image perception literatures. Cogn Res Princ Implications. 2019;4:1–24. Williams LH, Drew T. What do we know about volumetric medical image interpretation?: A review of the basic science and medical image perception literatures. Cogn Res Princ Implications. 2019;4:1–24.
19.
go back to reference Kumar R, Wang W, Kumar J, Yang T, Khan A, Ali W, et al. An integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals. Comput Med Imaging Graph. 2021;87:101812.PubMedCrossRef Kumar R, Wang W, Kumar J, Yang T, Khan A, Ali W, et al. An integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals. Comput Med Imaging Graph. 2021;87:101812.PubMedCrossRef
20.
go back to reference Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys Med. 2021;83:9–24.PubMedCrossRef Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys Med. 2021;83:9–24.PubMedCrossRef
21.
go back to reference Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatology Oral Maxillofac Surg. 2019;120(4):279–88.CrossRef Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatology Oral Maxillofac Surg. 2019;120(4):279–88.CrossRef
22.
go back to reference Myszczynska MA, Ojamies PN, Lacoste AM, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16(8):440–56.PubMedCrossRef Myszczynska MA, Ojamies PN, Lacoste AM, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16(8):440–56.PubMedCrossRef
23.
go back to reference Chang R, Qi S, Wu Y, Yue Y, Zhang X, Guan Y, et al. Deep radiomic model based on the sphere-shell partition for predicting treatment response to chemotherapy in lung cancer. Transl Oncol. 2023;35:101719.PubMedPubMedCentralCrossRef Chang R, Qi S, Wu Y, Yue Y, Zhang X, Guan Y, et al. Deep radiomic model based on the sphere-shell partition for predicting treatment response to chemotherapy in lung cancer. Transl Oncol. 2023;35:101719.PubMedPubMedCentralCrossRef
24.
go back to reference Qi S, Zuo Y, Chang R, Huang K, Liu J, Zhang Z. Using CT radiomic features based on machine learning models to subtype adrenal adenoma. BMC Cancer. 2023;23(1):1–12.CrossRef Qi S, Zuo Y, Chang R, Huang K, Liu J, Zhang Z. Using CT radiomic features based on machine learning models to subtype adrenal adenoma. BMC Cancer. 2023;23(1):1–12.CrossRef
25.
go back to reference Chang R, Qi S, Zuo Y, Yue Y, Zhang X, Guan Y, et al. Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined? Front Oncol. 2022;12:915835.PubMedPubMedCentralCrossRef Chang R, Qi S, Zuo Y, Yue Y, Zhang X, Guan Y, et al. Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined? Front Oncol. 2022;12:915835.PubMedPubMedCentralCrossRef
26.
go back to reference Xu M, Qi S, Yue Y, Teng Y, Xu L, Yao Y, et al. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online. 2019;18:1–21.CrossRef Xu M, Qi S, Yue Y, Teng Y, Xu L, Yao Y, et al. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online. 2019;18:1–21.CrossRef
28.
go back to reference Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput Sci. 2021;7:e369.PubMedPubMedCentralCrossRef Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput Sci. 2021;7:e369.PubMedPubMedCentralCrossRef
30.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway: IEEE; 2016. pp. 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway: IEEE; 2016. pp. 770–8.
31.
go back to reference Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.PubMedCrossRef Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.PubMedCrossRef
32.
go back to reference Wu Y, Qi S, Feng J, Chang R, Pang H, Hou J, et al. Attention-guided multiple instance learning for COPD identification: To combine the intensity and morphology. Biocybernetics Biomed Eng. 2023;43(3):568–85.CrossRef Wu Y, Qi S, Feng J, Chang R, Pang H, Hou J, et al. Attention-guided multiple instance learning for COPD identification: To combine the intensity and morphology. Biocybernetics Biomed Eng. 2023;43(3):568–85.CrossRef
33.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25.
35.
go back to reference Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.PubMedCrossRef Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.PubMedCrossRef
37.
go back to reference Wu Y, Du R, Feng J, Qi S, Pang H, Xia S, et al. Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field. Biomed Signal Process Control. 2023;79:104162.CrossRef Wu Y, Du R, Feng J, Qi S, Pang H, Xia S, et al. Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field. Biomed Signal Process Control. 2023;79:104162.CrossRef
38.
go back to reference Sun J, Liao X, Yan Y, Zhang X, Sun J, Tan W, et al. Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach. Eur Radiol. 2022;32(8):5319–29.PubMedCrossRef Sun J, Liao X, Yan Y, Zhang X, Sun J, Tan W, et al. Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach. Eur Radiol. 2022;32(8):5319–29.PubMedCrossRef
39.
go back to reference Chen S, Duan J, Wang H, Wang R, Li J, Qi M, et al. Automatic detection of stroke lesion from diffusion-weighted imaging via the improved YOLOv5. Comput Biol Med. 2022;150:106120.PubMedCrossRef Chen S, Duan J, Wang H, Wang R, Li J, Qi M, et al. Automatic detection of stroke lesion from diffusion-weighted imaging via the improved YOLOv5. Comput Biol Med. 2022;150:106120.PubMedCrossRef
40.
go back to reference Chen S, Duan J, Zhang N, Qi M, Li J, Wang H, et al. MSA-YOLOv5: Multi-scale attention-based YOLOv5 for automatic detection of acute ischemic stroke from multi-modality MRI images. Comput Biol Med. 2023;165:107471.PubMedCrossRef Chen S, Duan J, Zhang N, Qi M, Li J, Wang H, et al. MSA-YOLOv5: Multi-scale attention-based YOLOv5 for automatic detection of acute ischemic stroke from multi-modality MRI images. Comput Biol Med. 2023;165:107471.PubMedCrossRef
41.
go back to reference Campo MI, Pascau J, Estépar RSJ. Emphysema quantification on simulated X-rays through deep learning techniques. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 273–6. Campo MI, Pascau J, Estépar RSJ. Emphysema quantification on simulated X-rays through deep learning techniques. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 273–6.
42.
go back to reference Resten A, Maitre S, Musset D. CT imaging of peripheral pulmonary vessel disease. Eur Radiol. 2005;15:2045–56.PubMedCrossRef Resten A, Maitre S, Musset D. CT imaging of peripheral pulmonary vessel disease. Eur Radiol. 2005;15:2045–56.PubMedCrossRef
43.
go back to reference Pang H, Wu Y, Qi S, Li C, Shen J, Yue Y, et al. A fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography images. Comput Biol Med. 2022;147:105792.PubMedCrossRef Pang H, Wu Y, Qi S, Li C, Shen J, Yue Y, et al. A fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography images. Comput Biol Med. 2022;147:105792.PubMedCrossRef
44.
go back to reference Qi Q, Qi S, Wu Y, Li C, Tian B, Xia S, et al. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images. Comput Biol Med. 2022;141:105182.PubMedCrossRef Qi Q, Qi S, Wu Y, Li C, Tian B, Xia S, et al. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images. Comput Biol Med. 2022;141:105182.PubMedCrossRef
45.
go back to reference Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30:3951–9.PubMedCrossRef Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30:3951–9.PubMedCrossRef
46.
go back to reference Koetzier LR, Mastrodicasa D, Szczykutowicz TP, van der Werf NR, Wang AS, Sandfort V, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306(3):e221257.PubMedCrossRef Koetzier LR, Mastrodicasa D, Szczykutowicz TP, van der Werf NR, Wang AS, Sandfort V, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306(3):e221257.PubMedCrossRef
47.
go back to reference Dong Y, Feng Q, Yang W, Lu Z, Deng C, Zhang L, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol. 2018;28(2):582–91.PubMedCrossRef Dong Y, Feng Q, Yang W, Lu Z, Deng C, Zhang L, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol. 2018;28(2):582–91.PubMedCrossRef
48.
go back to reference Liu MZ, Mutasa S, Chang P, Siddique M, Jambawalikar S, Ha R. A novel CNN algorithm for pathological complete response prediction using an I-SPY TRIAL breast MRI database. Magn Reson Imaging. 2020;73:148–51.PubMedPubMedCentralCrossRef Liu MZ, Mutasa S, Chang P, Siddique M, Jambawalikar S, Ha R. A novel CNN algorithm for pathological complete response prediction using an I-SPY TRIAL breast MRI database. Magn Reson Imaging. 2020;73:148–51.PubMedPubMedCentralCrossRef
49.
go back to reference Liu Y, Chen A, Shi H, Huang S, Zheng W, Liu Z, et al. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy. Comput Med Imaging Graph. 2021;91:101953.PubMedCrossRef Liu Y, Chen A, Shi H, Huang S, Zheng W, Liu Z, et al. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy. Comput Med Imaging Graph. 2021;91:101953.PubMedCrossRef
50.
go back to reference Lei Y, Harms J, Wang T, Liu Y, Shu HK, Jani AB, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys. 2019;46(8):3565–81.PubMedPubMedCentralCrossRef Lei Y, Harms J, Wang T, Liu Y, Shu HK, Jani AB, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys. 2019;46(8):3565–81.PubMedPubMedCentralCrossRef
51.
go back to reference Wu H, Jiang X, Jia F. UC-GAN for MR to CT image synthesis. In: Artificial Intelligence in Radiation Therapy: First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 1. New York: Springer; 2019. pp. 146–53. Wu H, Jiang X, Jia F. UC-GAN for MR to CT image synthesis. In: Artificial Intelligence in Radiation Therapy: First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 1. New York: Springer; 2019. pp. 146–53.
52.
go back to reference Wu Y, Qi S, Sun Y, Xia S, Yao Y, Qian W. A vision transformer for emphysema classification using CT images. Phys Med Biol. 2021;66(24):245016.CrossRef Wu Y, Qi S, Sun Y, Xia S, Yao Y, Qian W. A vision transformer for emphysema classification using CT images. Phys Med Biol. 2021;66(24):245016.CrossRef
53.
go back to reference Pang H, Qi S, Wu Y, Wang M, Li C, Sun Y, et al. NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation. Comput Methods Prog Biomed. 2023;231:107389.CrossRef Pang H, Qi S, Wu Y, Wang M, Li C, Sun Y, et al. NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation. Comput Methods Prog Biomed. 2023;231:107389.CrossRef
54.
go back to reference Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (ICLR); 2021. [Online]. Available: https://openreview.net/forum?id=YicbFdNTTy. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (ICLR); 2021. [Online]. Available: https://​openreview.​net/​forum?​id=​YicbFdNTTy.
55.
go back to reference Carbonneau MA, Cheplygina V, Granger E, Gagnon G. Multiple instance learning: A survey of problem characteristics and applications. Pattern Recogn. 2018;77:329–53.CrossRef Carbonneau MA, Cheplygina V, Granger E, Gagnon G. Multiple instance learning: A survey of problem characteristics and applications. Pattern Recogn. 2018;77:329–53.CrossRef
56.
go back to reference Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda. Respir Med. 2020;106093. Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda. Respir Med. 2020;106093.
57.
go back to reference Exarchos KP, Aggelopoulou A, Oikonomou A, Biniskou T, Beli V, Antoniadou E, et al. Review of artificial intelligence techniques in chronic obstructive lung disease. IEEE J Biomed Health Inf. 2021;26(5):2331–8.CrossRef Exarchos KP, Aggelopoulou A, Oikonomou A, Biniskou T, Beli V, Antoniadou E, et al. Review of artificial intelligence techniques in chronic obstructive lung disease. IEEE J Biomed Health Inf. 2021;26(5):2331–8.CrossRef
58.
go back to reference Estépar RSJ. Artificial intelligence in COPD: New venues to study a complex disease. Barcelona Respir Netw Rev. 2020;6(2):144. Estépar RSJ. Artificial intelligence in COPD: New venues to study a complex disease. Barcelona Respir Netw Rev. 2020;6(2):144.
59.
go back to reference Wu Y, Zhao S, Qi S, Feng J, Pang H, Chang R, et al. Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images. Artif Intell Med. 2023;143:102637.PubMedCrossRef Wu Y, Zhao S, Qi S, Feng J, Pang H, Chang R, et al. Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images. Artif Intell Med. 2023;143:102637.PubMedCrossRef
60.
go back to reference Wu Y, Qi S, Wang M, Zhao S, Pang H, Xu J, et al. Transformer-based 3D U-Net for pulmonary vessel segmentation and artery-vein separation from CT images. Med Biol Eng Comput. 2023;61(10):2649–63.PubMedCrossRef Wu Y, Qi S, Wang M, Zhao S, Pang H, Xu J, et al. Transformer-based 3D U-Net for pulmonary vessel segmentation and artery-vein separation from CT images. Med Biol Eng Comput. 2023;61(10):2649–63.PubMedCrossRef
61.
go back to reference Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification-comparison with macroscopic and microscopic morphometry. Radiology. 2007;243(1):250–7.PubMedCrossRef Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification-comparison with macroscopic and microscopic morphometry. Radiology. 2007;243(1):250–7.PubMedCrossRef
62.
go back to reference Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMedCrossRef
63.
go back to reference Yang K, Yang Y, Kang Y, Liang Z, Wang F, Li Q, et al. The value of radiomic features in chronic obstructive pulmonary disease assessment: a prospective study. Clin Radiol. 2022;77(6):e466–72.PubMedCrossRef Yang K, Yang Y, Kang Y, Liang Z, Wang F, Li Q, et al. The value of radiomic features in chronic obstructive pulmonary disease assessment: a prospective study. Clin Radiol. 2022;77(6):e466–72.PubMedCrossRef
64.
go back to reference Mets OM, Schmidt M, Buckens CF, Gondrie MJ, Isgum I, Oudkerk M, et al. Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res. 2013;14:1–8.CrossRef Mets OM, Schmidt M, Buckens CF, Gondrie MJ, Isgum I, Oudkerk M, et al. Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res. 2013;14:1–8.CrossRef
65.
go back to reference Ying J, Dutta J, Guo N, Xia L, Sitek A, Li Q. Gold classification of COPDGene cohort based on deep learning. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE; 2016. pp. 2474–8. Ying J, Dutta J, Guo N, Xia L, Sitek A, Li Q. Gold classification of COPDGene cohort based on deep learning. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE; 2016. pp. 2474–8.
66.
go back to reference González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193–203.PubMedPubMedCentralCrossRef González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193–203.PubMedPubMedCentralCrossRef
67.
go back to reference Cheplygina V, Pena IP, Pedersen JH, Lynch DA, Sørensen L, de Bruijne M. Transfer learning for multicenter classification of chronic obstructive pulmonary disease. IEEE journal of biomedical and health informatics. 2017;22(5):1486–96.PubMedPubMedCentralCrossRef Cheplygina V, Pena IP, Pedersen JH, Lynch DA, Sørensen L, de Bruijne M. Transfer learning for multicenter classification of chronic obstructive pulmonary disease. IEEE journal of biomedical and health informatics. 2017;22(5):1486–96.PubMedPubMedCentralCrossRef
68.
go back to reference Sathiya S, Priyanka G, Jeyanthi S. Detection of chronic obstructive pulmonary disease in computer aided diagnosis system with CNN classification. Int J Pure Appl Math. 2018;119(12):13815–1382. Sathiya S, Priyanka G, Jeyanthi S. Detection of chronic obstructive pulmonary disease in computer aided diagnosis system with CNN classification. Int J Pure Appl Math. 2018;119(12):13815–1382.
69.
go back to reference Singla S, Gong M, Riley C, Sciurba F, Batmanghelich K. Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach. Med Phys. 2021;48(3):1168–81.PubMedCrossRef Singla S, Gong M, Riley C, Sciurba F, Batmanghelich K. Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach. Med Phys. 2021;48(3):1168–81.PubMedCrossRef
70.
go back to reference Xu C, Qi S, Feng J, Xia S, Kang Y, Yao Y, et al. DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images. Phys Med Biol. 2020;65(14):145011.PubMedCrossRef Xu C, Qi S, Feng J, Xia S, Kang Y, Yao Y, et al. DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images. Phys Med Biol. 2020;65(14):145011.PubMedCrossRef
71.
go back to reference Du R, Qi S, Feng J, Xia S, Kang Y, Qian W, et al. Identification of COPD From Multi-View Snapshots of 3D Lung Airway Tree via Deep CNN. IEEE Access. 2020;8:38907–19.CrossRef Du R, Qi S, Feng J, Xia S, Kang Y, Qian W, et al. Identification of COPD From Multi-View Snapshots of 3D Lung Airway Tree via Deep CNN. IEEE Access. 2020;8:38907–19.CrossRef
72.
go back to reference Tang LY, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health. 2020;2(5):e259–67.PubMedCrossRef Tang LY, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health. 2020;2(5):e259–67.PubMedCrossRef
73.
go back to reference Ho TT, Kim T, Kim WJ, Lee CH, Chae KJ, Bak SH, et al. A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects. Sci Rep. 2021;11(1):34.PubMedPubMedCentralCrossRef Ho TT, Kim T, Kim WJ, Lee CH, Chae KJ, Bak SH, et al. A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects. Sci Rep. 2021;11(1):34.PubMedPubMedCentralCrossRef
74.
go back to reference Hasenstab KA, Yuan N, Retson T, Conrad DJ, Kligerman S, Lynch DA, et al. Automated CT staging of chronic obstructive pulmonary disease severity for predicting disease progression and mortality with a deep learning convolutional neural network. Radiol Cardiothorac Imaging. 2021;3(2):e200477.PubMedPubMedCentralCrossRef Hasenstab KA, Yuan N, Retson T, Conrad DJ, Kligerman S, Lynch DA, et al. Automated CT staging of chronic obstructive pulmonary disease severity for predicting disease progression and mortality with a deep learning convolutional neural network. Radiol Cardiothorac Imaging. 2021;3(2):e200477.PubMedPubMedCentralCrossRef
75.
go back to reference Chen L, Feng Q, Yin X, Min X, Shi L, Yang D, et al. A Graph Convolutional Multiple Instance Learning on a Hypersphere Manifold Approach for Diagnosing Chronic Obstructive Pulmonary Disease in CT Images. IEEE J Biomed Health Informa. 2022;26(12):6058–69.CrossRef Chen L, Feng Q, Yin X, Min X, Shi L, Yang D, et al. A Graph Convolutional Multiple Instance Learning on a Hypersphere Manifold Approach for Diagnosing Chronic Obstructive Pulmonary Disease in CT Images. IEEE J Biomed Health Informa. 2022;26(12):6058–69.CrossRef
76.
go back to reference Li Z, Liu L, Zhang Z, Yang X, Li X, Gao Y, et al. A novel CT-based radiomics features analysis for identification and severity staging of COPD. Acad Radiol. 2022;29(5):663–73.PubMedCrossRef Li Z, Liu L, Zhang Z, Yang X, Li X, Gao Y, et al. A novel CT-based radiomics features analysis for identification and severity staging of COPD. Acad Radiol. 2022;29(5):663–73.PubMedCrossRef
77.
go back to reference Sun P, Wang D, Mok VC, Shi L. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access. 2019;7:102010–20.CrossRef Sun P, Wang D, Mok VC, Shi L. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access. 2019;7:102010–20.CrossRef
78.
go back to reference Zhang L, Jiang B, Wisselink HJ, Vliegenthart R, Xie X. COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. Br J Radiol. 2022;95(1133):20210637.PubMedPubMedCentralCrossRef Zhang L, Jiang B, Wisselink HJ, Vliegenthart R, Xie X. COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. Br J Radiol. 2022;95(1133):20210637.PubMedPubMedCentralCrossRef
79.
go back to reference Li Z, Huang K, Liu L, Zhang Z. Early detection of COPD based on graph convolutional network and small and weakly labeled data. Med Biol Eng Comput. 2022;60(8):2321–33.PubMedPubMedCentralCrossRef Li Z, Huang K, Liu L, Zhang Z. Early detection of COPD based on graph convolutional network and small and weakly labeled data. Med Biol Eng Comput. 2022;60(8):2321–33.PubMedPubMedCentralCrossRef
80.
go back to reference Yang Y, Li W, Guo Y, Zeng N, Wang S, Chen Z, et al. Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier. Math Biosci Eng. 2022;19(8):7826–55.PubMedCrossRef Yang Y, Li W, Guo Y, Zeng N, Wang S, Chen Z, et al. Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier. Math Biosci Eng. 2022;19(8):7826–55.PubMedCrossRef
81.
go back to reference Yang Y, Wang S, Zeng N, Duan W, Chen Z, Liu Y, et al. Lung radiomics features selection for COPD stage classification based on auto-metric graph neural network. Diagnostics. 2022;12(10):2274.PubMedPubMedCentralCrossRef Yang Y, Wang S, Zeng N, Duan W, Chen Z, Liu Y, et al. Lung radiomics features selection for COPD stage classification based on auto-metric graph neural network. Diagnostics. 2022;12(10):2274.PubMedPubMedCentralCrossRef
82.
go back to reference Almeida SD, Lüth CT, Norajitra T, Wald T, Nolden M, Jäger PF, et al. cOOpD: Reformulating COPD classification on chest CT scans as anomaly detection using contrastive representations. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2023. pp. 33–43. Almeida SD, Lüth CT, Norajitra T, Wald T, Nolden M, Jäger PF, et al. cOOpD: Reformulating COPD classification on chest CT scans as anomaly detection using contrastive representations. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2023. pp. 33–43.
83.
go back to reference Karch A, Vogelmeier C, Welte T, Bals R, Kauczor HU, Biederer J, et al. The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med. 2016;114:27–37.PubMedCrossRef Karch A, Vogelmeier C, Welte T, Bals R, Kauczor HU, Biederer J, et al. The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med. 2016;114:27–37.PubMedCrossRef
84.
go back to reference Xue M, Jia S, Chen L, Huang H, Yu L, Zhu W. CT-based COPD identification using multiple instance learning with two-stage attention. Comput Methods Prog Biomed. 2023;230:107356.CrossRef Xue M, Jia S, Chen L, Huang H, Yu L, Zhu W. CT-based COPD identification using multiple instance learning with two-stage attention. Comput Methods Prog Biomed. 2023;230:107356.CrossRef
85.
go back to reference Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743–55. Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743–55.
86.
go back to reference Amudala Puchakayala PR, Sthanam VL, Nakhmani A, Chaudhary MF, Kizhakke Puliyakote A, Reinhardt JM, et al. Radiomics for Improved Detection of Chronic Obstructive Pulmonary Disease in Low-Dose and Standard-Dose Chest CT Scans. Radiology. 2023;307(5):e222998.PubMedCrossRef Amudala Puchakayala PR, Sthanam VL, Nakhmani A, Chaudhary MF, Kizhakke Puliyakote A, Reinhardt JM, et al. Radiomics for Improved Detection of Chronic Obstructive Pulmonary Disease in Low-Dose and Standard-Dose Chest CT Scans. Radiology. 2023;307(5):e222998.PubMedCrossRef
87.
go back to reference Yu K, Sun L, Chen J, Reynolds M, Chaudhary T, Batmanghelich K. DrasCLR: A Self-supervised Framework of Learning Disease-related and Anatomy-specific Representation for 3D Medical Images. Med Image Anal. 2024;92:103062. Yu K, Sun L, Chen J, Reynolds M, Chaudhary T, Batmanghelich K. DrasCLR: A Self-supervised Framework of Learning Disease-related and Anatomy-specific Representation for 3D Medical Images. Med Image Anal. 2024;92:103062.
88.
go back to reference Martini K, Frauenfelder T. Advances in imaging for lung emphysema. Ann Transl Med. 2020;8(21):1467. Martini K, Frauenfelder T. Advances in imaging for lung emphysema. Ann Transl Med. 2020;8(21):1467.
89.
go back to reference Coxson HO, Rogers RM, Whittall KP, D’YACHKOVA Y, Pare PD, Sciurba FC, et al. A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med. 1999;159(3):851–6.PubMedCrossRef Coxson HO, Rogers RM, Whittall KP, D’YACHKOVA Y, Pare PD, Sciurba FC, et al. A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med. 1999;159(3):851–6.PubMedCrossRef
90.
go back to reference Gangeh MJ, Sørensen L, Shaker SB, Kamel MS, De Bruijne M, Loog M. A texton-based approach for the classification of lung parenchyma in CT images. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010: 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III 13. New York: Springer; 2010. pp. 595–602. Gangeh MJ, Sørensen L, Shaker SB, Kamel MS, De Bruijne M, Loog M. A texton-based approach for the classification of lung parenchyma in CT images. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010: 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III 13. New York: Springer; 2010. pp. 595–602.
91.
go back to reference Sorensen L, Shaker SB, De Bruijne M. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging. 2010;29(2):559–69.PubMedCrossRef Sorensen L, Shaker SB, De Bruijne M. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging. 2010;29(2):559–69.PubMedCrossRef
92.
go back to reference Zulueta-Coarasa T, Kurugol S, Ross JC, Washko GG, Estépar RSJ. Emphysema classification based on embedded probabilistic PCA. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE; 2013. pp. 3969–72. Zulueta-Coarasa T, Kurugol S, Ross JC, Washko GG, Estépar RSJ. Emphysema classification based on embedded probabilistic PCA. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE; 2013. pp. 3969–72.
93.
go back to reference Karabulut EM, Ibrikci T. Emphysema discrimination from raw HRCT images by convolutional neural networks. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO). Piscataway: IEEE; 2015. pp. 705–8. Karabulut EM, Ibrikci T. Emphysema discrimination from raw HRCT images by convolutional neural networks. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO). Piscataway: IEEE; 2015. pp. 705–8.
94.
go back to reference Peng L, Lin L, Hu H, Ling X, Wang D, Han X, et al. Joint weber-based rotation invariant uniform local ternary pattern for classification of pulmonary emphysema in CT images. In: 2017 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE; 2017. pp. 2050–4. Peng L, Lin L, Hu H, Ling X, Wang D, Han X, et al. Joint weber-based rotation invariant uniform local ternary pattern for classification of pulmonary emphysema in CT images. In: 2017 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE; 2017. pp. 2050–4.
95.
go back to reference Bortsova G, Dubost F, Ørting S, Katramados I, Hogeweg L, Thomsen L, et al. Deep learning from label proportions for emphysema quantification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2018. pp. 768–76. Bortsova G, Dubost F, Ørting S, Katramados I, Hogeweg L, Thomsen L, et al. Deep learning from label proportions for emphysema quantification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2018. pp. 768–76.
96.
go back to reference Bermejo-Peláez D, Estepar RSJ, Ledesma-Carbayo MJ. Emphysema classification using a multi-view convolutional network. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 519–22. Bermejo-Peláez D, Estepar RSJ, Ledesma-Carbayo MJ. Emphysema classification using a multi-view convolutional network. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 519–22.
97.
go back to reference Bermejo-Peláez D, Okajima Y, Washko GR, Ledesma-Carbayo MJ, Estépar RSJ. A SR-NET 3D-to-2D Architecture For Paraseptal Emphysema Segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Piscataway: IEEE; 2019. pp. 303–6. Bermejo-Peláez D, Okajima Y, Washko GR, Ledesma-Carbayo MJ, Estépar RSJ. A SR-NET 3D-to-2D Architecture For Paraseptal Emphysema Segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Piscataway: IEEE; 2019. pp. 303–6.
98.
go back to reference Peng L, Lin L, Hu H, Li H, Chen Q, Ling X, et al. Classification and quantification of emphysema using a multi-scale residual network. IEEE J Biomed Health Inform. 2019;23(6):2526–36.PubMedCrossRef Peng L, Lin L, Hu H, Li H, Chen Q, Ling X, et al. Classification and quantification of emphysema using a multi-scale residual network. IEEE J Biomed Health Inform. 2019;23(6):2526–36.PubMedCrossRef
99.
go back to reference Peng L, Lin L, Hu H, Zhang Y, Li H, Iwamoto Y, et al. Semi-Supervised Learning for Semantic Segmentation of Emphysema With Partial Annotations. IEEE J Biomed Health Inform. 2019;24(8):2327–36.PubMedCrossRef Peng L, Lin L, Hu H, Zhang Y, Li H, Iwamoto Y, et al. Semi-Supervised Learning for Semantic Segmentation of Emphysema With Partial Annotations. IEEE J Biomed Health Inform. 2019;24(8):2327–36.PubMedCrossRef
100.
go back to reference Li H, Mukundan R. Robust Texture Features For Emphysema Classification In CT Images. In: 2020 28th European Signal Processing Conference (EUSIPCO). Piscataway: IEEE; 2020. pp. 1220–4. Li H, Mukundan R. Robust Texture Features For Emphysema Classification In CT Images. In: 2020 28th European Signal Processing Conference (EUSIPCO). Piscataway: IEEE; 2020. pp. 1220–4.
101.
go back to reference Ørting SN, Petersen J, Thomsen LH, Wille MM, De Bruijne M. Detecting emphysema with multiple instance learning. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 510–3. Ørting SN, Petersen J, Thomsen LH, Wille MM, De Bruijne M. Detecting emphysema with multiple instance learning. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). Piscataway: IEEE; 2018. pp. 510–3.
102.
go back to reference Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology. 2020;294(2):434–44.PubMedCrossRef Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology. 2020;294(2):434–44.PubMedCrossRef
103.
go back to reference Mondal S, Sadhu AK, Dutta PK. Automated diagnosis of pulmonary emphysema using multi-objective binary thresholding and hybrid classification. Biomed Signal Process Control. 2021;69:102886.CrossRef Mondal S, Sadhu AK, Dutta PK. Automated diagnosis of pulmonary emphysema using multi-objective binary thresholding and hybrid classification. Biomed Signal Process Control. 2021;69:102886.CrossRef
104.
go back to reference Nava R, Olveres J, Kybic J, Escalante B, Cristóbal G. Feature ensemble for quantitative analysis of emphysema in CT imaging. In: 2015 E-Health and Bioengineering Conference (EHB). IEEE. pp. 1–4. Nava R, Olveres J, Kybic J, Escalante B, Cristóbal G. Feature ensemble for quantitative analysis of emphysema in CT imaging. In: 2015 E-Health and Bioengineering Conference (EHB). IEEE. pp. 1–4.
105.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 2818–26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 2818–26.
106.
go back to reference Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 4510–20. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 4510–20.
107.
go back to reference Yang J, Angelini ED, Balte PP, Hoffman EA, Austin JH, Smith BM, et al. Novel subtypes of pulmonary emphysema based on spatially-informed lung texture learning: the multi-ethnic study of atherosclerosis (MESA) COPD Study. IEEE Trans Med Imaging. 2021;40(12):3652–62.PubMedPubMedCentralCrossRef Yang J, Angelini ED, Balte PP, Hoffman EA, Austin JH, Smith BM, et al. Novel subtypes of pulmonary emphysema based on spatially-informed lung texture learning: the multi-ethnic study of atherosclerosis (MESA) COPD Study. IEEE Trans Med Imaging. 2021;40(12):3652–62.PubMedPubMedCentralCrossRef
108.
go back to reference Angelini E, Sun Y, Yang J, Balte P, Hoffman E, Allen N, et al. Longitudinal Progression of Machine-Learned Quantitative Emphysema Subtypes. The Mesa COPD Study. In: D28. COPD: FROM PATHOGENESIS TO PROGNOSIS. American Thoracic Society; 2020. p. A6420. Angelini E, Sun Y, Yang J, Balte P, Hoffman E, Allen N, et al. Longitudinal Progression of Machine-Learned Quantitative Emphysema Subtypes. The Mesa COPD Study. In: D28. COPD: FROM PATHOGENESIS TO PROGNOSIS. American Thoracic Society; 2020. p. A6420.
109.
go back to reference Hackx M, Bankier AA, Gevenois PA. Chronic obstructive pulmonary disease: CT quantification of airways disease. Radiology. 2012;265(1):34–48.PubMedCrossRef Hackx M, Bankier AA, Gevenois PA. Chronic obstructive pulmonary disease: CT quantification of airways disease. Radiology. 2012;265(1):34–48.PubMedCrossRef
110.
go back to reference Jin D, Harrison AP, Zhang L, Yan K, Wang Y, Cai J, et al. Artificial intelligence in radiology. In: Artificial Intelligence in Medicine. New York: Elsevier; 2021. pp. 265–89. Jin D, Harrison AP, Zhang L, Yan K, Wang Y, Cai J, et al. Artificial intelligence in radiology. In: Artificial Intelligence in Medicine. New York: Elsevier; 2021. pp. 265–89.
111.
go back to reference Saha PK, Nadeem SA, Comellas AP. A survey on artificial intelligence in pulmonary imaging. Wiley Interdiscip Rev Data Min Knowl Disc. 2023;13(6):e1510.CrossRef Saha PK, Nadeem SA, Comellas AP. A survey on artificial intelligence in pulmonary imaging. Wiley Interdiscip Rev Data Min Knowl Disc. 2023;13(6):e1510.CrossRef
112.
go back to reference Little S, Sproule M, Cowan M, Macleod K, Robertson M, Love J, et al. High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax. 2002;57(3):247–53.PubMedPubMedCentralCrossRef Little S, Sproule M, Cowan M, Macleod K, Robertson M, Love J, et al. High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax. 2002;57(3):247–53.PubMedPubMedCentralCrossRef
113.
go back to reference Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol. 2019;29:4765–75.PubMedCrossRef Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol. 2019;29:4765–75.PubMedCrossRef
114.
go back to reference Li H, Tang Z, Nan Y, Yang G. Human treelike tubular structure segmentation: A comprehensive review and future perspectives. Comput Biol Med. 2022;151:106241. Li H, Tang Z, Nan Y, Yang G. Human treelike tubular structure segmentation: A comprehensive review and future perspectives. Comput Biol Med. 2022;151:106241.
115.
go back to reference Cheng G, Wu X, Xiang W, Guo C, Ji H, He L. Segmentation of the airway tree from chest CT using tiny atrous convolutional network. IEEE Access. 2021;9:33583–94.CrossRef Cheng G, Wu X, Xiang W, Guo C, Ji H, He L. Segmentation of the airway tree from chest CT using tiny atrous convolutional network. IEEE Access. 2021;9:33583–94.CrossRef
116.
go back to reference Zheng H, Qin Y, Gu Y, Xie F, Yang J, Sun J, et al. Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Trans Med Imaging. 2021;40(9):2452–62.PubMedCrossRef Zheng H, Qin Y, Gu Y, Xie F, Yang J, Sun J, et al. Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Trans Med Imaging. 2021;40(9):2452–62.PubMedCrossRef
117.
119.
go back to reference Nan Y, Del Ser J, Tang Z, Tang P, Xing X, Fang Y, et al. Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans Neural Netw Learn Syst. 2023;35(6):7391–404. Nan Y, Del Ser J, Tang Z, Tang P, Xing X, Fang Y, et al. Fuzzy attention neural network to tackle discontinuity in airway segmentation. IEEE Trans Neural Netw Learn Syst. 2023;35(6):7391–404.
120.
121.
go back to reference Charbonnier JP, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.PubMedCrossRef Charbonnier JP, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.PubMedCrossRef
122.
go back to reference Yun J, Park J, Yu D, Yi J, Lee M, Park HJ, et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Med Image Anal. 2019;51:13–20.PubMedCrossRef Yun J, Park J, Yu D, Yi J, Lee M, Park HJ, et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Med Image Anal. 2019;51:13–20.PubMedCrossRef
123.
124.
go back to reference Qin Y, Chen M, Zheng H, Gu Y, Shen M, Yang J, et al. Airwaynet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2019. pp. 212–20. Qin Y, Chen M, Zheng H, Gu Y, Shen M, Yang J, et al. Airwaynet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2019. pp. 212–20.
125.
go back to reference Nadeem SA, Hoffman EA, Sieren JC, Comellas AP, Bhatt SP, Barjaktarevic IZ, et al. A CT-based automated algorithm for airway segmentation using freeze-and-grow propagation and deep learning. IEEE Trans Med Imaging. 2020;40(1):405–18.PubMedCrossRef Nadeem SA, Hoffman EA, Sieren JC, Comellas AP, Bhatt SP, Barjaktarevic IZ, et al. A CT-based automated algorithm for airway segmentation using freeze-and-grow propagation and deep learning. IEEE Trans Med Imaging. 2020;40(1):405–18.PubMedCrossRef
126.
go back to reference Selvan R, Kipf T, Welling M, Juarez AGU, Pedersen JH, Petersen J, et al. Graph refinement based airway extraction using mean-field networks and graph neural networks. Med Image Anal. 2020;64:101751.PubMedCrossRef Selvan R, Kipf T, Welling M, Juarez AGU, Pedersen JH, Petersen J, et al. Graph refinement based airway extraction using mean-field networks and graph neural networks. Med Image Anal. 2020;64:101751.PubMedCrossRef
128.
go back to reference Guo J, Fu R, Pan L, Zheng S, Huang L, Zheng B, et al. Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing. Comput Methods Prog Biomed. 2022;215:106610.CrossRef Guo J, Fu R, Pan L, Zheng S, Huang L, Zheng B, et al. Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing. Comput Methods Prog Biomed. 2022;215:106610.CrossRef
129.
go back to reference Heitz A, Weinzorn J, Noblet V, Naegel B, Charnoz A, Heitz F, et al. Lubrav: a new framework for the segmentation of the lung’s tubular structures. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). Piscataway: IEEE; 2021. pp. 948–52. Heitz A, Weinzorn J, Noblet V, Naegel B, Charnoz A, Heitz F, et al. Lubrav: a new framework for the segmentation of the lung’s tubular structures. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). Piscataway: IEEE; 2021. pp. 948–52.
130.
go back to reference Qin Y, Zheng H, Gu Y, Huang X, Yang J, Wang L, et al. Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans Med Imaging. 2021;40(6):1603–17.PubMedCrossRef Qin Y, Zheng H, Gu Y, Huang X, Yang J, Wang L, et al. Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans Med Imaging. 2021;40(6):1603–17.PubMedCrossRef
131.
133.
go back to reference Wu Y, Zhang M, Yu W, Zheng H, Xu J, Gu Y. LTSP: long-term slice propagation for accurate airway segmentation. Int J CARS. 2022;17(5):857–65.CrossRef Wu Y, Zhang M, Yu W, Zheng H, Xu J, Gu Y. LTSP: long-term slice propagation for accurate airway segmentation. Int J CARS. 2022;17(5):857–65.CrossRef
134.
135.
go back to reference Park J, Hobbs BD, Crapo JD, Make BJ, Regan EA, Humphries S, et al. Subtyping COPD by using visual and quantitative CT imaging features. Chest. 2020;157(1):47–60.PubMedCrossRef Park J, Hobbs BD, Crapo JD, Make BJ, Regan EA, Humphries S, et al. Subtyping COPD by using visual and quantitative CT imaging features. Chest. 2020;157(1):47–60.PubMedCrossRef
136.
go back to reference Castaldi PJ, Boueiz A, Yun J, Estepar RSJ, Ross JC, Washko G, et al. Machine learning characterization of COPD subtypes: insights from the COPDGene study. Chest. 2020;157(5):1147–57.PubMedCrossRef Castaldi PJ, Boueiz A, Yun J, Estepar RSJ, Ross JC, Washko G, et al. Machine learning characterization of COPD subtypes: insights from the COPDGene study. Chest. 2020;157(5):1147–57.PubMedCrossRef
137.
go back to reference Tanabe N, Shimizu K, Terada K, Sato S, Suzuki M, Shima H, et al. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res. 2021;7(1):00672–2020. Tanabe N, Shimizu K, Terada K, Sato S, Suzuki M, Shima H, et al. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res. 2021;7(1):00672–2020.
138.
go back to reference Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Sci Rep. 2020;10(1):3118.PubMedPubMedCentralCrossRef Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Sci Rep. 2020;10(1):3118.PubMedPubMedCentralCrossRef
139.
go back to reference Lanclus M, Clukers J, Van Holsbeke C, Vos W, Leemans G, Holbrechts B, et al. Machine learning algorithms utilizing functional respiratory imaging may predict COPD exacerbations. Acad Radiol. 2019;26(9):1191–9.PubMedCrossRef Lanclus M, Clukers J, Van Holsbeke C, Vos W, Leemans G, Holbrechts B, et al. Machine learning algorithms utilizing functional respiratory imaging may predict COPD exacerbations. Acad Radiol. 2019;26(9):1191–9.PubMedCrossRef
140.
go back to reference Zeng S, Arjomandi M, Tong Y, Liao ZC, Luo G. Developing a machine learning model to predict severe chronic obstructive pulmonary disease exacerbations: retrospective cohort study. J Med Internet Res. 2022;24(1):e28953.PubMedPubMedCentralCrossRef Zeng S, Arjomandi M, Tong Y, Liao ZC, Luo G. Developing a machine learning model to predict severe chronic obstructive pulmonary disease exacerbations: retrospective cohort study. J Med Internet Res. 2022;24(1):e28953.PubMedPubMedCentralCrossRef
141.
go back to reference Young AL, Bragman FJ, Rangelov B, Han MK, Galbán CJ, Lynch DA, et al. Disease progression modeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020;201(3):294–302.PubMedPubMedCentralCrossRef Young AL, Bragman FJ, Rangelov B, Han MK, Galbán CJ, Lynch DA, et al. Disease progression modeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020;201(3):294–302.PubMedPubMedCentralCrossRef
142.
go back to reference Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial intelligence in cardiovascular CT: Current status and future implications. J Cardiovasc Comput Tomogr. 2021;15(6):462–9.PubMedPubMedCentralCrossRef Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial intelligence in cardiovascular CT: Current status and future implications. J Cardiovasc Comput Tomogr. 2021;15(6):462–9.PubMedPubMedCentralCrossRef
143.
go back to reference Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, et al. Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging. 2018;37(11):2428–40.PubMedPubMedCentralCrossRef Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, et al. Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging. 2018;37(11):2428–40.PubMedPubMedCentralCrossRef
144.
go back to reference Xu Y, Mao Z, Liu C, Wang B. Pulmonary vessel segmentation via stage-wise convolutional networks with orientation-based region growing optimization. IEEE Access. 2018;6:71296–305.CrossRef Xu Y, Mao Z, Liu C, Wang B. Pulmonary vessel segmentation via stage-wise convolutional networks with orientation-based region growing optimization. IEEE Access. 2018;6:71296–305.CrossRef
145.
go back to reference Gu X, Wang J, Zhao J, Li Q. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans. Med Phys. 2019;46(8):3603–14.PubMedCrossRef Gu X, Wang J, Zhao J, Li Q. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans. Med Phys. 2019;46(8):3603–14.PubMedCrossRef
146.
go back to reference Guo W, Gu X, Fang Q, Li Q. Comparison of performances of conventional and deep learning-based methods in segmentation of lung vessels and registration of chest radiographs. Radiol Phys Technol. 2021;14:6–15.PubMedCrossRef Guo W, Gu X, Fang Q, Li Q. Comparison of performances of conventional and deep learning-based methods in segmentation of lung vessels and registration of chest radiographs. Radiol Phys Technol. 2021;14:6–15.PubMedCrossRef
147.
go back to reference Tan W, Zhou L, Li X, Yang X, Chen Y, Yang J. Automated vessel segmentation in lung CT and CTA images via deep neural networks. J X-ray Sci Technol. 2021;29(6):1123–37. Tan W, Zhou L, Li X, Yang X, Chen Y, Yang J. Automated vessel segmentation in lung CT and CTA images via deep neural networks. J X-ray Sci Technol. 2021;29(6):1123–37.
148.
go back to reference Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P, Fraile E, Estépar RSJ, et al. A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images. Med Image Anal. 2019;52:144–59.PubMedCrossRef Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P, Fraile E, Estépar RSJ, et al. A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images. Med Image Anal. 2019;52:144–59.PubMedCrossRef
149.
go back to reference Cui H, Liu X, Huang N. Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22. New York: Springer; 2019. pp. 293–300. Cui H, Liu X, Huang N. Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22. New York: Springer; 2019. pp. 293–300.
150.
go back to reference Nam JG, Witanto JN, Park SJ, Yoo SJ, Goo JM, Yoon SH. Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps. Eur Radiol. 2021;31(12):9012–21.PubMedPubMedCentralCrossRef Nam JG, Witanto JN, Park SJ, Yoo SJ, Goo JM, Yoon SH. Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps. Eur Radiol. 2021;31(12):9012–21.PubMedPubMedCentralCrossRef
151.
go back to reference Wu R, Xin Y, Qian J, Dong Y. A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning. Biomed Signal Process Control. 2023;80:104407.CrossRef Wu R, Xin Y, Qian J, Dong Y. A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning. Biomed Signal Process Control. 2023;80:104407.CrossRef
152.
go back to reference Li X, Bala R, Monga V. Robust deep 3D blood vessel segmentation using structural priors. IEEE Trans Image Process. 2022;31:1271–84.PubMedCrossRef Li X, Bala R, Monga V. Robust deep 3D blood vessel segmentation using structural priors. IEEE Trans Image Process. 2022;31:1271–84.PubMedCrossRef
153.
go back to reference Wang M, Qi S, Wu Y, Sun Y, Chang R, Pang H, et al. CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images. Biomed Signal Process Control. 2023;82:104565.CrossRef Wang M, Qi S, Wu Y, Sun Y, Chang R, Pang H, et al. CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images. Biomed Signal Process Control. 2023;82:104565.CrossRef
154.
go back to reference Pan L, Li Z, Shen Z, Liu Z, Huang L, Yang M, et al. Learning multi-view and centerline topology connectivity information for pulmonary artery-vein separation. Comput Biol Med. 2023;155:106669.PubMedCrossRef Pan L, Li Z, Shen Z, Liu Z, Huang L, Yang M, et al. Learning multi-view and centerline topology connectivity information for pulmonary artery-vein separation. Comput Biol Med. 2023;155:106669.PubMedCrossRef
155.
go back to reference Litchman T, de Margerie-Mellon C, Bankier A, Washko G, Rahaghi F, San Jose Estepar R, et al. Pulmonary Vascular Pruning on Computed Tomography and Risk of Progression of Lung Adenocarcinoma. In: D20. NOT YOUR GRANDFATHER’S CT SCAN: RADIOMICS AND DEEP MACHINE LEARNING FOR PULMONARY NODULES AND LUNG CANCER EVALUATION. American Thoracic Society; 2022. p. A5074. Litchman T, de Margerie-Mellon C, Bankier A, Washko G, Rahaghi F, San Jose Estepar R, et al. Pulmonary Vascular Pruning on Computed Tomography and Risk of Progression of Lung Adenocarcinoma. In: D20. NOT YOUR GRANDFATHER’S CT SCAN: RADIOMICS AND DEEP MACHINE LEARNING FOR PULMONARY NODULES AND LUNG CANCER EVALUATION. American Thoracic Society; 2022. p. A5074.
156.
go back to reference Patel AR, Hurst JR. Extrapulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. Expert Rev Respir Med. 2011;5(5):647–62.PubMedCrossRef Patel AR, Hurst JR. Extrapulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. Expert Rev Respir Med. 2011;5(5):647–62.PubMedCrossRef
157.
go back to reference Machado A, Marques A, Burtin C. Extra-pulmonary manifestations of COPD and the role of pulmonary rehabilitation: a symptom-centered approach. Expert Rev Respir Med. 2021;15(1):131–42.PubMedCrossRef Machado A, Marques A, Burtin C. Extra-pulmonary manifestations of COPD and the role of pulmonary rehabilitation: a symptom-centered approach. Expert Rev Respir Med. 2021;15(1):131–42.PubMedCrossRef
158.
go back to reference Chattopadhyay S, Das R. Statistical Validation of Cardiovascular Digital Biomarkers Towards Monitoring the Cardiac Risk in COPD: A Lyfas Case Study. Artif Intell Evol. 2022;3(1):1–16. Chattopadhyay S, Das R. Statistical Validation of Cardiovascular Digital Biomarkers Towards Monitoring the Cardiac Risk in COPD: A Lyfas Case Study. Artif Intell Evol. 2022;3(1):1–16.
159.
go back to reference Balbirsingh V, Mohammed AS, Turner AM, Newnham M. Cardiovascular disease in chronic obstructive pulmonary disease: a narrative review. Thorax. 2022;77(9):939–45.CrossRef Balbirsingh V, Mohammed AS, Turner AM, Newnham M. Cardiovascular disease in chronic obstructive pulmonary disease: a narrative review. Thorax. 2022;77(9):939–45.CrossRef
160.
go back to reference Franssen FM, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, et al. Personalized medicine for patients with COPD: where are we? Int J Chronic Obstructive Pulm Dis. 2019;14:1465–84. Franssen FM, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, et al. Personalized medicine for patients with COPD: where are we? Int J Chronic Obstructive Pulm Dis. 2019;14:1465–84.
161.
go back to reference Wouters EF, Wouters BB, Augustin IM, Houben-Wilke S, Vanfleteren LE, Franssen FM. Personalised pulmonary rehabilitation in COPD. Eur Respir Rev. 2018;27(147). Wouters EF, Wouters BB, Augustin IM, Houben-Wilke S, Vanfleteren LE, Franssen FM. Personalised pulmonary rehabilitation in COPD. Eur Respir Rev. 2018;27(147).
162.
go back to reference Bećirović LS, Deumić A, Pokvić LG, Badnjevic A. Aritificial Inteligence Challenges in COPD management: a review. In: 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE). Piscataway: IEEE; 2021. pp. 1–7. Bećirović LS, Deumić A, Pokvić LG, Badnjevic A. Aritificial Inteligence Challenges in COPD management: a review. In: 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE). Piscataway: IEEE; 2021. pp. 1–7.
163.
go back to reference Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD J Chronic Obstructive Pulm Dis. 2011;7(1):32–43.CrossRef Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD J Chronic Obstructive Pulm Dis. 2011;7(1):32–43.CrossRef
164.
go back to reference Castelvecchi D. Can we open the black box of AI? Nat News. 2016;538(7623):20.CrossRef Castelvecchi D. Can we open the black box of AI? Nat News. 2016;538(7623):20.CrossRef
165.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. Piscataway: IEEE; 2017. pp. 618–26. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. Piscataway: IEEE; 2017. pp. 618–26.
166.
go back to reference Chefer H, Gur S, Wolf L. Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway: IEEE; 2021. pp. 782–91. Chefer H, Gur S, Wolf L. Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway: IEEE; 2021. pp. 782–91.
167.
go back to reference Altan G, Kutlu Y, Allahverdi N. Deep learning on computerized analysis of chronic obstructive pulmonary disease. IEEE J Biomed Health Inform. 2019;24(5):1344–50.CrossRef Altan G, Kutlu Y, Allahverdi N. Deep learning on computerized analysis of chronic obstructive pulmonary disease. IEEE J Biomed Health Inform. 2019;24(5):1344–50.CrossRef
168.
go back to reference Oh AS, Baraghoshi D, Lynch DA, Ash SY, Crapo JD, Humphries SM, et al. Emphysema Progression at CT by Deep Learning Predicts Functional Impairment and Mortality: Results from the COPDGene Study. Radiology. 2022;304(3):672–9.PubMedCrossRef Oh AS, Baraghoshi D, Lynch DA, Ash SY, Crapo JD, Humphries SM, et al. Emphysema Progression at CT by Deep Learning Predicts Functional Impairment and Mortality: Results from the COPDGene Study. Radiology. 2022;304(3):672–9.PubMedCrossRef
169.
go back to reference Chen J, Zhonghui X, Sun L, Yu K, Hersh CP, Boueiz A, et al. Deep Learning Integration of Chest CT Imaging and Gene Expression Identifies Novel Aspects of COPD. Chronic Obstr Pulm Dis. 2023;10(4):355–68. Chen J, Zhonghui X, Sun L, Yu K, Hersh CP, Boueiz A, et al. Deep Learning Integration of Chest CT Imaging and Gene Expression Identifies Novel Aspects of COPD. Chronic Obstr Pulm Dis. 2023;10(4):355–68.
170.
go back to reference Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE. 2021;109(5):820–38.CrossRef Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE. 2021;109(5):820–38.CrossRef
171.
go back to reference Gayle AV, Quint JK, Fuertes EI. Understanding the relationships between environmental factors and exacerbations of COPD. Exp Rev Respir Med. 2021;15(1):39–50.CrossRef Gayle AV, Quint JK, Fuertes EI. Understanding the relationships between environmental factors and exacerbations of COPD. Exp Rev Respir Med. 2021;15(1):39–50.CrossRef
172.
go back to reference Bourbeau J, Collet JP, Schwartzman K, Ducruet T, Nault D, Bradley C. Economic benefits of self-management education in COPD. Chest. 2006;130(6):1704–11.PubMedCrossRef Bourbeau J, Collet JP, Schwartzman K, Ducruet T, Nault D, Bradley C. Economic benefits of self-management education in COPD. Chest. 2006;130(6):1704–11.PubMedCrossRef
Metadata
Title
Artificial intelligence in COPD CT images: identification, staging, and quantitation
Authors
Yanan Wu
Shuyue Xia
Zhenyu Liang
Rongchang Chen
Shouliang Qi
Publication date
22-08-2024
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2024
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-024-02913-z

Other articles of this Issue 1/2024

Respiratory Research 1/2024 Go to the issue
SPONSORED

Targeting COPD with type 2 inflammation: emerging biologic landscape

Live Webinar | 03-12-2024 | 19:00 (CET)

LIVE: Tuesday, 3 December 2024, 19:00-20:30 (CET)

Join us for an insightful session tailored for pulmonologists and healthcare professionals eager to enhance their understanding of COPD and the latest advances in biologic therapies. 

Sponsored by:
  • Sanofi
Developed by: Springer Healthcare
Reserve your place

A quick guide to ECGs

Electrocardiography Training Course

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases