Skip to main content
Top
Published in:

26-12-2023 | COMMENTARY

Chance, ignorance, and the paradoxes of cancer: Richard Peto on developing preventative strategies under uncertainty

Authors: George Davey Smith, Albert Hofman, Paul Brennan

Published in: European Journal of Epidemiology | Issue 12/2023

Login to get access

Abstract

During the early 1980s both cancer biology and epidemiological methods were being transformed. In 1984 the leading cancer epidemiologist Richard Peto – who, in 1981, had published the landmark Causes of Cancer with Richard Doll – wrote a short chapter on “The need for ignorance in cancer research”, in which the worlds of epidemiology and speculative Darwinian biology met. His reflections on how evolutionary theory related to cancer have become known as “Peto’s paradox”, whilst his articulation of “black box epidemiology” provided the logic of subsequent practice in the field. We reprint this sparkling and prescient example of biologically-informed epidemiological theorising at its best in this issue of the European Journal of Epidemiology, together with four commentaries that focus on different aspects of its rich content. Here were provide some contextual background to the 1984 chapter, and our own speculations regarding various paradoxes in cancer epidemiology. We suggest that one reason for the relative lack of progress in indentifying novel modifiable causes of cancer over the last 40 years may reflect such exposures being ubiquitous within environments, and discuss the lessons for epidemiology that would follow from this.
Literature
1.
go back to reference Duncan R, Weston-Smith M. The encyclopaedia of medical ignorance. Oxford: Pergamon Press; 1984. Duncan R, Weston-Smith M. The encyclopaedia of medical ignorance. Oxford: Pergamon Press; 1984.
2.
go back to reference Peto R. The need for ignorance in Cancer research. In: Duncan R, Weston-Smith M, editors. The encyclopaedia of medical ignorance: exploring the frontiers of medical knowledge. New York: Pergamon Press; 1984. p. 129–33 (reprinted in the Eur J Epidemiol 2023) (https://doi.org/10.1007/s10654-023-01085-2) Peto R. The need for ignorance in Cancer research. In: Duncan R, Weston-Smith M, editors. The encyclopaedia of medical ignorance: exploring the frontiers of medical knowledge. New York: Pergamon Press; 1984. p. 129–33 (reprinted in the Eur J Epidemiol 2023) (https://​doi.​org/​10.​1007/​s10654-023-01085-2)
7.
go back to reference Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66:1191–308.PubMedCrossRef Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66:1191–308.PubMedCrossRef
8.
go back to reference Brennan P, Davey Smith G. Identifying novel causes of cancers to enhance cancer prevention: new strategies are needed. J Natl Cancer Inst. 2022;114:353–60.PubMedCrossRef Brennan P, Davey Smith G. Identifying novel causes of cancers to enhance cancer prevention: new strategies are needed. J Natl Cancer Inst. 2022;114:353–60.PubMedCrossRef
10.
go back to reference Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. In: Hiatt J, Watson H, Winsten J, editors. Origins of human cancer. New York: NY Cold Spring Harbor Laboratory; 1977. Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. In: Hiatt J, Watson H, Winsten J, editors. Origins of human cancer. New York: NY Cold Spring Harbor Laboratory; 1977.
11.
go back to reference Peto R, Parish SE, Gray RG. There is no such thing as ageing, and cancer is not related to it. IARC Sci Publ. 1985;58:43–53. Peto R, Parish SE, Gray RG. There is no such thing as ageing, and cancer is not related to it. IARC Sci Publ. 1985;58:43–53.
12.
go back to reference Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. Int J Epidemiol. 2016;45:621–37.PubMedCrossRef Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. Int J Epidemiol. 2016;45:621–37.PubMedCrossRef
13.
14.
go back to reference Moolgavkar SH. Commentary: multistage carcinogenesis and epidemiological studies of cancer. Int J Epidemiol. 2015;45:645–9.PubMedCrossRef Moolgavkar SH. Commentary: multistage carcinogenesis and epidemiological studies of cancer. Int J Epidemiol. 2015;45:645–9.PubMedCrossRef
15.
go back to reference Nunney L. Commentary: the multistage model of carcinogenesis, Peto’s paradox and evolution. Int J Epidemiol. 2015;45:649–53.PubMedCrossRef Nunney L. Commentary: the multistage model of carcinogenesis, Peto’s paradox and evolution. Int J Epidemiol. 2015;45:649–53.PubMedCrossRef
18.
go back to reference Peto R. Quantitative implications of the approximate irrelevance of mammalian body size and lifespan to lifelong cancer risk. Philos Trans R Soc Lond B Biol Sci. 2015;(370):20150198.PubMedPubMedCentralCrossRef Peto R. Quantitative implications of the approximate irrelevance of mammalian body size and lifespan to lifelong cancer risk. Philos Trans R Soc Lond B Biol Sci. 2015;(370):20150198.PubMedPubMedCentralCrossRef
19.
go back to reference Vincze O, Colchero F, Lemaître J-F, Conde DA, Pavard S, Bieuville M, et al. Cancer risk across mammals. Nature. 2022;601:263–7.PubMedCrossRef Vincze O, Colchero F, Lemaître J-F, Conde DA, Pavard S, Bieuville M, et al. Cancer risk across mammals. Nature. 2022;601:263–7.PubMedCrossRef
20.
go back to reference Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604:517–24.PubMedPubMedCentralCrossRef Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604:517–24.PubMedPubMedCentralCrossRef
21.
go back to reference Seluanov A, Chen Z, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell. 2007;6:45–52.PubMedCrossRef Seluanov A, Chen Z, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell. 2007;6:45–52.PubMedCrossRef
22.
go back to reference Nunney L. Resolving Peto’s paradox: modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl. 2020;13:1581–92.PubMedPubMedCentralCrossRef Nunney L. Resolving Peto’s paradox: modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl. 2020;13:1581–92.PubMedPubMedCentralCrossRef
24.
go back to reference Trivedi DD, Dalai SK, Bakshi SR. The mystery of cancer resistance: A revelation within nature. J Mol Evol. 2023;91:133–55.PubMedCrossRef Trivedi DD, Dalai SK, Bakshi SR. The mystery of cancer resistance: A revelation within nature. J Mol Evol. 2023;91:133–55.PubMedCrossRef
25.
go back to reference Tejada-Martinez D, de Magalhães JP, Opazo JC. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proc R Soc B Biol Sci. 2021;288:20202592.CrossRef Tejada-Martinez D, de Magalhães JP, Opazo JC. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proc R Soc B Biol Sci. 2021;288:20202592.CrossRef
26.
go back to reference Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: A consequence of recent extension of lifespan beyond evolutionarily determined limitations? Aging Cancer. 2022;3:3–19.PubMedPubMedCentralCrossRef Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: A consequence of recent extension of lifespan beyond evolutionarily determined limitations? Aging Cancer. 2022;3:3–19.PubMedPubMedCentralCrossRef
27.
go back to reference Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA. 2015;314:1850–60.PubMedPubMedCentralCrossRef Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA. 2015;314:1850–60.PubMedPubMedCentralCrossRef
28.
go back to reference Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. Elife. 2021;10:e65041.PubMedPubMedCentralCrossRef Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. Elife. 2021;10:e65041.PubMedPubMedCentralCrossRef
29.
30.
go back to reference Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Prim. 2022;2:6.CrossRef Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Prim. 2022;2:6.CrossRef
31.
go back to reference Davey Smith G, Ebrahim S. Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies. In: Weinstein M, Vaupel J, Wachter K, editors. Biosocial surveys. Washington: National Academies Press; 2008. Davey Smith G, Ebrahim S. Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies. In: Weinstein M, Vaupel J, Wachter K, editors. Biosocial surveys. Washington: National Academies Press; 2008.
32.
go back to reference Berenblum I, Shubik P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br J Cancer. 1947;1:383–91.PubMedPubMedCentralCrossRef Berenblum I, Shubik P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br J Cancer. 1947;1:383–91.PubMedPubMedCentralCrossRef
33.
go back to reference Stenbäck F, Peto R, Shubik P. Initiation and promotion at different ages and doses in 2200 mice. II. Decrease in promotion by TPA with ageing. Br J Cancer. 1981;44:15–23.PubMedPubMedCentralCrossRef Stenbäck F, Peto R, Shubik P. Initiation and promotion at different ages and doses in 2200 mice. II. Decrease in promotion by TPA with ageing. Br J Cancer. 1981;44:15–23.PubMedPubMedCentralCrossRef
34.
36.
go back to reference Riva L, Pandiri AR, Li YR, Droop A, Hewinson J, Quail MA, et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat Genet. 2020;52:1189–97.PubMedPubMedCentralCrossRef Riva L, Pandiri AR, Li YR, Droop A, Hewinson J, Quail MA, et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat Genet. 2020;52:1189–97.PubMedPubMedCentralCrossRef
37.
go back to reference Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet. 2021;53:1553–63.PubMedCrossRef Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet. 2021;53:1553–63.PubMedCrossRef
38.
go back to reference Wijewardhane N, Dressler L, Ciccarelli FD. Normal somatic mutations in cancer transformation. Cancer Cell. 2021;39:125–9.PubMedCrossRef Wijewardhane N, Dressler L, Ciccarelli FD. Normal somatic mutations in cancer transformation. Cancer Cell. 2021;39:125–9.PubMedCrossRef
39.
go back to reference Fowler JC, King C, Bryant C, Hall MWJ, Sood R, Ong SH, et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 2021;11:340–61.PubMedCrossRef Fowler JC, King C, Bryant C, Hall MWJ, Sood R, Ong SH, et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 2021;11:340–61.PubMedCrossRef
41.
go back to reference WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens: biological agents 100B. IARC Monographs; 2012. WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens: biological agents 100B. IARC Monographs; 2012.
42.
go back to reference Beral V. Million women study collaborators. Breast cancer and hormone-replacement therapy in the million women study. Lancet. 2003;362:419–27.PubMedCrossRef Beral V. Million women study collaborators. Breast cancer and hormone-replacement therapy in the million women study. Lancet. 2003;362:419–27.PubMedCrossRef
43.
go back to reference Wharton S, Blevins T, Connery L, Rosenstock J, Raha S, Liu R, et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N Engl J Med. 2023;389:877–88.PubMedCrossRef Wharton S, Blevins T, Connery L, Rosenstock J, Raha S, Liu R, et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N Engl J Med. 2023;389:877–88.PubMedCrossRef
44.
go back to reference Peto R, Doll R, Buckley JD, Sporn MB. Can dietary beta-carotene materially reduce human cancer rates? Nature. 1981;290:201–8.PubMedCrossRef Peto R, Doll R, Buckley JD, Sporn MB. Can dietary beta-carotene materially reduce human cancer rates? Nature. 1981;290:201–8.PubMedCrossRef
45.
go back to reference Lipton P. Inference to the best explanation. 2nd ed. London: Routledge Taylor and Francis Group; 2004. Lipton P. Inference to the best explanation. 2nd ed. London: Routledge Taylor and Francis Group; 2004.
46.
go back to reference Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology. Int J Epidemiol. 2016;45:1787–808.PubMed Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology. Int J Epidemiol. 2016;45:1787–808.PubMed
47.
go back to reference Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334:1145–9.PubMedCrossRef Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334:1145–9.PubMedCrossRef
48.
go back to reference Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35:99–111.PubMedPubMedCentralCrossRef Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35:99–111.PubMedPubMedCentralCrossRef
49.
go back to reference Fewell Z, Davey Smith G, Sterne JAC. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol. 2007;166:646–55.PubMedCrossRef Fewell Z, Davey Smith G, Sterne JAC. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol. 2007;166:646–55.PubMedCrossRef
50.
go back to reference Davey Smith G, Phillips AN. Correlation without a cause: an epidemiological odyssey. Int J Epidemiol. 2020;49:4–14.PubMedCrossRef Davey Smith G, Phillips AN. Correlation without a cause: an epidemiological odyssey. Int J Epidemiol. 2020;49:4–14.PubMedCrossRef
52.
go back to reference Phillips AN, Davey Smith G. How independent are "independent" effects? Relative risk estimation when correlated exposures are measured imprecisely. J Clin Epidemiol 1991;44:1223-31.PubMedCrossRef Phillips AN, Davey Smith G. How independent are "independent" effects? Relative risk estimation when correlated exposures are measured imprecisely. J Clin Epidemiol 1991;44:1223-31.PubMedCrossRef
53.
go back to reference Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328:1450–6.PubMedCrossRef Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328:1450–6.PubMedCrossRef
54.
go back to reference Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993;328:1444–9.PubMedCrossRef Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993;328:1444–9.PubMedCrossRef
55.
go back to reference Eidelman RS, Hollar D, Hebert PR, Lamas GA, Hennekens CH. Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med. 2004;164:1552–6.PubMedCrossRef Eidelman RS, Hollar D, Hebert PR, Lamas GA, Hennekens CH. Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med. 2004;164:1552–6.PubMedCrossRef
56.
go back to reference Doll R. Prevention of cancer; pointers from epidemiology. London: Nuffield Provincial Hospitals Trust; 1967. Doll R. Prevention of cancer; pointers from epidemiology. London: Nuffield Provincial Hospitals Trust; 1967.
58.
go back to reference Joung JY, Kwon WA, Lim J, Oh CM, Jung KW, Kim SH, et al. Second primary cancer risk among kidney cancer patients in Korea: a population-based cohort study. Cancer Res Treat. 2018;50:293–301.PubMedCrossRef Joung JY, Kwon WA, Lim J, Oh CM, Jung KW, Kim SH, et al. Second primary cancer risk among kidney cancer patients in Korea: a population-based cohort study. Cancer Res Treat. 2018;50:293–301.PubMedCrossRef
59.
go back to reference Peto R. Cancer risk (letter). New Sci. 1977;73:480 reprinted within Davey Smith et al. Chance, choice and cause in cancer aetiology: individual and population perspectives. Int J Epidemiol 2016;45:605–613. Peto R. Cancer risk (letter). New Sci. 1977;73:480 reprinted within Davey Smith et al. Chance, choice and cause in cancer aetiology: individual and population perspectives. Int J Epidemiol 2016;45:605–613.
60.
go back to reference Doll R. Commentary: the age distribution of cancer and a multistage theory of carcinogenesis. Int J Epidemiol. 2004;33:1183–4.PubMedCrossRef Doll R. Commentary: the age distribution of cancer and a multistage theory of carcinogenesis. Int J Epidemiol. 2004;33:1183–4.PubMedCrossRef
61.
go back to reference Davey Smith G, Relton CL, Brennan P. Chance, choice and cause in cancer aetiology: individual and population perspectives. Int J Epidemiol. 2016;45:605–13.PubMedCrossRef Davey Smith G, Relton CL, Brennan P. Chance, choice and cause in cancer aetiology: individual and population perspectives. Int J Epidemiol. 2016;45:605–13.PubMedCrossRef
62.
go back to reference Rose G. The strategy of preventive medicine. Oxford: Oxford Medical Publication; 1993.CrossRef Rose G. The strategy of preventive medicine. Oxford: Oxford Medical Publication; 1993.CrossRef
64.
go back to reference Davey Smith G. Epidemiology, epigenetics and the ‘gloomy prospect’: embracing randomness in population health research and practice. Int J Epidemiol. 2011;40:537–62.CrossRef Davey Smith G. Epidemiology, epigenetics and the ‘gloomy prospect’: embracing randomness in population health research and practice. Int J Epidemiol. 2011;40:537–62.CrossRef
65.
go back to reference Davey Smith G, Hart C, Upton M, Hole D, Gillis C, Watt G, et al. Height and risk of death among men and women: aetiological implications of associations with cardiorespiratory disease and cancer mortality. J Epidemiol Community Health. 2000;54:97.PubMedCrossRef Davey Smith G, Hart C, Upton M, Hole D, Gillis C, Watt G, et al. Height and risk of death among men and women: aetiological implications of associations with cardiorespiratory disease and cancer mortality. J Epidemiol Community Health. 2000;54:97.PubMedCrossRef
66.
go back to reference Howe LJ, Brumpton B, Rasheed H, Åsvold BO, Davey Smith G, Davies NM. Taller height and risk of coronary heart disease and cancer: a within-sibship Mendelian randomization study. Life. 2022;11:e72984. Howe LJ, Brumpton B, Rasheed H, Åsvold BO, Davey Smith G, Davies NM. Taller height and risk of coronary heart disease and cancer: a within-sibship Mendelian randomization study. Life. 2022;11:e72984.
67.
go back to reference Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81.PubMedPubMedCentralCrossRef Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81.PubMedPubMedCentralCrossRef
69.
go back to reference Kuijk E, Blokzijl F, Jager M, Besselink N, Boymans S, de Chuva Sousa Lope SM, et al. Early divergence of mutational processes in human fetal tissues. Sci Adv. 2019;5:eaaw1271.PubMedPubMedCentralCrossRef Kuijk E, Blokzijl F, Jager M, Besselink N, Boymans S, de Chuva Sousa Lope SM, et al. Early divergence of mutational processes in human fetal tissues. Sci Adv. 2019;5:eaaw1271.PubMedPubMedCentralCrossRef
70.
go back to reference Frank SA. Numbers of mutations within multicellular bodies: why it matters. Axioms. 2023;12:12.CrossRef Frank SA. Numbers of mutations within multicellular bodies: why it matters. Axioms. 2023;12:12.CrossRef
71.
go back to reference Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol. 2015;44:1408–21.PubMedCrossRef Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol. 2015;44:1408–21.PubMedCrossRef
72.
73.
go back to reference Dujon AM, Aktipis A, Alix-Panabières C, Amend SR, Boddy AM, Brown JS, et al. Identifying key questions in the ecology and evolution of cancer. Evol Appl. 2021;14:877–92.PubMedPubMedCentralCrossRef Dujon AM, Aktipis A, Alix-Panabières C, Amend SR, Boddy AM, Brown JS, et al. Identifying key questions in the ecology and evolution of cancer. Evol Appl. 2021;14:877–92.PubMedPubMedCentralCrossRef
74.
go back to reference Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611-23.e17.PubMedPubMedCentralCrossRef Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611-23.e17.PubMedPubMedCentralCrossRef
75.
go back to reference Ramsey G, Pence CH, editors. Chance in evolution. Chicago: The University of Chicago Press; 2016. Ramsey G, Pence CH, editors. Chance in evolution. Chicago: The University of Chicago Press; 2016.
76.
go back to reference Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMedCrossRef Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMedCrossRef
78.
go back to reference Bosetti C, Scelo G, Chuang SC, Tonita JM, Tamaro S, Jonasson JG, et al. High constant incidence rates of second primary cancers of the head and neck: a pooled analysis of 13 cancer registries. Int J Cancer. 2011;129:173–9.PubMedCrossRef Bosetti C, Scelo G, Chuang SC, Tonita JM, Tamaro S, Jonasson JG, et al. High constant incidence rates of second primary cancers of the head and neck: a pooled analysis of 13 cancer registries. Int J Cancer. 2011;129:173–9.PubMedCrossRef
79.
80.
go back to reference Siegel RL, Torre LA, Soerjomataram I, Hayes RB, Bray F, Weber TK, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut. 2019;68:2179–85.PubMedCrossRef Siegel RL, Torre LA, Soerjomataram I, Hayes RB, Bray F, Weber TK, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut. 2019;68:2179–85.PubMedCrossRef
81.
go back to reference Howson C, Hiyama T, Wynder E. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev. 1986;8:1–27.PubMedCrossRef Howson C, Hiyama T, Wynder E. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev. 1986;8:1–27.PubMedCrossRef
82.
go back to reference Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature. 2020;580:269–73.PubMedPubMedCentralCrossRef Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature. 2020;580:269–73.PubMedPubMedCentralCrossRef
83.
go back to reference Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574:532–7.PubMedCrossRef Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574:532–7.PubMedCrossRef
84.
go back to reference Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science. 2022;375:296–301.PubMedCrossRef Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science. 2022;375:296–301.PubMedCrossRef
85.
go back to reference Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.PubMedCrossRef Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.PubMedCrossRef
89.
go back to reference Schairer E, Schöniger E. Lungenkrebs und tabakverbrauch. Z Krebsforsch. 1944;54:261–9 (Translated and reprinted in Int J Epidemiol 2001;30:24-27).CrossRef Schairer E, Schöniger E. Lungenkrebs und tabakverbrauch. Z Krebsforsch. 1944;54:261–9 (Translated and reprinted in Int J Epidemiol 2001;30:24-27).CrossRef
90.
91.
go back to reference Munafò MR, Timofeeva MN, Morris RW, Prieto-Merino D, Sattar N, Brennan P, et al. Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. J Natl Cancer Inst. 2012;104:740–8.PubMedPubMedCentralCrossRef Munafò MR, Timofeeva MN, Morris RW, Prieto-Merino D, Sattar N, Brennan P, et al. Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. J Natl Cancer Inst. 2012;104:740–8.PubMedPubMedCentralCrossRef
92.
go back to reference VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, Han Y, Spitz MR, Shete S, et al. Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol. 2012;175:1013–20.PubMedPubMedCentralCrossRef VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, Han Y, Spitz MR, Shete S, et al. Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol. 2012;175:1013–20.PubMedPubMedCentralCrossRef
93.
go back to reference Davey Smith G, Ebrahim S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.CrossRef Davey Smith G, Ebrahim S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.CrossRef
95.
go back to reference Davey Smith G. Mendelian randomization for strengthening causal inference in observational studies: application to gene × environment interactions. Perspect Psychol Sci. 2010;5:527–45.CrossRef Davey Smith G. Mendelian randomization for strengthening causal inference in observational studies: application to gene × environment interactions. Perspect Psychol Sci. 2010;5:527–45.CrossRef
96.
go back to reference Brown KF, Rumgay H, Dunlop C, Ryan M, Quartly F, Cox A, et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br J Cancer. 2018;118:1130–41.PubMedPubMedCentralCrossRef Brown KF, Rumgay H, Dunlop C, Ryan M, Quartly F, Cox A, et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br J Cancer. 2018;118:1130–41.PubMedPubMedCentralCrossRef
Metadata
Title
Chance, ignorance, and the paradoxes of cancer: Richard Peto on developing preventative strategies under uncertainty
Authors
George Davey Smith
Albert Hofman
Paul Brennan
Publication date
26-12-2023
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 12/2023
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-023-01090-5

Other articles of this Issue 12/2023

European Journal of Epidemiology 12/2023 Go to the issue