Skip to main content
Top
Published in:

Open Access 01-12-2024 | Cerebral Ischemia | Review

Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials

Authors: Wendong Zhang, Weibo Li, Xiaolu Liu, Qingqing Zhao, Mingyu Gao, Zesen Li, Peiyuan Lv, Yu Yin

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2024

Login to get access

Abstract

Background

Transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are common non-invasive brain stimulation (NIBS) methods for functional recovery after stroke. Motor imagery (MI) can be used in the rehabilitation of limb motor function after stroke, but its effectiveness remains to be rigorously established. Furthermore, there is a growing interest in the combined application of NIBS with MI, yet the evidence regarding its impact on the recovery of upper limb function after stroke is inconclusive. This meta-analysis aimed to demonstrate whether combining the two is superior to NIBS alone or MI alone to provide a reference for clinical decision-making.

Methods

PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG, and VIP databases were searched for randomized controlled trials on the effects of MI combined NIBS in motor function recovery after stroke until February 2024. The outcomes of interest were associated with body functions or structure (impairment) and activity (functional). The primary outcome was assessed with the Fugl-Meyer assessment of the upper extremity (FMA-UE) for motor function of the upper limbs and the modified Barthel Index (MBI) for the ability to perform daily living activities. For secondary outcomes, functional activity level was measured using wolf motor function test (WMFT) and action research arm test (ARAT), and cortical excitability was assessed using cortical latency of motor evoked potential (MEP-CL) and central motor conduction time (CMCT). The methodological quality of the selected studies was evaluated using the evidence‑based Cochrane Collaboration’s tool. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models.

Results

A total of 14 articles, including 886 patients, were reviewed in the meta-analysis. In comparison with MI or NIBS alone, the combined therapy significantly improved the motor function of the upper limbs (MD = 5.43; 95% CI 4.34–6.53; P < 0.00001) and the ability to perform activities of daily living (MD = 11.07; 95% CI 6.33–15.80; P < 0.00001). Subgroup analyses showed an interaction between the stage of stroke, the type of MI, and the type of NIBS with the effect of the combination therapy.

Conclusion

The combination of MI and NIBS may be a promising therapeutic approach to enhance upper limb motor function, functional activity, and activities of daily living after stroke.

Systematic registration

PROSPERO registration CRD42023493073.
Literature
1.
go back to reference Comino-Suárez N, Moreno JC, Gómez-Soriano J, Megía-García Á, Serrano-Muñoz D, Taylor J, Alcobendas-Maestro M, Gil-Agudo Á, Del-Ama AJ, Avendaño-Coy J. Transcranial direct current stimulation combined with robotic therapy for upper and lower limb function after stroke: a systematic review and meta-analysis of randomized control trials. J Neuroeng Rehabil. 2021;18(1):148.PubMedPubMedCentralCrossRef Comino-Suárez N, Moreno JC, Gómez-Soriano J, Megía-García Á, Serrano-Muñoz D, Taylor J, Alcobendas-Maestro M, Gil-Agudo Á, Del-Ama AJ, Avendaño-Coy J. Transcranial direct current stimulation combined with robotic therapy for upper and lower limb function after stroke: a systematic review and meta-analysis of randomized control trials. J Neuroeng Rehabil. 2021;18(1):148.PubMedPubMedCentralCrossRef
2.
go back to reference Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):439–58. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):439–58.
3.
go back to reference Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application. Comput Biol Med. 2020;123: 103843.PubMedCrossRef Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application. Comput Biol Med. 2020;123: 103843.PubMedCrossRef
4.
go back to reference Zhao Q, Li H, Liu Y, Mei H, Guo L, Liu X, et al. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials. Front Neurol. 2022;13: 918956.PubMedPubMedCentralCrossRef Zhao Q, Li H, Liu Y, Mei H, Guo L, Liu X, et al. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials. Front Neurol. 2022;13: 918956.PubMedPubMedCentralCrossRef
5.
go back to reference Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.PubMedCrossRef Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.PubMedCrossRef
6.
go back to reference Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil. 2023;20(1):159.PubMedPubMedCentralCrossRef Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil. 2023;20(1):159.PubMedPubMedCentralCrossRef
7.
go back to reference Monteiro KB, Cardoso MDS, Cabral V, Santos A, Silva PSD, Castro JBP, et al. Effects of motor imagery as a complementary resource on the rehabilitation of stroke patients: a meta-analysis of randomized trials. J Stroke Cerebrovasc Dis. 2021;30(8): 105876.PubMedCrossRef Monteiro KB, Cardoso MDS, Cabral V, Santos A, Silva PSD, Castro JBP, et al. Effects of motor imagery as a complementary resource on the rehabilitation of stroke patients: a meta-analysis of randomized trials. J Stroke Cerebrovasc Dis. 2021;30(8): 105876.PubMedCrossRef
8.
go back to reference Tong Y, Pendy JT Jr, Li WA, Du H, Zhang T, Geng X, et al. Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 2017;8(3):364–71.PubMedPubMedCentralCrossRef Tong Y, Pendy JT Jr, Li WA, Du H, Zhang T, Geng X, et al. Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 2017;8(3):364–71.PubMedPubMedCentralCrossRef
9.
go back to reference Wang X, Wang H, Xiong X, Sun C, Zhu B, Xu Y, et al. Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil Neural Repair. 2020;34(4):321–32.PubMedCrossRef Wang X, Wang H, Xiong X, Sun C, Zhu B, Xu Y, et al. Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil Neural Repair. 2020;34(4):321–32.PubMedCrossRef
10.
go back to reference Wang H, Xiong X, Zhang K, Wang X, Sun C, Zhu B, et al. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther. 2023;29(2):619–32.PubMedCrossRef Wang H, Xiong X, Zhang K, Wang X, Sun C, Zhu B, et al. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther. 2023;29(2):619–32.PubMedCrossRef
12.
go back to reference Ietswaart M, Johnston M, Dijkerman HC, Joice S, Scott CL, MacWalter RS, et al. Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain. 2011;134(Pt 5):1373–86.PubMedPubMedCentralCrossRef Ietswaart M, Johnston M, Dijkerman HC, Joice S, Scott CL, MacWalter RS, et al. Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain. 2011;134(Pt 5):1373–86.PubMedPubMedCentralCrossRef
13.
go back to reference Choy CS, Fang Q, Neville K, Ding B, Kumar A, Mahmoud SS, et al. Virtual reality and motor imagery for early post-stroke rehabilitation. Biomed Eng Online. 2023;22(1):66.PubMedPubMedCentralCrossRef Choy CS, Fang Q, Neville K, Ding B, Kumar A, Mahmoud SS, et al. Virtual reality and motor imagery for early post-stroke rehabilitation. Biomed Eng Online. 2023;22(1):66.PubMedPubMedCentralCrossRef
14.
go back to reference Xu AH, Sun YX. Research hotspots and effectiveness of repetitive transcranial magnetic stimulation in stroke rehabilitation. Neural Regen Res. 2020;15(11):2089–97.PubMedPubMedCentralCrossRef Xu AH, Sun YX. Research hotspots and effectiveness of repetitive transcranial magnetic stimulation in stroke rehabilitation. Neural Regen Res. 2020;15(11):2089–97.PubMedPubMedCentralCrossRef
15.
go back to reference Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, et al. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain. 2023;146(3):1006–20.PubMedCrossRef Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, et al. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain. 2023;146(3):1006–20.PubMedCrossRef
16.
go back to reference Chen JM, Li XL, Pan QH, Yang Y, Xu SM, Xu JW. Effects of non-invasive brain stimulation on motor function after spinal cord injury: a systematic review and meta-analysis. J Neuroeng Rehabil. 2023;20(1):3.PubMedPubMedCentralCrossRef Chen JM, Li XL, Pan QH, Yang Y, Xu SM, Xu JW. Effects of non-invasive brain stimulation on motor function after spinal cord injury: a systematic review and meta-analysis. J Neuroeng Rehabil. 2023;20(1):3.PubMedPubMedCentralCrossRef
17.
go back to reference Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil. 2022;19(1):24.PubMedPubMedCentralCrossRef Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil. 2022;19(1):24.PubMedPubMedCentralCrossRef
18.
go back to reference Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: a systematic review. Neurosci Biobehav Rev. 2024;156: 105485.PubMedCrossRef Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: a systematic review. Neurosci Biobehav Rev. 2024;156: 105485.PubMedCrossRef
19.
go back to reference Edwards JD, Dominguez-Vargas AU, Rosso C, Branscheidt M, Sheehy L, Quandt F, et al. A translational roadmap for transcranial magnetic and direct current stimulation in stroke rehabilitation: consensus-based core recommendations from the third stroke recovery and rehabilitation roundtable. Int J Stroke. 2024;19(2):145–57.PubMedCrossRef Edwards JD, Dominguez-Vargas AU, Rosso C, Branscheidt M, Sheehy L, Quandt F, et al. A translational roadmap for transcranial magnetic and direct current stimulation in stroke rehabilitation: consensus-based core recommendations from the third stroke recovery and rehabilitation roundtable. Int J Stroke. 2024;19(2):145–57.PubMedCrossRef
20.
go back to reference Vimolratana O, Aneksan B, Siripornpanich V, Hiengkaew V, Prathum T, Jeungprasopsuk W, et al. Effects of anodal tDCS on resting state eeg power and motor function in acute stroke: a randomized controlled trial. J Neuroeng Rehabil. 2024;21(1):6.PubMedPubMedCentralCrossRef Vimolratana O, Aneksan B, Siripornpanich V, Hiengkaew V, Prathum T, Jeungprasopsuk W, et al. Effects of anodal tDCS on resting state eeg power and motor function in acute stroke: a randomized controlled trial. J Neuroeng Rehabil. 2024;21(1):6.PubMedPubMedCentralCrossRef
21.
go back to reference Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9.PubMedCrossRef Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9.PubMedCrossRef
22.
go back to reference Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. NeuroReport. 2005;16(14):1551–5.PubMedCrossRef Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. NeuroReport. 2005;16(14):1551–5.PubMedCrossRef
23.
go back to reference Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul. 2022;15(2):509–22.PubMedCrossRef Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul. 2022;15(2):509–22.PubMedCrossRef
24.
go back to reference Awosika OO, Cohen LG. Transcranial direct current stimulation in stroke rehabilitation: present and future. In: Knotkova H, Nitsche MA, Bikson M, Woods AJ, editors. Practical guide to transcranial direct current stimulation: principles, procedures and applications. Cham: Springer International Publishing; 2019. p. 509–39.CrossRef Awosika OO, Cohen LG. Transcranial direct current stimulation in stroke rehabilitation: present and future. In: Knotkova H, Nitsche MA, Bikson M, Woods AJ, editors. Practical guide to transcranial direct current stimulation: principles, procedures and applications. Cham: Springer International Publishing; 2019. p. 509–39.CrossRef
25.
go back to reference Pan W, Wang P, Song X, Sun X, Xie Q. The effects of combined low frequency repetitive transcranial magnetic stimulation and motor imagery on upper extremity motor recovery following stroke. Front Neurol. 2019;10:96.PubMedPubMedCentralCrossRef Pan W, Wang P, Song X, Sun X, Xie Q. The effects of combined low frequency repetitive transcranial magnetic stimulation and motor imagery on upper extremity motor recovery following stroke. Front Neurol. 2019;10:96.PubMedPubMedCentralCrossRef
26.
go back to reference Kashoo FZ, Al-Baradie RS, Alzahrani M, Alanazi A, Manzar MD, Gugnani A, et al. Effect of transcranial direct current stimulation augmented with motor imagery and upper-limb functional training for upper-limb stroke rehabilitation: a prospective randomized controlled trial. Int J Environ Res Public Health. 2022;19(22):15199.PubMedPubMedCentralCrossRef Kashoo FZ, Al-Baradie RS, Alzahrani M, Alanazi A, Manzar MD, Gugnani A, et al. Effect of transcranial direct current stimulation augmented with motor imagery and upper-limb functional training for upper-limb stroke rehabilitation: a prospective randomized controlled trial. Int J Environ Res Public Health. 2022;19(22):15199.PubMedPubMedCentralCrossRef
27.
go back to reference Hong X, Lu ZK, Teh I, Nasrallah FA, Teo WP, Ang KK, et al. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci Rep. 2017;7(1):9222.PubMedPubMedCentralCrossRef Hong X, Lu ZK, Teh I, Nasrallah FA, Teo WP, Ang KK, et al. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci Rep. 2017;7(1):9222.PubMedPubMedCentralCrossRef
28.
go back to reference Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015;96(3 Suppl):S79-87.PubMedCrossRef Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015;96(3 Suppl):S79-87.PubMedCrossRef
29.
go back to reference Chew E, Teo WP, Tang N, Ang KK, Ng YS, Zhou JH, et al. Using transcranial direct current stimulation to augment the effect of motor imagery-assisted brain-computer interface training in chronic stroke patients-cortical reorganization considerations. Front Neurol. 2020;11:948.PubMedPubMedCentralCrossRef Chew E, Teo WP, Tang N, Ang KK, Ng YS, Zhou JH, et al. Using transcranial direct current stimulation to augment the effect of motor imagery-assisted brain-computer interface training in chronic stroke patients-cortical reorganization considerations. Front Neurol. 2020;11:948.PubMedPubMedCentralCrossRef
30.
go back to reference Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, et al. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: a pilot study. Front Hum Neurosci. 2021;15: 692304.PubMedPubMedCentralCrossRef Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, et al. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: a pilot study. Front Hum Neurosci. 2021;15: 692304.PubMedPubMedCentralCrossRef
31.
go back to reference Jia F, Zhao Y, Wang Z, Chen J, Lu S, Zhang M. Effect of graded motor imagery combined with repetitive transcranial magnetic stimulation on upper extremity motor function in stroke patients: a randomized controlled trial. Arch Phys Med Rehabil. 2023;105:819–25.PubMedCrossRef Jia F, Zhao Y, Wang Z, Chen J, Lu S, Zhang M. Effect of graded motor imagery combined with repetitive transcranial magnetic stimulation on upper extremity motor function in stroke patients: a randomized controlled trial. Arch Phys Med Rehabil. 2023;105:819–25.PubMedCrossRef
32.
go back to reference Huang ZY, Zhao J. Effects of repetitive transcranial magnetic stimulation combined with graded motor imagery training on motor function and neurological function in patients with hemiplegia after cerebral infarction. Chin J Neurotraumatic Surg (Electron Ed). 2023;09(2):102–7. Huang ZY, Zhao J. Effects of repetitive transcranial magnetic stimulation combined with graded motor imagery training on motor function and neurological function in patients with hemiplegia after cerebral infarction. Chin J Neurotraumatic Surg (Electron Ed). 2023;09(2):102–7.
33.
go back to reference Zhou YP, Zhang YZ, Wang G, Liu YB, Hu SS. Effects of transcranial direct current stimulation combined with motor imagery therapy on upper limbs function of stroke survivors. Chin J Phys Med Rehabil. 2018;40(9):657–61. Zhou YP, Zhang YZ, Wang G, Liu YB, Hu SS. Effects of transcranial direct current stimulation combined with motor imagery therapy on upper limbs function of stroke survivors. Chin J Phys Med Rehabil. 2018;40(9):657–61.
34.
go back to reference Li TT, Lang JJ, Wang YQ, Liu SJ, Lv MX. Short-term effects of contralateral inhibitory rTMS combined with motor imagery on limb rehabilitation in patients with hemiplegia after stroke. Chin J Brain Dis Rehabil (Electron Ed). 2022;12(4):210–6. Li TT, Lang JJ, Wang YQ, Liu SJ, Lv MX. Short-term effects of contralateral inhibitory rTMS combined with motor imagery on limb rehabilitation in patients with hemiplegia after stroke. Chin J Brain Dis Rehabil (Electron Ed). 2022;12(4):210–6.
35.
go back to reference Ren SS, Cheng K, Xu L, Zhou M, Gao MX. Effects of transcranial direct current stimulation combined with motor imagery training on upper limb motor function and cognitive function in patients with hemiplegia after stroke. Pract Geriatr. 2023;37(05):449–53. Ren SS, Cheng K, Xu L, Zhou M, Gao MX. Effects of transcranial direct current stimulation combined with motor imagery training on upper limb motor function and cognitive function in patients with hemiplegia after stroke. Pract Geriatr. 2023;37(05):449–53.
36.
go back to reference Che XW, Cheng JC, Jang DS, Li HR, Yuan HP, Ma HH, Wang SP. Effects of mental practice combined with transcranial direct current stimulation on the function of the upper limbs in hemiplegic patients with stroke. J Navy Med. 2017;38(04):303–6. Che XW, Cheng JC, Jang DS, Li HR, Yuan HP, Ma HH, Wang SP. Effects of mental practice combined with transcranial direct current stimulation on the function of the upper limbs in hemiplegic patients with stroke. J Navy Med. 2017;38(04):303–6.
37.
go back to reference He YL, Xu YH, Tang AM, Yang XY. Effect of transcranial direct current stimulation combined with motor imagery therapy on acute cerebral apoplexy. Chin J Med. 2020;55(10):1141–4. He YL, Xu YH, Tang AM, Yang XY. Effect of transcranial direct current stimulation combined with motor imagery therapy on acute cerebral apoplexy. Chin J Med. 2020;55(10):1141–4.
38.
go back to reference Ju LL, Xu GX, Meng ZX, Wang X, Jin X, Zuo YN, Wang JH, Yang SY. Transcranial magnetic stimulation can enhance the effectiveness of motor imagery therapy after a stroke. Chin J Phys Med Rehabil. 2022;44(7):599–603. Ju LL, Xu GX, Meng ZX, Wang X, Jin X, Zuo YN, Wang JH, Yang SY. Transcranial magnetic stimulation can enhance the effectiveness of motor imagery therapy after a stroke. Chin J Phys Med Rehabil. 2022;44(7):599–603.
39.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.PubMedCrossRef
40.
go back to reference Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.PubMedPubMedCentralCrossRef Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.PubMedPubMedCentralCrossRef
41.
go back to reference Gao Y, Qiu Y, Yang Q, Tang S, Gong J, Fan H, et al. Repetitive transcranial magnetic stimulation combined with cognitive training for cognitive function and activities of daily living in patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. 2023;87: 101919.PubMedCrossRef Gao Y, Qiu Y, Yang Q, Tang S, Gong J, Fan H, et al. Repetitive transcranial magnetic stimulation combined with cognitive training for cognitive function and activities of daily living in patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. 2023;87: 101919.PubMedCrossRef
42.
go back to reference Aprigio D, Bittencourt J, Ramim M, Marinho V, Brauns I, Fernandes I, et al. Can mental practice adjunct in the recovery of motor function in the upper limbs after stroke? A systematic review and meta-analysis. Brain Circ. 2022;8(3):146–58.PubMedPubMedCentralCrossRef Aprigio D, Bittencourt J, Ramim M, Marinho V, Brauns I, Fernandes I, et al. Can mental practice adjunct in the recovery of motor function in the upper limbs after stroke? A systematic review and meta-analysis. Brain Circ. 2022;8(3):146–58.PubMedPubMedCentralCrossRef
43.
go back to reference Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: a systematic review. Neurorehabil Neural Repair. 2023;37(11–12):837–49.PubMedPubMedCentralCrossRef Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: a systematic review. Neurorehabil Neural Repair. 2023;37(11–12):837–49.PubMedPubMedCentralCrossRef
44.
go back to reference Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for post-stroke motor recovery: a narrative review of invasive and non-invasive tools. Curr Neurol Neurosci Rep. 2023;23(12):893–906.PubMedCrossRef Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for post-stroke motor recovery: a narrative review of invasive and non-invasive tools. Curr Neurol Neurosci Rep. 2023;23(12):893–906.PubMedCrossRef
45.
go back to reference Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J Neuropsychopharmacol. 2021;24(4):256–313.PubMedCrossRef Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J Neuropsychopharmacol. 2021;24(4):256–313.PubMedCrossRef
46.
go back to reference Hernández ED, Galeano CP, Barbosa NE, Forero SM, Nordin Å, Sunnerhagen KS, et al. Intra- and inter-rater reliability of Fugl-Meyer Assessment of Upper Extremity in stroke. J Rehabil Med. 2019;51(9):652–9.PubMedCrossRef Hernández ED, Galeano CP, Barbosa NE, Forero SM, Nordin Å, Sunnerhagen KS, et al. Intra- and inter-rater reliability of Fugl-Meyer Assessment of Upper Extremity in stroke. J Rehabil Med. 2019;51(9):652–9.PubMedCrossRef
47.
go back to reference Hiragami S, Inoue Y, Harada K. Minimal clinically important difference for the Fugl-Meyer assessment of the upper extremity in convalescent stroke patients with moderate to severe hemiparesis. J Phys Ther Sci. 2019;31(11):917–21.PubMedPubMedCentralCrossRef Hiragami S, Inoue Y, Harada K. Minimal clinically important difference for the Fugl-Meyer assessment of the upper extremity in convalescent stroke patients with moderate to severe hemiparesis. J Phys Ther Sci. 2019;31(11):917–21.PubMedPubMedCentralCrossRef
48.
go back to reference Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–8.PubMedCrossRef Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–8.PubMedCrossRef
49.
go back to reference Barden E, Plow E, Knutson J, Wang X, Perlic K, O’Laughlin K. Estimating the minimally clinically important difference of the upper extremity scale of the fugl-meyer assessment in chronic, severe stroke. Am J Occup Ther. 2023;77(Supplement_2):7711500002p1-p1.CrossRef Barden E, Plow E, Knutson J, Wang X, Perlic K, O’Laughlin K. Estimating the minimally clinically important difference of the upper extremity scale of the fugl-meyer assessment in chronic, severe stroke. Am J Occup Ther. 2023;77(Supplement_2):7711500002p1-p1.CrossRef
50.
go back to reference Wang YC, Chang PF, Chen YM, Lee YC, Huang SL, Chen MH, et al. Comparison of responsiveness of the Barthel Index and modified Barthel Index in patients with stroke. Disabil Rehabil. 2023;45(6):1097–102.PubMedCrossRef Wang YC, Chang PF, Chen YM, Lee YC, Huang SL, Chen MH, et al. Comparison of responsiveness of the Barthel Index and modified Barthel Index in patients with stroke. Disabil Rehabil. 2023;45(6):1097–102.PubMedCrossRef
51.
go back to reference Yen CC, Chen HH, Lee CH, Lin CH. Predictive value of motor-evoked potentials for motor recovery in patients with hemiparesis secondary to acute ischemic stroke. Ann Med. 2023;55(1):2225144.PubMedPubMedCentralCrossRef Yen CC, Chen HH, Lee CH, Lin CH. Predictive value of motor-evoked potentials for motor recovery in patients with hemiparesis secondary to acute ischemic stroke. Ann Med. 2023;55(1):2225144.PubMedPubMedCentralCrossRef
52.
go back to reference Liou L, Lin H, Hsu C, Wu M, Hsu C, Liu C, et al. S148. Diagnostic and predictive value of central motor conduction time (CMCT) for acute ischemic stroke patients. Clin neurophysiol. 2018;129:e196–7.CrossRef Liou L, Lin H, Hsu C, Wu M, Hsu C, Liu C, et al. S148. Diagnostic and predictive value of central motor conduction time (CMCT) for acute ischemic stroke patients. Clin neurophysiol. 2018;129:e196–7.CrossRef
53.
go back to reference Bodranghien F, Manto M, Lebon F. Enhancing transcranial direct current stimulation via motor imagery and kinesthetic illusion: crossing internal and external tools. J Neuroeng Rehabil. 2016;13(1):50.PubMedPubMedCentralCrossRef Bodranghien F, Manto M, Lebon F. Enhancing transcranial direct current stimulation via motor imagery and kinesthetic illusion: crossing internal and external tools. J Neuroeng Rehabil. 2016;13(1):50.PubMedPubMedCentralCrossRef
54.
go back to reference Chen R, Zhang Y, Wang X, Zhao Y, Fan S, Xue Y, et al. Treatment effects of low-frequency repetitive transcranial magnetic stimulation combined with motor relearning procedure on spasticity and limb motor function in stroke patients. Front Neurol. 2023;14:1213624.PubMedPubMedCentralCrossRef Chen R, Zhang Y, Wang X, Zhao Y, Fan S, Xue Y, et al. Treatment effects of low-frequency repetitive transcranial magnetic stimulation combined with motor relearning procedure on spasticity and limb motor function in stroke patients. Front Neurol. 2023;14:1213624.PubMedPubMedCentralCrossRef
55.
go back to reference Ahmed I, Mustafaoglu R, Benkhalifa N, Yakhoub YH. Does noninvasive brain stimulation combined with other therapies improve upper extremity motor impairment, functional performance, and participation in activities of daily living after stroke? A systematic review and meta-analysis of randomized controlled trial. Top Stroke Rehabil. 2023;30(3):213–34.PubMedCrossRef Ahmed I, Mustafaoglu R, Benkhalifa N, Yakhoub YH. Does noninvasive brain stimulation combined with other therapies improve upper extremity motor impairment, functional performance, and participation in activities of daily living after stroke? A systematic review and meta-analysis of randomized controlled trial. Top Stroke Rehabil. 2023;30(3):213–34.PubMedCrossRef
56.
go back to reference Gittler M, Davis AM. Guidelines for adult stroke rehabilitation and recovery. JAMA. 2018;319(8):820–1.PubMedCrossRef Gittler M, Davis AM. Guidelines for adult stroke rehabilitation and recovery. JAMA. 2018;319(8):820–1.PubMedCrossRef
57.
58.
go back to reference Devittori G, Dinacci D, Romiti D, Califfi A, Petrillo C, Rossi P, et al. Unsupervised robot-assisted rehabilitation after stroke: feasibility, effect on therapy dose, and user experience. J Neuroeng Rehabil. 2024;21(1):52.PubMedPubMedCentralCrossRef Devittori G, Dinacci D, Romiti D, Califfi A, Petrillo C, Rossi P, et al. Unsupervised robot-assisted rehabilitation after stroke: feasibility, effect on therapy dose, and user experience. J Neuroeng Rehabil. 2024;21(1):52.PubMedPubMedCentralCrossRef
59.
go back to reference Terranova TT, Simis M, Santos ACA, Alfieri FM, Imamura M, Fregni F, et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial. Front Neurorobot. 2021;15: 684019.PubMedPubMedCentralCrossRef Terranova TT, Simis M, Santos ACA, Alfieri FM, Imamura M, Fregni F, et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial. Front Neurorobot. 2021;15: 684019.PubMedPubMedCentralCrossRef
60.
go back to reference Cassani R, Novak GS, Falk TH, Oliveira AA. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review. J Neuroeng Rehabil. 2020;17(1):147.PubMedPubMedCentralCrossRef Cassani R, Novak GS, Falk TH, Oliveira AA. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review. J Neuroeng Rehabil. 2020;17(1):147.PubMedPubMedCentralCrossRef
61.
go back to reference Kang N, Summers JJ, Cauraugh JH. Non-invasive brain stimulation improves paretic limb force production: a systematic review and meta-analysis. Brain Stimul. 2016;9(5):662–70.PubMedCrossRef Kang N, Summers JJ, Cauraugh JH. Non-invasive brain stimulation improves paretic limb force production: a systematic review and meta-analysis. Brain Stimul. 2016;9(5):662–70.PubMedCrossRef
62.
go back to reference Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.PubMedCrossRef Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.PubMedCrossRef
63.
go back to reference Vabalaite B, Petruseviciene L, Savickas R, Kubilius R, Ignatavicius P, Lendraitiene E. Effects of high-frequency (HF) Repetitive transcranial magnetic stimulation (rTMS) on upper extremity motor function in stroke patients: a systematic review. Medicina Lithuania. 2021;57(11):1215. Vabalaite B, Petruseviciene L, Savickas R, Kubilius R, Ignatavicius P, Lendraitiene E. Effects of high-frequency (HF) Repetitive transcranial magnetic stimulation (rTMS) on upper extremity motor function in stroke patients: a systematic review. Medicina Lithuania. 2021;57(11):1215.
65.
go back to reference Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, et al. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology. 2024;49(4):649–80.PubMedCrossRef Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, et al. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology. 2024;49(4):649–80.PubMedCrossRef
66.
go back to reference Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8.PubMedPubMedCentralCrossRef Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8.PubMedPubMedCentralCrossRef
67.
go back to reference Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(4):345–55.PubMedCrossRef Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(4):345–55.PubMedCrossRef
68.
go back to reference Liao WW, Chiang WC, Lin KC, Wu CY, Liu CT, Hsieh YW, et al. Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2020;17(1):101.PubMedPubMedCentralCrossRef Liao WW, Chiang WC, Lin KC, Wu CY, Liu CT, Hsieh YW, et al. Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2020;17(1):101.PubMedPubMedCentralCrossRef
69.
go back to reference Cabral ME, Baltar A, Borba R, Galvão S, Santos L, Fregni F, et al. Transcranial direct current stimulation: before, during, or after motor training? NeuroReport. 2015;26(11):618–22.PubMedCrossRef Cabral ME, Baltar A, Borba R, Galvão S, Santos L, Fregni F, et al. Transcranial direct current stimulation: before, during, or after motor training? NeuroReport. 2015;26(11):618–22.PubMedCrossRef
70.
go back to reference Jo NG, Kim GW, Won YH, Park SH, Seo JH, Ko MH. Timing-dependent effects of transcranial direct current stimulation on hand motor function in healthy individuals: a randomized controlled study. Brain Sci. 2021;11(10):1325.PubMedPubMedCentralCrossRef Jo NG, Kim GW, Won YH, Park SH, Seo JH, Ko MH. Timing-dependent effects of transcranial direct current stimulation on hand motor function in healthy individuals: a randomized controlled study. Brain Sci. 2021;11(10):1325.PubMedPubMedCentralCrossRef
71.
go back to reference Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013;33(1):49–56.PubMedPubMedCentral Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013;33(1):49–56.PubMedPubMedCentral
72.
go back to reference Jin M, Zhang Z, Bai Z, Fong KNK. Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: a randomized controlled pilot study. J Neurol Sci. 2019;405:116436.PubMedCrossRef Jin M, Zhang Z, Bai Z, Fong KNK. Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: a randomized controlled pilot study. J Neurol Sci. 2019;405:116436.PubMedCrossRef
73.
go back to reference Gururaj S, Bird ML, Borschmann K, Eng JJ, Watkins CL, Walker MF, et al. Evidence-based stroke rehabilitation: do priorities for practice change and feasibility of implementation vary across high income, upper and lower-middle income countries? Disabil Rehabil. 2022;44(17):4611–8.PubMedCrossRef Gururaj S, Bird ML, Borschmann K, Eng JJ, Watkins CL, Walker MF, et al. Evidence-based stroke rehabilitation: do priorities for practice change and feasibility of implementation vary across high income, upper and lower-middle income countries? Disabil Rehabil. 2022;44(17):4611–8.PubMedCrossRef
74.
go back to reference Abedi A, Colella TJF, Pakosh M, Khan SS. Artificial intelligence-driven virtual rehabilitation for people living in the community: a scoping review. npj Digit Med. 2024;7(1):25.PubMedPubMedCentralCrossRef Abedi A, Colella TJF, Pakosh M, Khan SS. Artificial intelligence-driven virtual rehabilitation for people living in the community: a scoping review. npj Digit Med. 2024;7(1):25.PubMedPubMedCentralCrossRef
Metadata
Title
Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials
Authors
Wendong Zhang
Weibo Li
Xiaolu Liu
Qingqing Zhao
Mingyu Gao
Zesen Li
Peiyuan Lv
Yu Yin
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2024
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-024-01491-x