Skip to main content
Top

25-09-2024 | Cerebral Ischemia | Review

Blood–Brain Barrier Disruption and Imaging Assessment in Stroke

Authors: Yuchen Liang, Yueluan Jiang, Jiaxin Liu, Xuewei Li, Xinyue Cheng, Lei Bao, Hongwei Zhou, Zhenni Guo

Published in: Translational Stroke Research

Login to get access

Abstract

Disruption of the blood–brain barrier (BBB) is an important pathological hallmark of ischemic stroke. Blood–brain barrier disruption (BBBD) is a consequence of ischemia and may also exacerbate damage to brain parenchyma. Therefore, maintaining BBB integrity is critical for the central nervous system (CNS) homeostasis. This review offers a concise overview of BBB structure and function, along with the mechanisms underlying its impairment following a stroke. In addition, we review the recent imaging techniques employed to study blood–brain barrier permeability (BBBP) in the context of ischemic brain injury with the goal of providing imaging guidance for stroke diagnosis and treatment from the perspective of the BBBD. This knowledge is vital for developing strategies to safeguard the BBB during cerebral ischemia.
Literature
1.
go back to reference Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:3020–35.PubMedCrossRef Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:3020–35.PubMedCrossRef
2.
go back to reference Grotta JC, Hacke W. Stroke neurologist’s perspective on the new endovascular trials. Stroke. 2015;46:1447–52.PubMedCrossRef Grotta JC, Hacke W. Stroke neurologist’s perspective on the new endovascular trials. Stroke. 2015;46:1447–52.PubMedCrossRef
3.
go back to reference Sifat AE, Vaidya B, Abbruscato TJ. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke. Aaps J. 2017;19:957–72.PubMedCrossRef Sifat AE, Vaidya B, Abbruscato TJ. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke. Aaps J. 2017;19:957–72.PubMedCrossRef
4.
go back to reference Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018;135:311–36.PubMedPubMedCentralCrossRef Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018;135:311–36.PubMedPubMedCentralCrossRef
5.
go back to reference Meng JY, Zhang JY, Fang JY, Li M, Ding HR, Zhang WG, et al. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull. 2022;190:140–51.PubMedCrossRef Meng JY, Zhang JY, Fang JY, Li M, Ding HR, Zhang WG, et al. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull. 2022;190:140–51.PubMedCrossRef
6.
go back to reference Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 2022;53:1473–86.PubMedPubMedCentralCrossRef Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 2022;53:1473–86.PubMedPubMedCentralCrossRef
7.
go back to reference Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef
8.
go back to reference Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef
9.
go back to reference Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58:140–61.PubMedCrossRef Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58:140–61.PubMedCrossRef
10.
go back to reference Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79:S52–7.PubMedCrossRef Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79:S52–7.PubMedCrossRef
11.
go back to reference Yang CJ, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol-Cell Physiol. 2019;316:C135–53.PubMedCrossRef Yang CJ, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol-Cell Physiol. 2019;316:C135–53.PubMedCrossRef
12.
go back to reference Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke. 2011;42:1345–50.PubMedPubMedCentralCrossRef Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke. 2011;42:1345–50.PubMedPubMedCentralCrossRef
13.
go back to reference Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord-Drug Targets. 2008;7:243–53.PubMedPubMedCentralCrossRef Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord-Drug Targets. 2008;7:243–53.PubMedPubMedCentralCrossRef
14.
go back to reference Brouns R, Wauters A, De Surgeloose D, Mariën P, De Deyn PP. Biochemical markers for blood-brain barrier dysfunction in acute ischemic stroke correlate with evolution and outcome. Eur Neurol. 2011;65:23–31.PubMedCrossRef Brouns R, Wauters A, De Surgeloose D, Mariën P, De Deyn PP. Biochemical markers for blood-brain barrier dysfunction in acute ischemic stroke correlate with evolution and outcome. Eur Neurol. 2011;65:23–31.PubMedCrossRef
15.
go back to reference Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003;34:40–5.PubMedCrossRef Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003;34:40–5.PubMedCrossRef
16.
go back to reference Zhang YL, Zhang PY, Shen XF, Tian S, Wu Y, Zhu YL, et al. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int J Mol Sci. 2013;14:11096–112.PubMedPubMedCentralCrossRef Zhang YL, Zhang PY, Shen XF, Tian S, Wu Y, Zhu YL, et al. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int J Mol Sci. 2013;14:11096–112.PubMedPubMedCentralCrossRef
17.
go back to reference Smyth LCD, Rustenhoven J, Park TIH, Schweder P, Jansson D, Heppner PA, et al. Unique and shared inflammatory profiles o human brain endothelia and pericytes. J Neuroinflamm. 2018;15:18.CrossRef Smyth LCD, Rustenhoven J, Park TIH, Schweder P, Jansson D, Heppner PA, et al. Unique and shared inflammatory profiles o human brain endothelia and pericytes. J Neuroinflamm. 2018;15:18.CrossRef
18.
go back to reference Yang FX, Zhao K, Zhang XF, Zhang J, Xu BN. ATP induces disruption of tight junction proteins via IL-1 beta-dependent MMP-9 activation of human blood-brain barrier in vitro. Neural Plast. 2016;2016:12.CrossRef Yang FX, Zhao K, Zhang XF, Zhang J, Xu BN. ATP induces disruption of tight junction proteins via IL-1 beta-dependent MMP-9 activation of human blood-brain barrier in vitro. Neural Plast. 2016;2016:12.CrossRef
19.
go back to reference Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci. 2023;13:13.CrossRef Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci. 2023;13:13.CrossRef
20.
go back to reference Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR. Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J Thromb Haemost. 2007;5:1732–9.PubMedCrossRef Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR. Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J Thromb Haemost. 2007;5:1732–9.PubMedCrossRef
21.
go back to reference Chelluboina B, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK. Matrix metalloproteinase-12 induces blood-brain barrier damage after focal cerebral ischemia. Stroke. 2015;46:3523–31.PubMedCrossRef Chelluboina B, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK. Matrix metalloproteinase-12 induces blood-brain barrier damage after focal cerebral ischemia. Stroke. 2015;46:3523–31.PubMedCrossRef
22.
go back to reference Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4:461–70.PubMedCrossRef Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4:461–70.PubMedCrossRef
23.
go back to reference Jurcau A, Ardelean AI. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022;10:26.CrossRef Jurcau A, Ardelean AI. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022;10:26.CrossRef
24.
go back to reference Krueger M, Härtig W, Reichenbach A, Bechmann I, Michalski D. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS ONE. 2013;8:11.CrossRef Krueger M, Härtig W, Reichenbach A, Bechmann I, Michalski D. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS ONE. 2013;8:11.CrossRef
25.
go back to reference Haley MJ, Lawrence CB. The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab. 2017;37:456–70.PubMedCrossRef Haley MJ, Lawrence CB. The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab. 2017;37:456–70.PubMedCrossRef
26.
go back to reference Zhou M, Li DN, Shen Q, Gao L, Zhuang PW, Zhang YJ, et al. Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Front Pharmacol. 2022;13:11. Zhou M, Li DN, Shen Q, Gao L, Zhuang PW, Zhang YJ, et al. Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Front Pharmacol. 2022;13:11.
27.
go back to reference Qu CH, Song H, Shen J, Xu LL, Li YQ, Qu CJ, et al. Mfsd2a reverses spatial learning and memory impairment caused by chronic cerebral hypoperfusion via protection of the blood-brain barrier. Front Neurosci. 2020;14:9.CrossRef Qu CH, Song H, Shen J, Xu LL, Li YQ, Qu CJ, et al. Mfsd2a reverses spatial learning and memory impairment caused by chronic cerebral hypoperfusion via protection of the blood-brain barrier. Front Neurosci. 2020;14:9.CrossRef
28.
go back to reference Weinl C, Vega SC, Riehle H, Stritt C, Calaminus C, Wolburg H, et al. Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc Natl Acad Sci U S A. 2015;112:9914–9.PubMedPubMedCentralCrossRef Weinl C, Vega SC, Riehle H, Stritt C, Calaminus C, Wolburg H, et al. Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc Natl Acad Sci U S A. 2015;112:9914–9.PubMedPubMedCentralCrossRef
29.
go back to reference Vega SC, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, et al. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage. 2017;155:245–56.CrossRef Vega SC, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, et al. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage. 2017;155:245–56.CrossRef
30.
go back to reference Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood-brain barrier. Microcirculation. 2008;15:1–14.PubMedCrossRef Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood-brain barrier. Microcirculation. 2008;15:1–14.PubMedCrossRef
31.
go back to reference Kassner A, Merali Z. Assessment of blood-brain barrier disruption in stroke. Stroke. 2015;46:3310–5.PubMedCrossRef Kassner A, Merali Z. Assessment of blood-brain barrier disruption in stroke. Stroke. 2015;46:3310–5.PubMedCrossRef
32.
go back to reference Okada T, Suzuki H, Travis ZD, Zhang JH. The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol. 2020;18:1187–212.PubMedPubMedCentralCrossRef Okada T, Suzuki H, Travis ZD, Zhang JH. The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol. 2020;18:1187–212.PubMedPubMedCentralCrossRef
33.
go back to reference Castellanos M, Sobrino T, Millan M, Garcia M, Arenillas J, Nombela F, et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke - a multicenter confirmatory study. Stroke. 2007;38:1855–9.PubMedCrossRef Castellanos M, Sobrino T, Millan M, Garcia M, Arenillas J, Nombela F, et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke - a multicenter confirmatory study. Stroke. 2007;38:1855–9.PubMedCrossRef
34.
go back to reference Lee RL, Funk KE. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci. 2023;15:8.CrossRef Lee RL, Funk KE. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci. 2023;15:8.CrossRef
35.
go back to reference Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A. Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability. Neuroimage. 2010;49:337–44.PubMedCrossRef Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A. Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability. Neuroimage. 2010;49:337–44.PubMedCrossRef
36.
go back to reference Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY. Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci. 2017;37:129–40.PubMedPubMedCentralCrossRef Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY. Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci. 2017;37:129–40.PubMedPubMedCentralCrossRef
37.
go back to reference Katz S, Gattegno R, Peko L, Zarik R, Hagani Y, Ilovitsh T. Diameter-dependent assessment of microvascular leakage following ultrasound-mediated blood-brain barrier. iScience. 2023;26:20.CrossRef Katz S, Gattegno R, Peko L, Zarik R, Hagani Y, Ilovitsh T. Diameter-dependent assessment of microvascular leakage following ultrasound-mediated blood-brain barrier. iScience. 2023;26:20.CrossRef
38.
go back to reference Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, et al. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun. 2020;2:14.CrossRef Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, et al. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun. 2020;2:14.CrossRef
39.
go back to reference Heye AK, Culling RD, Hernandez MDV, Thrippleton MJ, Wardlaw JM. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. NeuroImage-Clin. 2014;6:262–74.PubMedPubMedCentralCrossRef Heye AK, Culling RD, Hernandez MDV, Thrippleton MJ, Wardlaw JM. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. NeuroImage-Clin. 2014;6:262–74.PubMedPubMedCentralCrossRef
40.
go back to reference Cuenod CA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging. 2013;94:1187–204.PubMedCrossRef Cuenod CA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging. 2013;94:1187–204.PubMedCrossRef
41.
go back to reference Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage. 2019;187:32–55.PubMedCrossRef Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage. 2019;187:32–55.PubMedCrossRef
42.
go back to reference Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement. 2019;15:840–58.PubMedCrossRef Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement. 2019;15:840–58.PubMedCrossRef
43.
go back to reference Suh CH, Jung SC, Cho SJ, Kim D, Lee JB, Woo DC, et al. Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis. Eur Radiol. 2019;29:4077–87.PubMedCrossRef Suh CH, Jung SC, Cho SJ, Kim D, Lee JB, Woo DC, et al. Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis. Eur Radiol. 2019;29:4077–87.PubMedCrossRef
44.
go back to reference Barnes SR, Ng TSC, Montagne A, Law M, Zlokovic BV, Jacobs RE. Optimal acquisition and modeling parameters for accurate assessment of low K-trans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med. 2016;75:1967–77.PubMedCrossRef Barnes SR, Ng TSC, Montagne A, Law M, Zlokovic BV, Jacobs RE. Optimal acquisition and modeling parameters for accurate assessment of low K-trans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med. 2016;75:1967–77.PubMedCrossRef
46.
go back to reference Rozanski M, Ebinger M, Schmidt WU, Hotter B, Pittl S, Heuschmann PU, et al. Hyperintense acute reperfusion marker on FLAIR is not associated with early haemorrhagic transformation in the elderly. Eur Radiol. 2010;20:2990–6.PubMedCrossRef Rozanski M, Ebinger M, Schmidt WU, Hotter B, Pittl S, Heuschmann PU, et al. Hyperintense acute reperfusion marker on FLAIR is not associated with early haemorrhagic transformation in the elderly. Eur Radiol. 2010;20:2990–6.PubMedCrossRef
47.
go back to reference Ostwaldt AC, Rozanski M, Schaefer T, Ebinger M, Jungehülsing GJ, Villringer K, et al. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke. Eur Radiol. 2015;25:3161–6.PubMedCrossRef Ostwaldt AC, Rozanski M, Schaefer T, Ebinger M, Jungehülsing GJ, Villringer K, et al. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke. Eur Radiol. 2015;25:3161–6.PubMedCrossRef
48.
go back to reference Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, et al. MRI detection of early blood-brain barrier disruption - parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008;39:1025–8.PubMedCrossRef Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, et al. MRI detection of early blood-brain barrier disruption - parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008;39:1025–8.PubMedCrossRef
49.
go back to reference Villringer K, Cuesta BES, Ostwaldt AC, Grittner U, Brunecker P, Khalil AA, et al. DCE-MRI blood-brain barrier assessment in acute ischemic stroke. Neurology. 2017;88:433–40.PubMedCrossRef Villringer K, Cuesta BES, Ostwaldt AC, Grittner U, Brunecker P, Khalil AA, et al. DCE-MRI blood-brain barrier assessment in acute ischemic stroke. Neurology. 2017;88:433–40.PubMedCrossRef
50.
go back to reference Simpkins AN, Dias C, Leigh R, Benson RT, Hsia AW, Latour LL, Luby M, Lynch JK, Merino JG, Nadareishvili Z, Warach SJ. Identification of reversible disruption of the human blood–brain barrier following acute ischemia. Stroke. 2016;47(9):2405–8.PubMedPubMedCentralCrossRef Simpkins AN, Dias C, Leigh R, Benson RT, Hsia AW, Latour LL, Luby M, Lynch JK, Merino JG, Nadareishvili Z, Warach SJ. Identification of reversible disruption of the human blood–brain barrier following acute ischemia. Stroke. 2016;47(9):2405–8.PubMedPubMedCentralCrossRef
51.
go back to reference Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*- permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6.PubMedCrossRef Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*- permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6.PubMedCrossRef
52.
go back to reference Bang OY, Saver JL, Alger JR, Shah SH, Buck BH, Starkman S, et al. Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke. 2009;40:454–61.PubMedCrossRef Bang OY, Saver JL, Alger JR, Shah SH, Buck BH, Starkman S, et al. Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke. 2009;40:454–61.PubMedCrossRef
53.
go back to reference Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-: permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6.PubMedCrossRef Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-: permeability magnetic resonance imaging. Ann Neurol. 2007;62:170–6.PubMedCrossRef
54.
go back to reference Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A. Contrast-enhanced MR imaging in acute ischemic stroke: T2*measures of blood-brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation. Am J Neuroradiol. 2010;31:1015–22.PubMedPubMedCentralCrossRef Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A. Contrast-enhanced MR imaging in acute ischemic stroke: T2*measures of blood-brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation. Am J Neuroradiol. 2010;31:1015–22.PubMedPubMedCentralCrossRef
55.
go back to reference Nadareishvili Z, Simpkins AN, Hitomi E, Reyes D, Leigh R. Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc Dis. 2019;47:135–42.PubMedCrossRef Nadareishvili Z, Simpkins AN, Hitomi E, Reyes D, Leigh R. Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc Dis. 2019;47:135–42.PubMedCrossRef
56.
go back to reference Leigh R, Christensen S, Campbell BCV, Marks MP, Albers GW, Lansberg MG, et al. Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology. 2016;87:263–9.PubMedPubMedCentralCrossRef Leigh R, Christensen S, Campbell BCV, Marks MP, Albers GW, Lansberg MG, et al. Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology. 2016;87:263–9.PubMedPubMedCentralCrossRef
57.
go back to reference Nael K, Knitter JR, Jahan R, Gornbein J, Ajani Z, Feng L, et al. Multiparametric magnetic resonance imaging for prediction of parenchymal hemorrhage in acute ischemic stroke after reperfusion therapy. Stroke. 2017;48:664–70.PubMedPubMedCentralCrossRef Nael K, Knitter JR, Jahan R, Gornbein J, Ajani Z, Feng L, et al. Multiparametric magnetic resonance imaging for prediction of parenchymal hemorrhage in acute ischemic stroke after reperfusion therapy. Stroke. 2017;48:664–70.PubMedPubMedCentralCrossRef
58.
go back to reference Lee M, Saver JL, Alger JR, Hao Q, Starkman S, Ali LK, et al. Blood-brain barrier permeability derangements in posterior circulation ischemic stroke: frequency and relation to hemorrhagic transformation. J Neurol Sci. 2012;313:142–6.PubMedCrossRef Lee M, Saver JL, Alger JR, Hao Q, Starkman S, Ali LK, et al. Blood-brain barrier permeability derangements in posterior circulation ischemic stroke: frequency and relation to hemorrhagic transformation. J Neurol Sci. 2012;313:142–6.PubMedCrossRef
59.
go back to reference Liu C, Zhang S, Yan SQ, Zhang RT, Shi FN, Ding XF, et al. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke. Eur Radiol. 2018;28:642–9.PubMedCrossRef Liu C, Zhang S, Yan SQ, Zhang RT, Shi FN, Ding XF, et al. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke. Eur Radiol. 2018;28:642–9.PubMedCrossRef
61.
62.
go back to reference Scalzo F, Alger JR, Hu X, Saver JL, Dani KA, Muir KW, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn Reson Imaging. 2013;31:961–9.PubMedPubMedCentralCrossRef Scalzo F, Alger JR, Hu X, Saver JL, Dani KA, Muir KW, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn Reson Imaging. 2013;31:961–9.PubMedPubMedCentralCrossRef
63.
go back to reference Jin S, Cho HJ. Model-free leakage index estimation of the blood-brain barrier using dual dynamic susceptibility contrast MRI acquisition. NMR Biomed. 2021;34(10):e4570. Jin S, Cho HJ. Model-free leakage index estimation of the blood-brain barrier using dual dynamic susceptibility contrast MRI acquisition. NMR Biomed. 2021;34(10):e4570.
64.
go back to reference Lin ZX, Li Y, Su P, Mao D, Wei ZL, Pillai JJ, et al. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med. 2018;80:1507–20.PubMedPubMedCentralCrossRef Lin ZX, Li Y, Su P, Mao D, Wei ZL, Pillai JJ, et al. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med. 2018;80:1507–20.PubMedPubMedCentralCrossRef
65.
go back to reference Zaharchuk G. Theoritical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood how, and permeability. Am J Neuroradiol. 2007;28:1850–8.PubMedPubMedCentralCrossRef Zaharchuk G. Theoritical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood how, and permeability. Am J Neuroradiol. 2007;28:1850–8.PubMedPubMedCentralCrossRef
66.
go back to reference Li Y, Ying Y, Yao T, Jia X, Liang H, Tang W, et al. Decreased water exchange rate across blood–brain barrier in hereditary cerebral small vessel disease. Brain. 2023;146(7):3079–87.PubMedPubMedCentralCrossRef Li Y, Ying Y, Yao T, Jia X, Liang H, Tang W, et al. Decreased water exchange rate across blood–brain barrier in hereditary cerebral small vessel disease. Brain. 2023;146(7):3079–87.PubMedPubMedCentralCrossRef
67.
go back to reference Shao XF, Ma SJ, Casey M, D’Orazio L, Ringman JM, Wang DJJ. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn Reson Med. 2019;81:3065–79.PubMedCrossRef Shao XF, Ma SJ, Casey M, D’Orazio L, Ringman JM, Wang DJJ. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn Reson Med. 2019;81:3065–79.PubMedCrossRef
68.
go back to reference Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer’s disease without MRI contrast agent, which may relate to BBB integrity. Neuroimage. 2023;270:119951.PubMedCrossRef Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer’s disease without MRI contrast agent, which may relate to BBB integrity. Neuroimage. 2023;270:119951.PubMedCrossRef
69.
go back to reference Wang Z, Wang B, Li Z, Han G, Meng C, Jiao B, et al. The consistence of dynamic contrast-enhanced MRI and filter-exchange imaging in measuring water exchange across the blood-brain barrier in high-grade glioma. J Magn Reson Imaging. 2023;58(6):1850–60.PubMedCrossRef Wang Z, Wang B, Li Z, Han G, Meng C, Jiao B, et al. The consistence of dynamic contrast-enhanced MRI and filter-exchange imaging in measuring water exchange across the blood-brain barrier in high-grade glioma. J Magn Reson Imaging. 2023;58(6):1850–60.PubMedCrossRef
70.
go back to reference Tiwari YV, Lu JF, Shen Q, Cerqueira B, Duong TQ. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats. J Cereb Blood Flow Metab. 2017;37:2706–15.PubMedCrossRef Tiwari YV, Lu JF, Shen Q, Cerqueira B, Duong TQ. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats. J Cereb Blood Flow Metab. 2017;37:2706–15.PubMedCrossRef
71.
go back to reference Mouchtouris N, Ailes I, Gooch R, Raimondo C, Oghli YS, Tjoumakaris S, et al. Quantifying blood-brain barrier permeability in patients with ischemic stroke using non-contrast MRI. Magn Reson Imaging. 2024;109:165–72.PubMedCrossRef Mouchtouris N, Ailes I, Gooch R, Raimondo C, Oghli YS, Tjoumakaris S, et al. Quantifying blood-brain barrier permeability in patients with ischemic stroke using non-contrast MRI. Magn Reson Imaging. 2024;109:165–72.PubMedCrossRef
72.
go back to reference Kim T, Koo J, Kim S, Song IU, Chung SW, Lee KS. Blood-brain barrier permeability assessed by perfusion computed tomography predicts hemorrhagic transformation in acute reperfusion therapy. Neurol Sci. 2018;39:1579–84.PubMedCrossRef Kim T, Koo J, Kim S, Song IU, Chung SW, Lee KS. Blood-brain barrier permeability assessed by perfusion computed tomography predicts hemorrhagic transformation in acute reperfusion therapy. Neurol Sci. 2018;39:1579–84.PubMedCrossRef
73.
go back to reference Li Q, Gao XY, Yao ZW, Feng XY, He HJ, Xue J, et al. Permeability surface of deep middle cerebral artery territory on computed tomographic perfusion predicts hemorrhagic transformation after stroke. Stroke. 2017;48(9):2412–8.PubMedCrossRef Li Q, Gao XY, Yao ZW, Feng XY, He HJ, Xue J, et al. Permeability surface of deep middle cerebral artery territory on computed tomographic perfusion predicts hemorrhagic transformation after stroke. Stroke. 2017;48(9):2412–8.PubMedCrossRef
74.
go back to reference Arba F, Piccardi B, Palumbo V, Biagini S, Galmozzi F, Iovene V, et al. Blood-brain barrier leakage and hemorrhagic transformation: the Reperfusion Injury in Ischemic StroKe (RISK) study. Eur J Neurol. 2021;28:3147–54.PubMedCrossRef Arba F, Piccardi B, Palumbo V, Biagini S, Galmozzi F, Iovene V, et al. Blood-brain barrier leakage and hemorrhagic transformation: the Reperfusion Injury in Ischemic StroKe (RISK) study. Eur J Neurol. 2021;28:3147–54.PubMedCrossRef
75.
go back to reference Liang YC, Yu Y, Liu JX, Li XW, Chen X, Zhou HW, et al. Blood-brain barrier disruption and hemorrhagic transformation in acute stroke before endovascular reperfusion therapy. Front Neurol. 2024;15:6.CrossRef Liang YC, Yu Y, Liu JX, Li XW, Chen X, Zhou HW, et al. Blood-brain barrier disruption and hemorrhagic transformation in acute stroke before endovascular reperfusion therapy. Front Neurol. 2024;15:6.CrossRef
76.
go back to reference Liu C, Yan SQ, Zhang RT, Chen ZC, Shi FN, Zhou Y, et al. Increased blood-brain barrier permeability in contralateral hemisphere predicts worse outcome in acute ischemic stroke after reperfusion therapy. J NeuroInterventional Surg. 2018;10(10):937–41.CrossRef Liu C, Yan SQ, Zhang RT, Chen ZC, Shi FN, Zhou Y, et al. Increased blood-brain barrier permeability in contralateral hemisphere predicts worse outcome in acute ischemic stroke after reperfusion therapy. J NeuroInterventional Surg. 2018;10(10):937–41.CrossRef
77.
go back to reference Chen XY, Xu J, Guo SY, Zhang S, Wang HY, Shen PP, et al. Blood-brain barrier permeability by CT perfusion predicts parenchymal hematoma after recanalization with thrombectomy. J Neuroimaging. 2024;34:241–8.PubMedCrossRef Chen XY, Xu J, Guo SY, Zhang S, Wang HY, Shen PP, et al. Blood-brain barrier permeability by CT perfusion predicts parenchymal hematoma after recanalization with thrombectomy. J Neuroimaging. 2024;34:241–8.PubMedCrossRef
78.
go back to reference Baik M, Cha J, Ahn SS, Lee SK, Kim YD, Nam HS, et al. Dual-energy computed tomography quantification of extravasated iodine and hemorrhagic transformation after thrombectomy. J Stroke. 2022;24(1):152–5.PubMedPubMedCentralCrossRef Baik M, Cha J, Ahn SS, Lee SK, Kim YD, Nam HS, et al. Dual-energy computed tomography quantification of extravasated iodine and hemorrhagic transformation after thrombectomy. J Stroke. 2022;24(1):152–5.PubMedPubMedCentralCrossRef
79.
go back to reference Ma C, Xu D, Hui Q, Gao X, Peng M. Quantitative intracerebral iodine extravasation in risk stratification for intracranial hemorrhage in patients with acute ischemic stroke. Am J Neuroradiol. 2022;43:1589–96.PubMedPubMedCentral Ma C, Xu D, Hui Q, Gao X, Peng M. Quantitative intracerebral iodine extravasation in risk stratification for intracranial hemorrhage in patients with acute ischemic stroke. Am J Neuroradiol. 2022;43:1589–96.PubMedPubMedCentral
80.
go back to reference Heo J, Yoon Y, Han HJ, Kim JJ, Park KY, Kim BM, et al. Prediction of cerebral hemorrhagic transformation after thrombectomy using a deep learning of dual-energy CT. Eur Radiol. 2024;34:3840–8.PubMedCrossRef Heo J, Yoon Y, Han HJ, Kim JJ, Park KY, Kim BM, et al. Prediction of cerebral hemorrhagic transformation after thrombectomy using a deep learning of dual-energy CT. Eur Radiol. 2024;34:3840–8.PubMedCrossRef
81.
go back to reference Lorberboym M, Lampl Y, Sadeh M. Correlation of Tc-99m-DTPA SPECT of the blood-brain barrier with neurologic outcome after acute stroke. J Nucl Med. 2003;44:1898–904.PubMed Lorberboym M, Lampl Y, Sadeh M. Correlation of Tc-99m-DTPA SPECT of the blood-brain barrier with neurologic outcome after acute stroke. J Nucl Med. 2003;44:1898–904.PubMed
82.
go back to reference López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release. 2024;372:901–13.PubMedCrossRef López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release. 2024;372:901–13.PubMedCrossRef
83.
go back to reference Tang CM, Wang C, Zhang Y, Xue LJ, Li YY, Ju CY, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019;19:4470–7.PubMedCrossRef Tang CM, Wang C, Zhang Y, Xue LJ, Li YY, Ju CY, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019;19:4470–7.PubMedCrossRef
84.
go back to reference Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021;144:1361–71.PubMedPubMedCentralCrossRef Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021;144:1361–71.PubMedPubMedCentralCrossRef
85.
go back to reference Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. 2017;37:2679–90.PubMedPubMedCentralCrossRef Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. 2017;37:2679–90.PubMedPubMedCentralCrossRef
86.
go back to reference Wang Z, Song YY, Bai SW, Xiang WW, Zhou XJ, Han L, et al. Imaging of microglia in post-stroke inflammation. Nucl Med Biol. 2023;118:6. Wang Z, Song YY, Bai SW, Xiang WW, Zhou XJ, Han L, et al. Imaging of microglia in post-stroke inflammation. Nucl Med Biol. 2023;118:6.
87.
go back to reference Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88–96.PubMedCrossRef Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88–96.PubMedCrossRef
88.
go back to reference Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood-brain barrier following transient focal ischemia: Effects of hypothermia. Can J Neurol Sci. 1999;26:298–304.PubMedCrossRef Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood-brain barrier following transient focal ischemia: Effects of hypothermia. Can J Neurol Sci. 1999;26:298–304.PubMedCrossRef
89.
go back to reference Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153:175–81.PubMedCrossRef Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153:175–81.PubMedCrossRef
90.
go back to reference Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS ONE. 2017;12:11.CrossRef Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS ONE. 2017;12:11.CrossRef
91.
go back to reference Yen LF, Wei VC, Kuo EY, Lai TW. Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS ONE. 2013;8:9.CrossRef Yen LF, Wei VC, Kuo EY, Lai TW. Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS ONE. 2013;8:9.CrossRef
92.
go back to reference Wolman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, Fujiwara K, et al. Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol. 1981;54:55–61.PubMedCrossRef Wolman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, Fujiwara K, et al. Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol. 1981;54:55–61.PubMedCrossRef
93.
go back to reference Conq J, Joudiou N, Ucakar B, Vanvarenberg K, Preat V, Gallez B. Assessment of hyperosmolar blood-brain barrier opening in glioblastoma via histology with Evans blue and DCE-MRI. Biomedicines. 2023;11:13.CrossRef Conq J, Joudiou N, Ucakar B, Vanvarenberg K, Preat V, Gallez B. Assessment of hyperosmolar blood-brain barrier opening in glioblastoma via histology with Evans blue and DCE-MRI. Biomedicines. 2023;11:13.CrossRef
94.
go back to reference Goldim MPDS, Della Giustina A, Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr Protoc Immunol. 2019;126:e83.PubMedCrossRef Goldim MPDS, Della Giustina A, Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr Protoc Immunol. 2019;126:e83.PubMedCrossRef
95.
go back to reference Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. Am J Neuroradiol. 2008;29:1671–6.PubMedPubMedCentralCrossRef Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. Am J Neuroradiol. 2008;29:1671–6.PubMedPubMedCentralCrossRef
96.
go back to reference Nguyen GT, Coulthard A, Wong A, Sheikh N, Henderson R, O’Sullivan JD, et al. Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. NeuroImage-Clin. 2013;2:658–62.PubMedPubMedCentralCrossRef Nguyen GT, Coulthard A, Wong A, Sheikh N, Henderson R, O’Sullivan JD, et al. Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. NeuroImage-Clin. 2013;2:658–62.PubMedPubMedCentralCrossRef
Metadata
Title
Blood–Brain Barrier Disruption and Imaging Assessment in Stroke
Authors
Yuchen Liang
Yueluan Jiang
Jiaxin Liu
Xuewei Li
Xinyue Cheng
Lei Bao
Hongwei Zhou
Zhenni Guo
Publication date
25-09-2024
Publisher
Springer US
Published in
Translational Stroke Research
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-024-01300-6