Skip to main content
Top
Published in:

26-12-2023 | RESEARCH

Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction

Authors: Sara Terranova, Alessandro Botta, Martina Putzolu, Gaia Bonassi, Carola Cosentino, Susanna Mezzarobba, Elisa Ravizzotti, Elisa Pelosin, Laura Avanzino

Published in: The Cerebellum | Issue 4/2024

Login to get access

Abstract

Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.
Literature
7.
go back to reference Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.CrossRefPubMedPubMedCentral Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17.CrossRefPubMed Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17.CrossRefPubMed
15.
go back to reference Lewis PA, Miall RC. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.CrossRefPubMed Lewis PA, Miall RC. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.CrossRefPubMed
17.
go back to reference Davranche K, Nazarian B, Vidal F, Coull J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J Cogn Neurosci. 2011;23(11):3318–30.CrossRefPubMed Davranche K, Nazarian B, Vidal F, Coull J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J Cogn Neurosci. 2011;23(11):3318–30.CrossRefPubMed
19.
go back to reference Vicario CM, Martino D, Koch G. Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience. 2013;245:121–8.CrossRefPubMed Vicario CM, Martino D, Koch G. Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience. 2013;245:121–8.CrossRefPubMed
20.
go back to reference Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci. 1997;20(1):25–42.CrossRefPubMed Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci. 1997;20(1):25–42.CrossRefPubMed
21.
go back to reference Pollok B, Gross J, Kamp D, Schnitzler A. Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci. 2008;20(5):828–40.CrossRefPubMed Pollok B, Gross J, Kamp D, Schnitzler A. Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci. 2008;20(5):828–40.CrossRefPubMed
23.
go back to reference Visalli A, Capizzi M, Ambrosini E, Mazzonetto I, Vallesi A. Bayesian modeling of temporal expectations in the human brain. Neuroimage. 2019;202:116097.CrossRefPubMed Visalli A, Capizzi M, Ambrosini E, Mazzonetto I, Vallesi A. Bayesian modeling of temporal expectations in the human brain. Neuroimage. 2019;202:116097.CrossRefPubMed
29.
go back to reference Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607.CrossRefPubMedPubMedCentral Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607.CrossRefPubMedPubMedCentral
30.
go back to reference Brookhart JM, Blachly PH. Cerebellar unit responses to DC polarization. Am J Physiol. 1952;171(3):711–711. Brookhart JM, Blachly PH. Cerebellar unit responses to DC polarization. Am J Physiol. 1952;171(3):711–711.
31.
35.
39.
go back to reference Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, Francesconi M, Pauletti C, Corrado A, Vergnani L, Taddei I, Biondi M, Delle Chiaie R. Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2913–7. https://doi.org/10.2147/NDT.S91625.CrossRefPubMedPubMedCentral Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, Francesconi M, Pauletti C, Corrado A, Vergnani L, Taddei I, Biondi M, Delle Chiaie R. Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2913–7. https://​doi.​org/​10.​2147/​NDT.​S91625.CrossRefPubMedPubMedCentral
42.
go back to reference Minichino A, Bersani FS, Bernabei L, Spagnoli F, Vergnani L, Corrado A, Taddei I, Biondi M, Delle Chiaie R. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2265–70. https://doi.org/10.2147/NDT.S79108.CrossRefPubMedPubMedCentral Minichino A, Bersani FS, Bernabei L, Spagnoli F, Vergnani L, Corrado A, Taddei I, Biondi M, Delle Chiaie R. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2265–70. https://​doi.​org/​10.​2147/​NDT.​S79108.CrossRefPubMedPubMedCentral
47.
go back to reference Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, Celnik P. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90.CrossRefPubMedPubMedCentral Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, Celnik P. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90.CrossRefPubMedPubMedCentral
48.
go back to reference Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P. Cerebellar Transcranial Direct Current Stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist : Rev J Bringing Neurobiol, Neurol Psychiatry. 2016;22(1):83–97. https://doi.org/10.1177/1073858414559409.CrossRef Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P. Cerebellar Transcranial Direct Current Stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist : Rev J Bringing Neurobiol, Neurol Psychiatry. 2016;22(1):83–97. https://​doi.​org/​10.​1177/​1073858414559409​.CrossRef
51.
go back to reference Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.CrossRefPubMed Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.CrossRefPubMed
52.
go back to reference Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, … Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2017;128(9):1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, … Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2017;128(9):1774–1809. https://​doi.​org/​10.​1016/​j.​clinph.​2017.​06.​001.
53.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.CrossRefPubMedPubMedCentral Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.CrossRefPubMedPubMedCentral
54.
go back to reference Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed
55.
go back to reference World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Org. 2001;79(4):373–4.PubMedCentral World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Org. 2001;79(4):373–4.PubMedCentral
57.
go back to reference Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory; 1983. Palo Alto: Consulting Psychologists Press. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory; 1983. Palo Alto: Consulting Psychologists Press.
58.
go back to reference Panayiotou G, Vrana SR. The role of self-focus, task difficulty, task self-relevance, and evaluation anxiety in reaction time performance. Motiv Emot. 2004;28:171–96.CrossRef Panayiotou G, Vrana SR. The role of self-focus, task difficulty, task self-relevance, and evaluation anxiety in reaction time performance. Motiv Emot. 2004;28:171–96.CrossRef
59.
go back to reference Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2016;127(2):1031–48. https://doi.org/10.1016/j.clinph.2015.11.012.CrossRef Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2016;127(2):1031–48. https://​doi.​org/​10.​1016/​j.​clinph.​2015.​11.​012.CrossRef
60.
go back to reference Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590(10):2365–74.CrossRefPubMedPubMedCentral Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590(10):2365–74.CrossRefPubMedPubMedCentral
61.
go back to reference Dissanayaka TD, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Sham transcranial electrical stimulation and its effects on corticospinal excitability: a systematic review and meta-analysis. Rev Neurosci. 2018;29(2):223–32.CrossRefPubMed Dissanayaka TD, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Sham transcranial electrical stimulation and its effects on corticospinal excitability: a systematic review and meta-analysis. Rev Neurosci. 2018;29(2):223–32.CrossRefPubMed
62.
go back to reference Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference; 2015. p 222–225. https://doi.org/10.1109/EMBC.2015.7318340. Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference; 2015. p 222–225. https://​doi.​org/​10.​1109/​EMBC.​2015.​7318340.
66.
go back to reference Mannarelli D, Pauletti C, Currà A, Marinelli L, Corrado A, Delle Chiaie R, Fattapposta F. The cerebellum modulates attention network functioning: evidence from a cerebellar transcranial direct current stimulation and attention network test study. The Cerebellum. 2019;18:457–68.CrossRefPubMed Mannarelli D, Pauletti C, Currà A, Marinelli L, Corrado A, Delle Chiaie R, Fattapposta F. The cerebellum modulates attention network functioning: evidence from a cerebellar transcranial direct current stimulation and attention network test study. The Cerebellum. 2019;18:457–68.CrossRefPubMed
67.
go back to reference Wynn SC, Driessen JM, Glennon JC, Brazil IA, Schutter DJ. Cerebellar transcranial direct current stimulation improves reactive response inhibition in healthy volunteers. The Cerebellum. 2019;18:983–8.CrossRefPubMed Wynn SC, Driessen JM, Glennon JC, Brazil IA, Schutter DJ. Cerebellar transcranial direct current stimulation improves reactive response inhibition in healthy volunteers. The Cerebellum. 2019;18:983–8.CrossRefPubMed
68.
go back to reference Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53.CrossRefPubMed Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53.CrossRefPubMed
74.
go back to reference Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.CrossRefPubMed Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.CrossRefPubMed
76.
go back to reference Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci. 2010;107(25):11597–601.CrossRefPubMedPubMedCentral Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci. 2010;107(25):11597–601.CrossRefPubMedPubMedCentral
81.
go back to reference Bueti D, Bahrami B, Walsh V. Sensory and association cortex in time perception. J Cogn Neurosci. 2008;20(6):1054–62.CrossRefPubMed Bueti D, Bahrami B, Walsh V. Sensory and association cortex in time perception. J Cogn Neurosci. 2008;20(6):1054–62.CrossRefPubMed
84.
go back to reference Lee KH, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci. 2007;19(1):147–57.CrossRefPubMed Lee KH, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci. 2007;19(1):147–57.CrossRefPubMed
85.
go back to reference Tanaka M, Kunimatsu J, Suzuki TW, Kameda M, Ohmae S, Uematsu A, Takeya R. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience. 2021;462:220–34.CrossRefPubMed Tanaka M, Kunimatsu J, Suzuki TW, Kameda M, Ohmae S, Uematsu A, Takeya R. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience. 2021;462:220–34.CrossRefPubMed
86.
go back to reference Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.CrossRefPubMed Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.CrossRefPubMed
87.
go back to reference Stefanics G, Hangya B, Hernádi I, Winkler I, Lakatos P, Ulbert I. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J Neurosci. 2010;30(41):13578–85.CrossRefPubMedPubMedCentral Stefanics G, Hangya B, Hernádi I, Winkler I, Lakatos P, Ulbert I. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J Neurosci. 2010;30(41):13578–85.CrossRefPubMedPubMedCentral
Metadata
Title
Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction
Authors
Sara Terranova
Alessandro Botta
Martina Putzolu
Gaia Bonassi
Carola Cosentino
Susanna Mezzarobba
Elisa Ravizzotti
Elisa Pelosin
Laura Avanzino
Publication date
26-12-2023
Publisher
Springer US
Published in
The Cerebellum / Issue 4/2024
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-023-01649-8

Other articles of this Issue 4/2024

The Cerebellum 4/2024 Go to the issue

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more