Skip to main content
Top
Published in:

Open Access 29-10-2024 | Central Nervous System Trauma | Review

Immune Response in Traumatic Brain Injury

Authors: Eder Cáceres, Juan Camilo Olivella, Mario Di Napoli, Ahmed S. Raihane, Afshin A. Divani

Published in: Current Neurology and Neuroscience Reports | Issue 12/2024

Login to get access

Abstract

Purpose of Review

This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery.

Recent Findings

The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability.

Summary

Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Literature
2.
go back to reference Steyerberg EW, Wiegers E, Sewalt C, Buki A, Citerio G, De Keyser V, Ercole A, Kunzmann K, Lanyon L, Lecky F, Lingsma H, Manley G, Nelson D, Peul W, Stocchetti N, von Steinbüchel N, Vande Vyvere T, Verheyden J, Wilson L, Maas AIR, Menon DK, CENTER-TBI Participants and Investigators. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34. https://doi.org/10.1016/S1474-4422(19)30232-7.CrossRefPubMed Steyerberg EW, Wiegers E, Sewalt C, Buki A, Citerio G, De Keyser V, Ercole A, Kunzmann K, Lanyon L, Lecky F, Lingsma H, Manley G, Nelson D, Peul W, Stocchetti N, von Steinbüchel N, Vande Vyvere T, Verheyden J, Wilson L, Maas AIR, Menon DK, CENTER-TBI Participants and Investigators. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34. https://​doi.​org/​10.​1016/​S1474-4422(19)30232-7.CrossRefPubMed
3.
go back to reference Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, Hutchinson P, Maas AIR, Manley G, Menon DK, Newcombe VFJ, Oddo M, Robba C, Shutter L, Smith M, Steyerberg EW, Stocchetti N, Taccone FS, Wilson L, Zanier ER, Citerio G. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48(6):649–66. https://doi.org/10.1007/s00134-022-06702-4. (Erratum in: Intensive Care Med. 2022 Jul;48(7):989-991. 10.1007/s00134-022-06759-1).CrossRefPubMed Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, Hutchinson P, Maas AIR, Manley G, Menon DK, Newcombe VFJ, Oddo M, Robba C, Shutter L, Smith M, Steyerberg EW, Stocchetti N, Taccone FS, Wilson L, Zanier ER, Citerio G. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48(6):649–66. https://​doi.​org/​10.​1007/​s00134-022-06702-4. (Erratum in: Intensive Care Med. 2022 Jul;48(7):989-991. 10.1007/s00134-022-06759-1).CrossRefPubMed
4.
go back to reference Shanahan R, Avsar P, Watson C, Moore Z, Patton D, McEvoy NL, Curley G, O’Connor T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs Crit Care. 2023. https://doi.org/10.1111/nicc.12973.CrossRefPubMed Shanahan R, Avsar P, Watson C, Moore Z, Patton D, McEvoy NL, Curley G, O’Connor T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs Crit Care. 2023. https://​doi.​org/​10.​1111/​nicc.​12973.CrossRefPubMed
12.
22.
go back to reference Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Vila-Del Sol V, Decouty C, Narros-Fernández P, Clemente D, Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178(17):3395–413. https://doi.org/10.1111/bph.15488.CrossRefPubMed Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Vila-Del Sol V, Decouty C, Narros-Fernández P, Clemente D, Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178(17):3395–413. https://​doi.​org/​10.​1111/​bph.​15488.CrossRefPubMed
51.
go back to reference de Rivero Vaccari JP, Minkiewicz J, Wang X, De Rivero Vaccari JC, German R, Marcillo AE, Dietrich WD, Keane RW. Astrogliosis involves activation of retinoic acid-inducible gene-like signaling in the innate immune response after spinal cord injury. Glia. 2012;60(3):414–21. https://doi.org/10.1002/glia.22275.CrossRefPubMed de Rivero Vaccari JP, Minkiewicz J, Wang X, De Rivero Vaccari JC, German R, Marcillo AE, Dietrich WD, Keane RW. Astrogliosis involves activation of retinoic acid-inducible gene-like signaling in the innate immune response after spinal cord injury. Glia. 2012;60(3):414–21. https://​doi.​org/​10.​1002/​glia.​22275.CrossRefPubMed
61.
go back to reference Krishnamoorthy V, Temkin N, Barber J, Foreman B, Komisarow J, Korley FK, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Bartz R, Raghunathan K, Goldstein BA, Markowitz AJ, Vavilala MS, and the Transforming Clinical Research and Knowledge in TBI (TRACK-TBI) Investigators. A transforming research and clinical knowledge in traumatic brain injury study. Crit Care Med. 2021;49(10):1769–78. https://doi.org/10.1097/CCM.0000000000005055.CrossRefPubMedCentralPubMed Krishnamoorthy V, Temkin N, Barber J, Foreman B, Komisarow J, Korley FK, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Bartz R, Raghunathan K, Goldstein BA, Markowitz AJ, Vavilala MS, and the Transforming Clinical Research and Knowledge in TBI (TRACK-TBI) Investigators. A transforming research and clinical knowledge in traumatic brain injury study. Crit Care Med. 2021;49(10):1769–78. https://​doi.​org/​10.​1097/​CCM.​0000000000005055​.CrossRefPubMedCentralPubMed
66.
go back to reference De Blasio D, Fumagalli S, Longhi L, Orsini F, Palmioli A, Stravalaci M, Vegliante G, Zanier ER, Bernardi A, Gobbi M, De Simoni MG. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(3):938–50. https://doi.org/10.1177/0271678X16647397.CrossRefPubMed De Blasio D, Fumagalli S, Longhi L, Orsini F, Palmioli A, Stravalaci M, Vegliante G, Zanier ER, Bernardi A, Gobbi M, De Simoni MG. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(3):938–50. https://​doi.​org/​10.​1177/​0271678X16647397​.CrossRefPubMed
70.
go back to reference Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–20. https://doi.org/10.1038/ni.2639.CrossRefPubMedCentralPubMed Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–20. https://​doi.​org/​10.​1038/​ni.​2639.CrossRefPubMedCentralPubMed
83.
go back to reference Wang JW, Li JP, Song YL, Zhao QH. Humoral and cellular immunity changed after traumatic brain injury in human patients. Ann Clin Lab Sci. 2017;47(1):10–6.PubMed Wang JW, Li JP, Song YL, Zhao QH. Humoral and cellular immunity changed after traumatic brain injury in human patients. Ann Clin Lab Sci. 2017;47(1):10–6.PubMed
95.
go back to reference Tao X, Constant S, Jorritsma P, Bottomly K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol. 1997;159(12):5956–63.CrossRefPubMed Tao X, Constant S, Jorritsma P, Bottomly K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol. 1997;159(12):5956–63.CrossRefPubMed
96.
go back to reference Schweitzer AN, Sharpe AH. Studies using antigen-presenting cells lacking expression of both B7–1 (CD80) and B7–2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J Immunol. 1998;161(6):2762–71.CrossRefPubMed Schweitzer AN, Sharpe AH. Studies using antigen-presenting cells lacking expression of both B7–1 (CD80) and B7–2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J Immunol. 1998;161(6):2762–71.CrossRefPubMed
98.
99.
go back to reference Xu Y, Li Y, Zhang Z, Sun X, Gong A, Ding H, Lu J, Yuan Q, Xu H. Expressions and implications of Th1/Th2 cytokines in injured rat brain and spinal cord. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29(9):919-22.926.PubMed Xu Y, Li Y, Zhang Z, Sun X, Gong A, Ding H, Lu J, Yuan Q, Xu H. Expressions and implications of Th1/Th2 cytokines in injured rat brain and spinal cord. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29(9):919-22.926.PubMed
103.
go back to reference Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, Klein M, Thal SC, Bopp T, Schäfer MKE. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16(1):163. https://doi.org/10.1186/s12974-019-1550-0. (Erratum in: J Neuroinflammation. 2019 Sep 7;16(1):176. 10.1186/s12974-019-1577-2).CrossRefPubMedCentralPubMed Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, Klein M, Thal SC, Bopp T, Schäfer MKE. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16(1):163. https://​doi.​org/​10.​1186/​s12974-019-1550-0. (Erratum in: J Neuroinflammation. 2019 Sep 7;16(1):176. 10.1186/s12974-019-1577-2).CrossRefPubMedCentralPubMed
109.
114.
go back to reference Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science; 2001. B-cell activation by armed helper T cells Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science; 2001. B-cell activation by armed helper T cells
122.
go back to reference Needham EJ, Stoevesandt O, Thelin EP, Zetterberg H, Zanier ER, Al Nimer F, Ashton NJ, Outtrim JG, Newcombe VFJ, Mousa HS, Simrén J, Blennow K, Yang Z, Hutchinson PJ, Piehl F, Helmy AE, Taussig MJ, Wang KKW, Jones JL, Menon DK, Coles AJ. Complex autoantibody responses occur following moderate to severe traumatic brain injury. J Immunol. 2021;207(1):90–100. https://doi.org/10.4049/jimmunol.2001309.CrossRefPubMed Needham EJ, Stoevesandt O, Thelin EP, Zetterberg H, Zanier ER, Al Nimer F, Ashton NJ, Outtrim JG, Newcombe VFJ, Mousa HS, Simrén J, Blennow K, Yang Z, Hutchinson PJ, Piehl F, Helmy AE, Taussig MJ, Wang KKW, Jones JL, Menon DK, Coles AJ. Complex autoantibody responses occur following moderate to severe traumatic brain injury. J Immunol. 2021;207(1):90–100. https://​doi.​org/​10.​4049/​jimmunol.​2001309.CrossRefPubMed
124.
go back to reference Amoo M, Henry J, O’Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev. 2022;45(2):1171–93. https://doi.org/10.1007/s10143-021-01678-z.CrossRefPubMed Amoo M, Henry J, O’Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev. 2022;45(2):1171–93. https://​doi.​org/​10.​1007/​s10143-021-01678-z.CrossRefPubMed
127.
go back to reference Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J, Glushakova O, Robicsek S, Heaton S, Buki A, Hannay J, Gold MS, Rubenstein R, Lu XC, Dave JR, Schmid K, Tortella F, Robertson CS, Wang KK. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3):e92698. https://doi.org/10.1371/journal.pone.0092698. (Erratum in: PLoS One. 2014;9(6):e101712).CrossRefPubMedCentralPubMed Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J, Glushakova O, Robicsek S, Heaton S, Buki A, Hannay J, Gold MS, Rubenstein R, Lu XC, Dave JR, Schmid K, Tortella F, Robertson CS, Wang KK. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3):e92698. https://​doi.​org/​10.​1371/​journal.​pone.​0092698. (Erratum in: PLoS One. 2014;9(6):e101712).CrossRefPubMedCentralPubMed
144.
go back to reference Klegeris A. Regulation of neuroimmune processes by damage- And resolution-associated molecular patterns. Neural Regeneration Research. 2021;16(3):423–9 (Wolters Kluwer Medknow Publications).CrossRefPubMed Klegeris A. Regulation of neuroimmune processes by damage- And resolution-associated molecular patterns. Neural Regeneration Research. 2021;16(3):423–9 (Wolters Kluwer Medknow Publications).CrossRefPubMed
145.
151.
go back to reference Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36. https://doi.org/10.1084/jem.20021098.CrossRefPubMedCentralPubMed Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36. https://​doi.​org/​10.​1084/​jem.​20021098.CrossRefPubMedCentralPubMed
153.
go back to reference Yang Y, Ye Y, Chen C, Kong C, Su X, Zhang X, Bai W, He X. Acute Traumatic brain injury induces CD4+ and CD8+ T cell functional impairment by upregulating the expression of PD-1 via the activated sympathetic nervous system. NeuroImmunoModulation. 2019;26(1):43–57. https://doi.org/10.1159/000495465.CrossRefPubMed Yang Y, Ye Y, Chen C, Kong C, Su X, Zhang X, Bai W, He X. Acute Traumatic brain injury induces CD4+ and CD8+ T cell functional impairment by upregulating the expression of PD-1 via the activated sympathetic nervous system. NeuroImmunoModulation. 2019;26(1):43–57. https://​doi.​org/​10.​1159/​000495465.CrossRefPubMed
154.
157.
go back to reference Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell Type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.CrossRefPubMedCentralPubMed Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell Type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.CrossRefPubMedCentralPubMed
158.
go back to reference Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, et al. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γgene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16(1). https://doi.org/10.1186/s12974-019-1577-2 Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, et al. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γgene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16(1). https://​doi.​org/​10.​1186/​s12974-019-1577-2
160.
go back to reference Wang H, Yu M, Ochani M, Amelia CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.CrossRefPubMed Wang H, Yu M, Ochani M, Amelia CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.CrossRefPubMed
161.
go back to reference Naseh M, Dehghanian A, Ketabchi F. Vagotomy improves hypoxic pulmonary vasoconstriction in rats subjected to brain ischemia-reperfusion injury. Iran J Med Sci. 2020;45(4):250–8.PubMed Naseh M, Dehghanian A, Ketabchi F. Vagotomy improves hypoxic pulmonary vasoconstriction in rats subjected to brain ischemia-reperfusion injury. Iran J Med Sci. 2020;45(4):250–8.PubMed
Metadata
Title
Immune Response in Traumatic Brain Injury
Authors
Eder Cáceres
Juan Camilo Olivella
Mario Di Napoli
Ahmed S. Raihane
Afshin A. Divani
Publication date
29-10-2024
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 12/2024
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-024-01382-7

Other articles of this Issue 12/2024

Current Neurology and Neuroscience Reports 12/2024 Go to the issue

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more