Skip to main content
Top
Published in:

28-09-2024 | Celecoxib | Original Article

Repurposing celecoxib as adjuvant therapy in patients with Parkinsonian disease: a new therapeutic dawn: randomized controlled pilot study

Authors: Mohannad O. Khrieba, Sahar K. Hegazy, Wessam Mustafa, Sahar M. El‑Haggar

Published in: Inflammopharmacology | Issue 6/2024

Login to get access

Abstract

Background

The clinical presentations of Parkinson’s disease (PD), a chronic neurodegenerative condition, include bradykinesia, hypokinesia, stiffness, resting tremor, and postural instability. Recently, neuroinflammation is involved in pathogenesis of PD. Application of nonsteroidal anti-inflammatory drugs captured attention to treat these neuroinflammation.

Aim

To investigate the possible effectiveness of celecoxib in patients with PD treated with conventional treatment.

Methods

Sixty outpatients who fulfilled the inclusion requirements for PD were enrolled in this randomized, prospective, and controlled study. The patients were allocated into two groups at random (n = 30); the control group received standard PD treatment, consisting of levodopa/carbidopa, and the celecoxib group received standard PD treatment plus celecoxib. A neurologist evaluated each patient at the beginning of the treatment and after 6 months. Assessment of Unified Parkinson’s disease rating scale (UPDRS) for each patient. Before and after treatment, α -synuclein (α-Syn), tumor necrosis factor alpha (TNF-α), Toll like receptors-4 (TLR-4), nuclear factor erythroid 2–related factor 2 (Nrf-2) and brain-derived neurotropic factor (BDNF) were assessed. Paired and unpaired t tests were used to assess statistical significance within and between groups respectively.

Results

The celecoxib group exhibited a significant and statistical reduction in the level of measured parameters by unpaired t test as followed: TLR-4 (p = 0.004), TNF-α (p = 0.042), and α-Syn (p = 0.004) apart from a significant increase in BDNF (p = 0.0005) and Nrf-2 (p = 0.004), in comparison with the control group. Also, UPDRS was significantly decreased in celecoxib group (p < 0.05).

Conclusion

Celecoxib could be a promising adjuvant therapy in managing patients with PD.

Trial registration number

NCT05962957.
Literature
go back to reference Abeliovich A, Schmitz Y, Fariñas I et al (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMedCrossRef Abeliovich A, Schmitz Y, Fariñas I et al (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMedCrossRef
go back to reference Al Kury LT, Zeb A, Abidin ZU et al (2019) Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Dev Ther 13:2715–2727CrossRef Al Kury LT, Zeb A, Abidin ZU et al (2019) Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Dev Ther 13:2715–2727CrossRef
go back to reference Al-Kuraishy HM, Al-Gareeb AI, Alexiou A et al (2023) Calprotectin in Parkinsonian disease: anticipation and dedication. Ageing Res Rev 93:102143PubMedCrossRef Al-Kuraishy HM, Al-Gareeb AI, Alexiou A et al (2023) Calprotectin in Parkinsonian disease: anticipation and dedication. Ageing Res Rev 93:102143PubMedCrossRef
go back to reference Al-Rashed F, Calay D, Lang M et al (2018) Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling. Sci Rep 8(1):6271PubMedPubMedCentralCrossRef Al-Rashed F, Calay D, Lang M et al (2018) Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling. Sci Rep 8(1):6271PubMedPubMedCentralCrossRef
go back to reference Alrouji M, Al-Kuraishy HM, Al-Gareeb AI et al (2023) A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: beneficial or detrimental effects. Inflammopharmacology 31(2):673–688PubMedCrossRef Alrouji M, Al-Kuraishy HM, Al-Gareeb AI et al (2023) A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: beneficial or detrimental effects. Inflammopharmacology 31(2):673–688PubMedCrossRef
go back to reference Asanuma M, Nishibayashi-Asanuma S, Miyazaki I et al (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76(6):1895–1904PubMedCrossRef Asanuma M, Nishibayashi-Asanuma S, Miyazaki I et al (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76(6):1895–1904PubMedCrossRef
go back to reference Badawoud AM, Ali LS, Abdallah MS, Elsabaa RM, Bahaa MM, Elmasry TA, Wahsh E, Yasser M, Eltantawy N, Eldesoqui M, Hamouda MA (2024) The relation between Parkinson’s disease and non-steroidal anti-inflammatories; a systematic review and meta-analysis. Front Pharmacol 15:1434512PubMedPubMedCentralCrossRef Badawoud AM, Ali LS, Abdallah MS, Elsabaa RM, Bahaa MM, Elmasry TA, Wahsh E, Yasser M, Eltantawy N, Eldesoqui M, Hamouda MA (2024) The relation between Parkinson’s disease and non-steroidal anti-inflammatories; a systematic review and meta-analysis. Front Pharmacol 15:1434512PubMedPubMedCentralCrossRef
go back to reference Basar N, Nahar L, Oridupa OA et al (2016) Utilization of the ability to induce activation of the nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) to assess potential cancer chemopreventive activity of liquorice samples. Phytochem Anal 27(5):233–238PubMedCrossRef Basar N, Nahar L, Oridupa OA et al (2016) Utilization of the ability to induce activation of the nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) to assess potential cancer chemopreventive activity of liquorice samples. Phytochem Anal 27(5):233–238PubMedCrossRef
go back to reference Calabresi P, Mechelli A, Natale G et al (2023) Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 14(3):176PubMedPubMedCentralCrossRef Calabresi P, Mechelli A, Natale G et al (2023) Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 14(3):176PubMedPubMedCentralCrossRef
go back to reference Chang E, Wang J (2021) Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson’s disease. Brain Behav 11(8):e2251PubMedPubMedCentralCrossRef Chang E, Wang J (2021) Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson’s disease. Brain Behav 11(8):e2251PubMedPubMedCentralCrossRef
go back to reference Contin M, Martinelli P (2010) Pharmacokinetics of levodopa. J Neurol 257:253–261CrossRef Contin M, Martinelli P (2010) Pharmacokinetics of levodopa. J Neurol 257:253–261CrossRef
go back to reference Dassati S, Schweigreiter R, Buechner S et al (2021) Celecoxib promotes survival and upregulates the expression of neuroprotective marker genes in two different in vitro models of Parkinson’s disease. Neuropharmacology 194:108378PubMedCrossRef Dassati S, Schweigreiter R, Buechner S et al (2021) Celecoxib promotes survival and upregulates the expression of neuroprotective marker genes in two different in vitro models of Parkinson’s disease. Neuropharmacology 194:108378PubMedCrossRef
go back to reference Derry S, Barden J, McQuay HJ et al. (2008) Single dose oral celecoxib for acute postoperative pain in adults. In: Cochrane database of systematic reviews(4) Derry S, Barden J, McQuay HJ et al. (2008) Single dose oral celecoxib for acute postoperative pain in adults. In: Cochrane database of systematic reviews(4)
go back to reference Di Matteo V, Pierucci M, Di Giovanni G et al (2006) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095(1):167–177PubMedCrossRef Di Matteo V, Pierucci M, Di Giovanni G et al (2006) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095(1):167–177PubMedCrossRef
go back to reference Dixit A, Pandey P, Dhasmana D (2020) In vivo effects of nonselective, partially selective, and selective non steroidal anti-inflammatory drugs on lipid peroxidation and antioxidant enzymes in patients with rheumatoid arthritis: a clinical study. Int J Appl Basic Med Res 10(3):167–172PubMedPubMedCentralCrossRef Dixit A, Pandey P, Dhasmana D (2020) In vivo effects of nonselective, partially selective, and selective non steroidal anti-inflammatory drugs on lipid peroxidation and antioxidant enzymes in patients with rheumatoid arthritis: a clinical study. Int J Appl Basic Med Res 10(3):167–172PubMedPubMedCentralCrossRef
go back to reference Dokmeci D (2004) Ibuprofen and Alzheimer’s disease. Folia Med 46(2):5–10 Dokmeci D (2004) Ibuprofen and Alzheimer’s disease. Folia Med 46(2):5–10
go back to reference Fyfe I (2020) Aspirin and ibuprofen could lower risk of LRRK2 Parkinson disease. Nat Rev Neurol 16(9):460–460PubMedCrossRef Fyfe I (2020) Aspirin and ibuprofen could lower risk of LRRK2 Parkinson disease. Nat Rev Neurol 16(9):460–460PubMedCrossRef
go back to reference Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018(1):4784268PubMedPubMedCentral Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018(1):4784268PubMedPubMedCentral
go back to reference Gong L, Thorn CF, Bertagnolli MM et al (2012) Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom 22(4):310–318CrossRef Gong L, Thorn CF, Bertagnolli MM et al (2012) Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom 22(4):310–318CrossRef
go back to reference Grilli M, Pizzi M, Memo M et al (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274(5291):1383–1385PubMedCrossRef Grilli M, Pizzi M, Memo M et al (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274(5291):1383–1385PubMedCrossRef
go back to reference Hirohata M, Ono K, Morinaga A et al (2008) Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. Neuropharmacology 54(3):620–627PubMedCrossRef Hirohata M, Ono K, Morinaga A et al (2008) Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. Neuropharmacology 54(3):620–627PubMedCrossRef
go back to reference Huang X-J, Choi Y-K, Im H-S et al (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6(7):756–782PubMedCentralCrossRef Huang X-J, Choi Y-K, Im H-S et al (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6(7):756–782PubMedCentralCrossRef
go back to reference Husdan H, Rapoport A (1968) Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin Chem 14(3):222–238PubMedCrossRef Husdan H, Rapoport A (1968) Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin Chem 14(3):222–238PubMedCrossRef
go back to reference Ingman K, Naukkarinen T, Vahteristo M et al (2012) The effect of different dosing regimens of levodopa/carbidopa/entacapone on plasma levodopa concentrations. Eur J Clin Pharmacol 68:281–289PubMedCrossRef Ingman K, Naukkarinen T, Vahteristo M et al (2012) The effect of different dosing regimens of levodopa/carbidopa/entacapone on plasma levodopa concentrations. Eur J Clin Pharmacol 68:281–289PubMedCrossRef
go back to reference Jiang L, Zhang H, Wang C et al (2019) Serum level of brain-derived neurotrophic factor in Parkinson’s disease: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 88:168–174PubMedCrossRef Jiang L, Zhang H, Wang C et al (2019) Serum level of brain-derived neurotrophic factor in Parkinson’s disease: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 88:168–174PubMedCrossRef
go back to reference Kaizaki A, Tien L-T, Pang Y et al (2013) Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J Neuroinflamm 10:1–14CrossRef Kaizaki A, Tien L-T, Pang Y et al (2013) Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J Neuroinflamm 10:1–14CrossRef
go back to reference Maharaj H, Maharaj D, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation. Life Sci 78(21):2438–2443PubMedCrossRef Maharaj H, Maharaj D, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation. Life Sci 78(21):2438–2443PubMedCrossRef
go back to reference Martínez-Martín P, Rodríguez-Blázquez C, Alvarez M et al (2015) Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord 21(1):50–54PubMedCrossRef Martínez-Martín P, Rodríguez-Blázquez C, Alvarez M et al (2015) Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord 21(1):50–54PubMedCrossRef
go back to reference Mhillaj E, Morgese MG, Tucci P et al (2018) Celecoxib prevents cognitive impairment and neuroinflammation in soluble amyloid β-treated rats. Neuroscience 372:58–73PubMedCrossRef Mhillaj E, Morgese MG, Tucci P et al (2018) Celecoxib prevents cognitive impairment and neuroinflammation in soluble amyloid β-treated rats. Neuroscience 372:58–73PubMedCrossRef
go back to reference Miyoshi Y, Zhang Z, Ovadia A et al (1997) Glial cell line-derived neurotrophic factor-levodopa interactions and reduction of side effects in parkinsonian monkeys. Ann Neurol 42(2):208–214PubMedCrossRef Miyoshi Y, Zhang Z, Ovadia A et al (1997) Glial cell line-derived neurotrophic factor-levodopa interactions and reduction of side effects in parkinsonian monkeys. Ann Neurol 42(2):208–214PubMedCrossRef
go back to reference Morales-Sosa M, Orozco-Suárez S, Vega-García A et al (2018) Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav 170:79–86PubMedCrossRef Morales-Sosa M, Orozco-Suárez S, Vega-García A et al (2018) Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav 170:79–86PubMedCrossRef
go back to reference Novakova I, Subileau E-A, Toegel S et al (2014) Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS ONE 9(1):e86806PubMedPubMedCentralCrossRef Novakova I, Subileau E-A, Toegel S et al (2014) Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS ONE 9(1):e86806PubMedPubMedCentralCrossRef
go back to reference Ramazani E, Tayarani-Najaran Z, Fereidoni M (2019) Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran J Basic Med Sci 22(5):477PubMedPubMedCentral Ramazani E, Tayarani-Najaran Z, Fereidoni M (2019) Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran J Basic Med Sci 22(5):477PubMedPubMedCentral
go back to reference Rinne U, Molsa P (1979) Levodopa with benserazide or carbidopa in Parkinson disease. Neurology 29(12):1584–1589PubMedCrossRef Rinne U, Molsa P (1979) Levodopa with benserazide or carbidopa in Parkinson disease. Neurology 29(12):1584–1589PubMedCrossRef
go back to reference Sánchez-Pernaute R, Ferree A, Cooper O et al (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflamm 1:1–11CrossRef Sánchez-Pernaute R, Ferree A, Cooper O et al (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflamm 1:1–11CrossRef
go back to reference Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014(1):901902 Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014(1):901902
go back to reference Tambasco N, Romoli M, Calabresi P (2018) Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol 16(8):1239–1252PubMedPubMedCentralCrossRef Tambasco N, Romoli M, Calabresi P (2018) Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol 16(8):1239–1252PubMedPubMedCentralCrossRef
go back to reference Wang Q, Chen Q, Sui J et al (2021) Celecoxib prevents tumor necrosis factor-α (TNF-α)-induced cellular senescence in human chondrocytes. Bioengineered 12(2):12812–12820PubMedPubMedCentralCrossRef Wang Q, Chen Q, Sui J et al (2021) Celecoxib prevents tumor necrosis factor-α (TNF-α)-induced cellular senescence in human chondrocytes. Bioengineered 12(2):12812–12820PubMedPubMedCentralCrossRef
go back to reference Wei P-C, Lee-Chen G-J, Chen C-M et al (2019) Neuroprotection of indole-derivative compound NC001-8 by the regulation of the NRF2 pathway in Parkinson’s disease cell models. Oxid Med Cell Longev 2019:1–15 Wei P-C, Lee-Chen G-J, Chen C-M et al (2019) Neuroprotection of indole-derivative compound NC001-8 by the regulation of the NRF2 pathway in Parkinson’s disease cell models. Oxid Med Cell Longev 2019:1–15
go back to reference Xu L, Pu J (2016) Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinson’s Dis 2016:1–10 Xu L, Pu J (2016) Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinson’s Dis 2016:1–10
go back to reference Yagami T, Koma H, Yamamoto Y (2016) Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 53:4754–4771PubMedCrossRef Yagami T, Koma H, Yamamoto Y (2016) Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 53:4754–4771PubMedCrossRef
go back to reference Yang Y, Gao L (2017) Celecoxib alleviates memory deficits by downregulation of COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat model. J Mol Neurosci 62:188–198PubMedPubMedCentralCrossRef Yang Y, Gao L (2017) Celecoxib alleviates memory deficits by downregulation of COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat model. J Mol Neurosci 62:188–198PubMedPubMedCentralCrossRef
go back to reference Yoshioka Y, Sugino Y, Yamamuro A et al (2022) Dopamine inhibits the expression of proinflammatory cytokines of microglial cells through the formation of dopamine quinone in the mouse striatum. J Pharmacol Sci 148(1):41–50PubMedCrossRef Yoshioka Y, Sugino Y, Yamamuro A et al (2022) Dopamine inhibits the expression of proinflammatory cytokines of microglial cells through the formation of dopamine quinone in the mouse striatum. J Pharmacol Sci 148(1):41–50PubMedCrossRef
Metadata
Title
Repurposing celecoxib as adjuvant therapy in patients with Parkinsonian disease: a new therapeutic dawn: randomized controlled pilot study
Authors
Mohannad O. Khrieba
Sahar K. Hegazy
Wessam Mustafa
Sahar M. El‑Haggar
Publication date
28-09-2024
Publisher
Springer International Publishing
Published in
Inflammopharmacology / Issue 6/2024
Print ISSN: 0925-4692
Electronic ISSN: 1568-5608
DOI
https://doi.org/10.1007/s10787-024-01567-z