Skip to main content
Top
Published in:

26-07-2023 | Cataract | Original Paper

Aquaporins contribute to vacuoles formation in Nile grass type II diabetic rats

Authors: Kana Aihara, Yosuke Nakazawa, Shun Takeda, Natsuko Hatsusaka, Takanori Onouchi, Noriko Hiramatsu, Mayumi Nagata, Noriaki Nagai, Megumi Funakoshi-Tago, Naoki Yamamoto, Hiroshi Sasaki

Published in: Medical Molecular Morphology | Issue 4/2023

Login to get access

Abstract

Regulation of ion and water microcirculation within the lens is tightly controlled through aquaporin channels and connexin junctions. However, cataracts can occur when the lens becomes cloudy. Various factors can induce cataracts, including diabetes which is a well-known cause. The most common phenotype of diabetic cataracts is a cortical and/or posterior subcapsular opacity. In addition to the three main types and two subtypes of cataracts, a vacuole formation is frequently observed; however, their origin remains unclear. In this study, we focused on the aquaporins and connexins involved in diabetes-induced cataracts and vacuoles in Nile grass type II diabetes. The results showed that the expression of aquaporin 0 and aquaporin 5 increased, and that of connexin 43 decreased in diabetic rat lenses. Additionally, aquaporin 0 and 5 were strongly localized in peripheral of vacuoles, suggesting that aquaporins are involved in vacuoles formation. Transillumination photography revealed large vacuoles at the tip of the Y-suture in the anterior capsule of the diabetic lens, and several small vacuoles were observed in the posterior capsule. Within the vacuoles, cytoplasmic degradation and aggregation of fibrous material were observed. Our findings suggest that aquaporins are potential candidate proteins for preventing vacuole formation.
Literature
1.
go back to reference International Diabetes Federation (2021) IDF Diabetes Atlas 2021, 10th edn. IDF Diabetes Atlas, pp 1–135 International Diabetes Federation (2021) IDF Diabetes Atlas 2021, 10th edn. IDF Diabetes Atlas, pp 1–135
2.
go back to reference Zucker LM (1972) Fat mobilization in vitro and in vivo in the genetically obese Zucker rat “fatty.” J Lipid Res 13:234–243PubMed Zucker LM (1972) Fat mobilization in vitro and in vivo in the genetically obese Zucker rat “fatty.” J Lipid Res 13:234–243PubMed
3.
go back to reference Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153PubMed Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153PubMed
4.
go back to reference Noda K, Nakao S, Zandi S, Sun D, Hayes KC, Hafezi-Moghadam A (2014) Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. FASEB J 28:2038–2046PubMedPubMedCentral Noda K, Nakao S, Zandi S, Sun D, Hayes KC, Hafezi-Moghadam A (2014) Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. FASEB J 28:2038–2046PubMedPubMedCentral
5.
go back to reference Singh J, Yousuf MS, Jones KE, Shelemey PTM, Joy T, Macandili H, Kerr BJ, Zochodne DW, Sauve Y, Ballanyi K, Webber CA (2018) Characterization of the Nile grass rat as a unique model for type 2 diabetic polyneuropathy. J Neuropathol Exp Neurol 77:469–478PubMed Singh J, Yousuf MS, Jones KE, Shelemey PTM, Joy T, Macandili H, Kerr BJ, Zochodne DW, Sauve Y, Ballanyi K, Webber CA (2018) Characterization of the Nile grass rat as a unique model for type 2 diabetic polyneuropathy. J Neuropathol Exp Neurol 77:469–478PubMed
6.
go back to reference Gorusupudi A, Chang FY, Nelson K, Hageman GS, Bernstein PS (2019) n-3 PUFA supplementation alters retinal very-long-chain-PUFA levels and ratios in diabetic animal models. Mol Nutr Food Res 63:e1801058PubMedPubMedCentral Gorusupudi A, Chang FY, Nelson K, Hageman GS, Bernstein PS (2019) n-3 PUFA supplementation alters retinal very-long-chain-PUFA levels and ratios in diabetic animal models. Mol Nutr Food Res 63:e1801058PubMedPubMedCentral
7.
go back to reference Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A (2021) Diabetic cataract in the Nile grass rat: a longitudinal phenotypic study of pathology formation. FASEB J 35:e21593PubMed Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A (2021) Diabetic cataract in the Nile grass rat: a longitudinal phenotypic study of pathology formation. FASEB J 35:e21593PubMed
8.
go back to reference Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes KC, Hafezi-Moghadam A (2010) An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 24:2443–2453PubMedPubMedCentral Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes KC, Hafezi-Moghadam A (2010) An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 24:2443–2453PubMedPubMedCentral
9.
go back to reference Chaabo F, Pronczuk A, Maslova E, Hayes K (2010) Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome. Nutr Metab (Lond) 7:29PubMed Chaabo F, Pronczuk A, Maslova E, Hayes K (2010) Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome. Nutr Metab (Lond) 7:29PubMed
10.
go back to reference Subramaniam A, Landstrom M, Luu A, Hayes KC (2018) The Nile rat (Arvicanthis niloticus) as a superior carbohydrate-sensitive model for type 2 diabetes mellitus (T2DM). Nutrients 10:235PubMedPubMedCentral Subramaniam A, Landstrom M, Luu A, Hayes KC (2018) The Nile rat (Arvicanthis niloticus) as a superior carbohydrate-sensitive model for type 2 diabetes mellitus (T2DM). Nutrients 10:235PubMedPubMedCentral
11.
go back to reference Ranaei Pirmardan E, Zhang Y, Barakat A, Naseri M, Russmann C, Hafezi-Moghadam A (2023) Pre-hyperglycemia immune cell trafficking underlies subclinical diabetic cataractogenesis. J Biomed Sci 30:6PubMedPubMedCentral Ranaei Pirmardan E, Zhang Y, Barakat A, Naseri M, Russmann C, Hafezi-Moghadam A (2023) Pre-hyperglycemia immune cell trafficking underlies subclinical diabetic cataractogenesis. J Biomed Sci 30:6PubMedPubMedCentral
12.
go back to reference Giannone AA, Li L, Sellitto C, White TW (2021) Physiological mechanisms regulating lens transport. Front Physiol 12:818649PubMedPubMedCentral Giannone AA, Li L, Sellitto C, White TW (2021) Physiological mechanisms regulating lens transport. Front Physiol 12:818649PubMedPubMedCentral
13.
go back to reference Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J (1996) Water transport across mammalian cell membranes. Am J Physiol 270:C12-30PubMed Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J (1996) Water transport across mammalian cell membranes. Am J Physiol 270:C12-30PubMed
14.
go back to reference Bron AJ, Sparrow J, Brown NA, Harding JJ, Blakytny R (1993) The lens in diabetes. Eye 7(Pt 2):260–275PubMed Bron AJ, Sparrow J, Brown NA, Harding JJ, Blakytny R (1993) The lens in diabetes. Eye 7(Pt 2):260–275PubMed
15.
go back to reference Falck A, Laatikainen L (1998) Diabetic cataract in children. Acta Ophthalmol Scand 76:238–240PubMed Falck A, Laatikainen L (1998) Diabetic cataract in children. Acta Ophthalmol Scand 76:238–240PubMed
16.
go back to reference Yamamoto N, Takeda S, Hatsusaka N, Hiramatsu N, Nagai N, Deguchi S, Nakazawa Y, Takata T, Kodera S, Hirata A, Kubo E, Sasaki H (2020) Effect of a lens protein in low-temperature culture of novel immortalized human lens epithelial cells (iHLEC-NY2). Cells 9:2670PubMedPubMedCentral Yamamoto N, Takeda S, Hatsusaka N, Hiramatsu N, Nagai N, Deguchi S, Nakazawa Y, Takata T, Kodera S, Hirata A, Kubo E, Sasaki H (2020) Effect of a lens protein in low-temperature culture of novel immortalized human lens epithelial cells (iHLEC-NY2). Cells 9:2670PubMedPubMedCentral
17.
go back to reference Bolsinger J, Pronczuk A, Hayes KC (2013) Dietary carbohydrate dic tates development of type 2 diabetes in the Nile rat. J Nutr Biochem 24:1945–1952PubMed Bolsinger J, Pronczuk A, Hayes KC (2013) Dietary carbohydrate dic tates development of type 2 diabetes in the Nile rat. J Nutr Biochem 24:1945–1952PubMed
18.
go back to reference Fraunfelder FT, Steinkamp P, Fraunfelder FW (2011) Casey eye institute camera system for recording lens opacities. Exp Eye Res 93:790–794PubMed Fraunfelder FT, Steinkamp P, Fraunfelder FW (2011) Casey eye institute camera system for recording lens opacities. Exp Eye Res 93:790–794PubMed
19.
go back to reference Hatsusaka N, Sasaki K, Kawakami Y, Sasaki M, Sasaki H (2014) Evaluation of Casey Eye Institute camera for photographic documentation of opaque crystalline lens. Jap J Clin Ophthalmol 68:1413–1420 (Article in Japanese) Hatsusaka N, Sasaki K, Kawakami Y, Sasaki M, Sasaki H (2014) Evaluation of Casey Eye Institute camera for photographic documentation of opaque crystalline lens. Jap J Clin Ophthalmol 68:1413–1420 (Article in Japanese)
20.
go back to reference Tsubokura Y, Kobayashi T, Oshima Y, Hashizume N, Nakai M, Ajimi S, Imatanaka N (2016) Effects of pentobarbital, isoflurane, or medetomidine-midazolam-butorphanol anesthesia on bronchoalveolar lavage fluid and blood chemistry in rats. J Toxicol Sci 41:595–604PubMed Tsubokura Y, Kobayashi T, Oshima Y, Hashizume N, Nakai M, Ajimi S, Imatanaka N (2016) Effects of pentobarbital, isoflurane, or medetomidine-midazolam-butorphanol anesthesia on bronchoalveolar lavage fluid and blood chemistry in rats. J Toxicol Sci 41:595–604PubMed
21.
go back to reference Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41:83–91PubMed Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41:83–91PubMed
22.
go back to reference Sugiyama Y, Nakazawa Y, Sakagami T, Kawata S, Nagai N, Yamamoto N, Funakoshi-Tago M, Tamura H (2021) Capsaicin attenuates TGFbeta2-induced epithelial-mesenchymal-transition in lens epithelial cells in vivo and in vitro. Exp Eye Res 213:108840PubMed Sugiyama Y, Nakazawa Y, Sakagami T, Kawata S, Nagai N, Yamamoto N, Funakoshi-Tago M, Tamura H (2021) Capsaicin attenuates TGFbeta2-induced epithelial-mesenchymal-transition in lens epithelial cells in vivo and in vitro. Exp Eye Res 213:108840PubMed
23.
go back to reference Klein BE, Klein R, Moss SE (1985) Prevalence of cataracts in a population-based study of persons with diabetes mellitus. Ophthalmology 92:1191–1196PubMed Klein BE, Klein R, Moss SE (1985) Prevalence of cataracts in a population-based study of persons with diabetes mellitus. Ophthalmology 92:1191–1196PubMed
24.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMed Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMed
25.
go back to reference Su S, Leng F, Guan L, Zhang L, Ge J, Wang C, Chen S, Liu P (2014) Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes. Invest Ophthalmol Vis Sci 55:7848–7861PubMed Su S, Leng F, Guan L, Zhang L, Ge J, Wang C, Chen S, Liu P (2014) Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes. Invest Ophthalmol Vis Sci 55:7848–7861PubMed
26.
go back to reference Wu KK, Huan Y (2008) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol Chapter 5 1:1–21 Wu KK, Huan Y (2008) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol Chapter 5 1:1–21
27.
go back to reference Ramasamy R, Goldberg IJ (2010) Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 106:1449–1458PubMedPubMedCentral Ramasamy R, Goldberg IJ (2010) Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 106:1449–1458PubMedPubMedCentral
29.
go back to reference Fukushi S, Merola LO, Kinoshita JH (1980) Altering the course of cataracts in diabetic rats. Invest Ophthalmol Vis Sci 19:313–315PubMed Fukushi S, Merola LO, Kinoshita JH (1980) Altering the course of cataracts in diabetic rats. Invest Ophthalmol Vis Sci 19:313–315PubMed
30.
go back to reference Hiller R, Sperduto RD, Reed GF, D’Agostino RB, Wilson PW (2003) Serum lipids and age-related lens opacities: a longitudinal investigation: the Framingham studies. Ophthalmology 110:578–583PubMed Hiller R, Sperduto RD, Reed GF, D’Agostino RB, Wilson PW (2003) Serum lipids and age-related lens opacities: a longitudinal investigation: the Framingham studies. Ophthalmology 110:578–583PubMed
32.
go back to reference Saxena S, Mitchell P, Rochtchina E (2004) Five-year incidence of cataract in older persons with diabetes and pre-diabetes. Ophthalmic Epidemiol 11:271–277PubMed Saxena S, Mitchell P, Rochtchina E (2004) Five-year incidence of cataract in older persons with diabetes and pre-diabetes. Ophthalmic Epidemiol 11:271–277PubMed
33.
go back to reference Schafer C, Lautenschlager C, Struck HG (2006) Cataract types in diabetics and non-diabetics: a densitometric study with the Topcon-Scheimpflug camera. Klin Monbl Augenheilkd 223:589–592PubMed Schafer C, Lautenschlager C, Struck HG (2006) Cataract types in diabetics and non-diabetics: a densitometric study with the Topcon-Scheimpflug camera. Klin Monbl Augenheilkd 223:589–592PubMed
34.
go back to reference Varadaraj K, Kumari SS, Patil R, Wax MB, Mathias RT (2008) Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87:9–21PubMedPubMedCentral Varadaraj K, Kumari SS, Patil R, Wax MB, Mathias RT (2008) Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87:9–21PubMedPubMedCentral
35.
go back to reference Grey AC, Walker KL, Petrova RS, Han J, Wilmarth PA, David LL, Donaldson PJ, Schey KL (2013) Verification and spatial localization of aquaporin-5 in the ocular lens. Exp Eye Res 108:94–102PubMedPubMedCentral Grey AC, Walker KL, Petrova RS, Han J, Wilmarth PA, David LL, Donaldson PJ, Schey KL (2013) Verification and spatial localization of aquaporin-5 in the ocular lens. Exp Eye Res 108:94–102PubMedPubMedCentral
36.
go back to reference Sindhu Kumari S, Varadaraj K (2013) Aquaporin 5 knockout mouse lens develops hyperglycemic cataract. Biochem Biophys Res Commun 441:333–338PubMed Sindhu Kumari S, Varadaraj K (2013) Aquaporin 5 knockout mouse lens develops hyperglycemic cataract. Biochem Biophys Res Commun 441:333–338PubMed
37.
go back to reference Petrova RS, Bavana N, Zhao R, Schey KL, Donaldson PJ (2020) Changes to zonular tension alters the subcellular distribution of AQP5 in regions of influx and efflux of water in the rat lens. Invest Ophthalmol Vis Sci 61:36PubMedPubMedCentral Petrova RS, Bavana N, Zhao R, Schey KL, Donaldson PJ (2020) Changes to zonular tension alters the subcellular distribution of AQP5 in regions of influx and efflux of water in the rat lens. Invest Ophthalmol Vis Sci 61:36PubMedPubMedCentral
38.
go back to reference Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2011) Expression of aquaporins in the retina of diabetic rats. Curr Eye Res 36:850–856PubMed Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2011) Expression of aquaporins in the retina of diabetic rats. Curr Eye Res 36:850–856PubMed
39.
go back to reference Gao C, Zhang W (2019) Urinary AQP5 is independently associated with eGFR decline in patients with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 155:107805PubMedPubMedCentral Gao C, Zhang W (2019) Urinary AQP5 is independently associated with eGFR decline in patients with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 155:107805PubMedPubMedCentral
40.
go back to reference Lin H, Ogawa K, Imanaga I, Tribulova N (2006) Alterations of connexin 43 in the diabetic rat heart. Adv Cardiol 42:243–254PubMed Lin H, Ogawa K, Imanaga I, Tribulova N (2006) Alterations of connexin 43 in the diabetic rat heart. Adv Cardiol 42:243–254PubMed
41.
go back to reference Yang Y, Li J, Zhang L, Lin Z, Xiao H, Sun X, Zhang M, Liu P, Huang H (2021) CKIP-1 acts downstream to Cx43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes. Pharmacol Res 163:105333PubMed Yang Y, Li J, Zhang L, Lin Z, Xiao H, Sun X, Zhang M, Liu P, Huang H (2021) CKIP-1 acts downstream to Cx43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes. Pharmacol Res 163:105333PubMed
42.
go back to reference Marsili S, Salganik RI, Albright CD, Freel CD, Johnsen S, Peiffer RL, Costello MJ (2004) Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res 79:595–612PubMed Marsili S, Salganik RI, Albright CD, Freel CD, Johnsen S, Peiffer RL, Costello MJ (2004) Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res 79:595–612PubMed
43.
go back to reference Fani A, Sofia K, Theodora P, Antonia S (2021) Pseudoexfoliation syndrome in diabetic patients: transmission electron microscopy study of anterior lens epithelial cells. Rom J Ophthalmol 65:38–45PubMed Fani A, Sofia K, Theodora P, Antonia S (2021) Pseudoexfoliation syndrome in diabetic patients: transmission electron microscopy study of anterior lens epithelial cells. Rom J Ophthalmol 65:38–45PubMed
45.
go back to reference Nielsen NV, Vinding T (1984) The prevalence of cataract in insulin-dependent and non-insulin-dependent-diabetes mellitus. Acta Ophthalmol (Copenh) 62:595–602PubMed Nielsen NV, Vinding T (1984) The prevalence of cataract in insulin-dependent and non-insulin-dependent-diabetes mellitus. Acta Ophthalmol (Copenh) 62:595–602PubMed
46.
go back to reference Javadi MA, Zarei-Ghanavati S (2008) Cataracts in diabetic patients: a review article. J Ophthalmol Vis Res 3:52–65 Javadi MA, Zarei-Ghanavati S (2008) Cataracts in diabetic patients: a review article. J Ophthalmol Vis Res 3:52–65
Metadata
Title
Aquaporins contribute to vacuoles formation in Nile grass type II diabetic rats
Authors
Kana Aihara
Yosuke Nakazawa
Shun Takeda
Natsuko Hatsusaka
Takanori Onouchi
Noriko Hiramatsu
Mayumi Nagata
Noriaki Nagai
Megumi Funakoshi-Tago
Naoki Yamamoto
Hiroshi Sasaki
Publication date
26-07-2023
Publisher
Springer Nature Singapore
Keyword
Cataract
Published in
Medical Molecular Morphology / Issue 4/2023
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-023-00365-w

Other articles of this Issue 4/2023

Medical Molecular Morphology 4/2023 Go to the issue