Skip to main content
Top

Open Access 03-02-2025 | Cardiomyopathy | RESEARCH

Targeting Lcn2 to Inhibit Myocardial Cell Ferroptosis is a Potential Therapy for Alleviating Septic Cardiomyopathy

Authors: Cheng Jiang, MingTong Hou, Shougang Sun, Gang Chen, Feng Bai, Shengbao Wang

Published in: Inflammation

Login to get access

Abstract

Septic cardiomyopathy (SCM) represents a key feature of sepsis-associated cardiovascular failure, and ferroptosis is one of the essential causes of septic cardiac dysfunction. In this study, combined with omics analysis and in vivo experiments, we verified the damage of ferroptosis on cardiac tissue in septic mice and mined the target genes that can inhibit ferroptosis in cardiomyocytes. Lipocalin-2 (Lcn2) was identified to be associated with SCM progression via integrated transcriptomic and proteomic analyses. Sepsis was induced by cecal ligation and perforation (CLP) in mice. Ferroptosis and cardiac dysfunction were detected by pathological tissue staining and ELISA. However, after the knockout of Lcn2, cardiomyocyte ferroptosis was significantly suppressed, inflammatory infiltrates were reduced, reactive oxygen species (ROS) levels were lowered, mitochondrial damage was alleviated, and cardiac function was restored in CLP mice. In summary, this study found that Lcn2 can be a potential target for inhibiting ferroptosis in SCM. Targeting Lcn2 can effectively inhibit inflammation, improve mitochondrial dysfunction, inhibit cardiomyocyte ferroptosis, and alleviate SCM.
Literature
1.
go back to reference Huang, M., S. Cai, and J. Su. 2019. The Pathogenesis of Sepsis and Potential Therapeutic Targets. International Journal of Molecular Sciences 20: 5376.CrossRefPubMedPubMedCentral Huang, M., S. Cai, and J. Su. 2019. The Pathogenesis of Sepsis and Potential Therapeutic Targets. International Journal of Molecular Sciences 20: 5376.CrossRefPubMedPubMedCentral
2.
go back to reference Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C. K. Grissom, M. J. Lanspa, et al. 2018. Septic cardiomyopathy. Critical Care Medicine 46: 625–634.CrossRefPubMed Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C. K. Grissom, M. J. Lanspa, et al. 2018. Septic cardiomyopathy. Critical Care Medicine 46: 625–634.CrossRefPubMed
3.
go back to reference Hollenberg, S. M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews Cardiology 18: 424–434.CrossRefPubMed Hollenberg, S. M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews Cardiology 18: 424–434.CrossRefPubMed
4.
go back to reference Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, et al. 2019. The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest 155: 427–437.CrossRefPubMed Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, et al. 2019. The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest 155: 427–437.CrossRefPubMed
5.
go back to reference Kakihana, Y., T. Ito, M. Nakahara, K. Yamaguchi, and T. Yasuda. 2016. Sepsis-induced myocardial dysfunction: Pathophysiology and management. Journal of Intensive Care 4: 22.CrossRefPubMedPubMedCentral Kakihana, Y., T. Ito, M. Nakahara, K. Yamaguchi, and T. Yasuda. 2016. Sepsis-induced myocardial dysfunction: Pathophysiology and management. Journal of Intensive Care 4: 22.CrossRefPubMedPubMedCentral
6.
go back to reference Tang, D., X. Chen, R. Kang, and G. Kroemer. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31: 107–125.CrossRefPubMed Tang, D., X. Chen, R. Kang, and G. Kroemer. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31: 107–125.CrossRefPubMed
7.
go back to reference Belavgeni, A., C. Meyer, J. Stumpf, C. Hugo, and A. Linkermann. 2020. Ferroptosis and Necroptosis in the Kidney. Cell Chemistry & Biology 27: 448–462.CrossRef Belavgeni, A., C. Meyer, J. Stumpf, C. Hugo, and A. Linkermann. 2020. Ferroptosis and Necroptosis in the Kidney. Cell Chemistry & Biology 27: 448–462.CrossRef
8.
go back to reference Li, D., W. Pi, Z. Sun, X. Liu, and J. Jiang. 2022. Ferroptosis and its role in cardiomyopathy. Biomedicine & Pharmacotherapy 153: 113279.CrossRef Li, D., W. Pi, Z. Sun, X. Liu, and J. Jiang. 2022. Ferroptosis and its role in cardiomyopathy. Biomedicine & Pharmacotherapy 153: 113279.CrossRef
9.
go back to reference Liu, C., Q. Zou, H. Tang, J. Liu, S. Zhang, C. Fan, et al. 2022. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioactive Materials 24: 313–321.CrossRefPubMedPubMedCentral Liu, C., Q. Zou, H. Tang, J. Liu, S. Zhang, C. Fan, et al. 2022. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioactive Materials 24: 313–321.CrossRefPubMedPubMedCentral
10.
go back to reference Stockwell, B. R., J. P. Friedmann Angeli, H. Bayir, A. I. Bush, M. Conrad, S. J. Dixon, et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171: 273–285.CrossRefPubMedPubMedCentral Stockwell, B. R., J. P. Friedmann Angeli, H. Bayir, A. I. Bush, M. Conrad, S. J. Dixon, et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171: 273–285.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Lin, H., W. Wang, M. Lee, Q. Meng, and H. Ren. 2020. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Frontiers in Pharmacology 11: 210.CrossRefPubMedPubMedCentral Lin, H., W. Wang, M. Lee, Q. Meng, and H. Ren. 2020. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Frontiers in Pharmacology 11: 210.CrossRefPubMedPubMedCentral
13.
go back to reference Li, N., W. Wang, H. Zhou, Q. Wu, M. Duan, C. Liu, et al. 2020. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radical Biology & Medicine 160: 303–318.CrossRef Li, N., W. Wang, H. Zhou, Q. Wu, M. Duan, C. Liu, et al. 2020. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radical Biology & Medicine 160: 303–318.CrossRef
14.
go back to reference Vazquez, D. E., D. F. Niño, A. De Maio, and D. M. Cauvi. 2015. Sustained expression of lipocalin-2 during polymicrobial sepsis. Innate Immunity 21: 477–489.CrossRefPubMed Vazquez, D. E., D. F. Niño, A. De Maio, and D. M. Cauvi. 2015. Sustained expression of lipocalin-2 during polymicrobial sepsis. Innate Immunity 21: 477–489.CrossRefPubMed
15.
16.
go back to reference Ullah, K., Y. Li, Q. Lin, K. Pan, T. Nguyen, S. Aniruddhsingh, et al. 2023. Comparative Analysis of Whole Transcriptome Profiles in Septic Cardiomyopathy: Insights from CLP- and LPS-Induced Mouse Models. Genes (Basel) 14: 1366.CrossRefPubMed Ullah, K., Y. Li, Q. Lin, K. Pan, T. Nguyen, S. Aniruddhsingh, et al. 2023. Comparative Analysis of Whole Transcriptome Profiles in Septic Cardiomyopathy: Insights from CLP- and LPS-Induced Mouse Models. Genes (Basel) 14: 1366.CrossRefPubMed
17.
go back to reference Busch, K., M. Kny, N. Huang, T. E. Klassert, M. Stock, A. Hahn, et al. 2021. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. Journal of Cachexia, Sarcopenia and Muscle 12: 1653–1668.CrossRefPubMedPubMedCentral Busch, K., M. Kny, N. Huang, T. E. Klassert, M. Stock, A. Hahn, et al. 2021. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. Journal of Cachexia, Sarcopenia and Muscle 12: 1653–1668.CrossRefPubMedPubMedCentral
18.
go back to reference Jiang, C., S. Wang, C. Wang, G. Chen, J. Xu, and C. You. 2024. Mesenchymal Stem Cells Alleviate Mouse Sepsis-Induced Cardiomyopathy by Inhibiting the NR1D2/LCN2 Pathway. Journal of Cardiovascular Pharmacology 84: 199–209.CrossRefPubMed Jiang, C., S. Wang, C. Wang, G. Chen, J. Xu, and C. You. 2024. Mesenchymal Stem Cells Alleviate Mouse Sepsis-Induced Cardiomyopathy by Inhibiting the NR1D2/LCN2 Pathway. Journal of Cardiovascular Pharmacology 84: 199–209.CrossRefPubMed
19.
go back to reference Liu, R., J. Wang, Y. Chen, J. M. Collier, O. Capuk, S. Jin, et al. 2022. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death & Disease 13: 371.CrossRef Liu, R., J. Wang, Y. Chen, J. M. Collier, O. Capuk, S. Jin, et al. 2022. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death & Disease 13: 371.CrossRef
20.
go back to reference Xiao, X., B. S. Yeoh, and M. Vijay-Kumar. 2017. Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition 37: 103–130.CrossRefPubMed Xiao, X., B. S. Yeoh, and M. Vijay-Kumar. 2017. Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition 37: 103–130.CrossRefPubMed
21.
go back to reference Jaberi, S. A., A. Cohen, C. D’Souza, Y. M. Abdulrazzaq, S. Ojha, S. Bastaki, and E. A. Adeghate. 2021. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomedicine & Pharmacotherapy 142: 112002.CrossRef Jaberi, S. A., A. Cohen, C. D’Souza, Y. M. Abdulrazzaq, S. Ojha, S. Bastaki, and E. A. Adeghate. 2021. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomedicine & Pharmacotherapy 142: 112002.CrossRef
22.
go back to reference Golonka, R., B. S. Yeoh, and M. Vijay-Kumar. 2019. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. Journal of Innate Immunity 11: 249–262.CrossRefPubMedPubMedCentral Golonka, R., B. S. Yeoh, and M. Vijay-Kumar. 2019. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. Journal of Innate Immunity 11: 249–262.CrossRefPubMedPubMedCentral
23.
go back to reference Almansa, R., A. Ortega, A. Ávila-Alonso, M. Heredia-Rodríguez, S. Martín, D. Benavides, et al. 2019. Quantification of Immune Dysregulation by Next-generation Polymerase Chain Reaction to Improve Sepsis Diagnosis in Surgical Patients. Annals of Surgery 269: 545–553.CrossRefPubMed Almansa, R., A. Ortega, A. Ávila-Alonso, M. Heredia-Rodríguez, S. Martín, D. Benavides, et al. 2019. Quantification of Immune Dysregulation by Next-generation Polymerase Chain Reaction to Improve Sepsis Diagnosis in Surgical Patients. Annals of Surgery 269: 545–553.CrossRefPubMed
24.
go back to reference Marques, F. Z., P. R. Prestes, S. G. Byars, S. C. Ritchie, P. Würtz, S. K. Patel, et al. 2017. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure. Journal of the American Heart Association 6: e005971.CrossRefPubMedPubMedCentral Marques, F. Z., P. R. Prestes, S. G. Byars, S. C. Ritchie, P. Würtz, S. K. Patel, et al. 2017. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure. Journal of the American Heart Association 6: e005971.CrossRefPubMedPubMedCentral
25.
go back to reference Otto, G. P., J. Hurtado-Oliveros, H. Y. Chung, K. Knoll, T. Neumann, H. J. Müller, et al. 2015. Plasma Neutrophil Gelatinase-Associated Lipocalin Is Primarily Related to Inflammation during Sepsis: A Translational Approach. PLoS ONE 10: e0124429.CrossRefPubMedPubMedCentral Otto, G. P., J. Hurtado-Oliveros, H. Y. Chung, K. Knoll, T. Neumann, H. J. Müller, et al. 2015. Plasma Neutrophil Gelatinase-Associated Lipocalin Is Primarily Related to Inflammation during Sepsis: A Translational Approach. PLoS ONE 10: e0124429.CrossRefPubMedPubMedCentral
26.
go back to reference Shaver, C. M., M. G. Paul, N. D. Putz, S. R. Landstreet, J. L. Kuck, L. Scarfe, et al. 2019. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. American Journal of Physiology. Renal Physiology 317: F922–F929.CrossRefPubMedPubMedCentral Shaver, C. M., M. G. Paul, N. D. Putz, S. R. Landstreet, J. L. Kuck, L. Scarfe, et al. 2019. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. American Journal of Physiology. Renal Physiology 317: F922–F929.CrossRefPubMedPubMedCentral
27.
go back to reference Wang, B., G. Chen, J. Li, Y. Zeng, Y. Wu, and X. Yan. 2017. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock. International Journal of Cardiology 227: 589–594.CrossRefPubMed Wang, B., G. Chen, J. Li, Y. Zeng, Y. Wu, and X. Yan. 2017. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock. International Journal of Cardiology 227: 589–594.CrossRefPubMed
28.
go back to reference Huo, L., C. Liu, Y. Yuan, X. Liu, and Q. Cao. 2023. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. European Journal of Medicinal Chemistry 257: 115438.CrossRefPubMed Huo, L., C. Liu, Y. Yuan, X. Liu, and Q. Cao. 2023. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. European Journal of Medicinal Chemistry 257: 115438.CrossRefPubMed
29.
go back to reference Liu, W., X. Guo, L. Jin, T. Hong, Q. Zhang, F. Su, et al. 2022. Lipocalin-2 participates in sepsis-induced myocardial injury by mediating lipid accumulation and mitochondrial dysfunction. Frontiers in Cardiovascular Medicine 9: 1009726.CrossRefPubMedPubMedCentral Liu, W., X. Guo, L. Jin, T. Hong, Q. Zhang, F. Su, et al. 2022. Lipocalin-2 participates in sepsis-induced myocardial injury by mediating lipid accumulation and mitochondrial dysfunction. Frontiers in Cardiovascular Medicine 9: 1009726.CrossRefPubMedPubMedCentral
30.
go back to reference Song, E., S. V. Ramos, X. Huang, Y. Liu, A. Botta, H. K. Sung, et al. 2018. Holo-lipocalin-2-derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. Proceedings of the National Academy of Science U S A 115: 1576–1581.CrossRef Song, E., S. V. Ramos, X. Huang, Y. Liu, A. Botta, H. K. Sung, et al. 2018. Holo-lipocalin-2-derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. Proceedings of the National Academy of Science U S A 115: 1576–1581.CrossRef
31.
go back to reference Qi, Z., R. Liu, H. Ju, M. Huang, Z. Li, W. Li, and Y. Wang. 2023. microRNA-130b-3p Attenuates Septic Cardiomyopathy by Regulating the AMPK/mTOR Signaling Pathways and Directly Targeting ACSL4 against Ferroptosis. International Journal of Biological Sciences 19: 4223–4241.CrossRefPubMedPubMedCentral Qi, Z., R. Liu, H. Ju, M. Huang, Z. Li, W. Li, and Y. Wang. 2023. microRNA-130b-3p Attenuates Septic Cardiomyopathy by Regulating the AMPK/mTOR Signaling Pathways and Directly Targeting ACSL4 against Ferroptosis. International Journal of Biological Sciences 19: 4223–4241.CrossRefPubMedPubMedCentral
32.
go back to reference Kong, C., X. Ni, Y. Wang, A. Zhang, Y. Zhang, F. Lin, et al. 2022. ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discovery 8: 187.CrossRefPubMedPubMedCentral Kong, C., X. Ni, Y. Wang, A. Zhang, Y. Zhang, F. Lin, et al. 2022. ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discovery 8: 187.CrossRefPubMedPubMedCentral
33.
go back to reference Pynn, J. M., E. Parravicini, L. Saiman, D. A. Bateman, J. M. Barasch, and J. M. Lorenz. 2015. Urinary neutrophil gelatinase-associated lipocalin: Potential biomarker for late-onset sepsis. Pediatric Research 78: 76–81.CrossRefPubMed Pynn, J. M., E. Parravicini, L. Saiman, D. A. Bateman, J. M. Barasch, and J. M. Lorenz. 2015. Urinary neutrophil gelatinase-associated lipocalin: Potential biomarker for late-onset sepsis. Pediatric Research 78: 76–81.CrossRefPubMed
34.
go back to reference Wu, Y., C. Yu, Y. Zhou, Z. M. He, W. Zhang, J. Fan, and Y. Sun. 2022. Risk stratification and prognostic value of serum neutrophil gelatinase-associated lipocalin (sNGAL) in sepsis patients. Acta Biochimica Polonica 69: 113–117.PubMed Wu, Y., C. Yu, Y. Zhou, Z. M. He, W. Zhang, J. Fan, and Y. Sun. 2022. Risk stratification and prognostic value of serum neutrophil gelatinase-associated lipocalin (sNGAL) in sepsis patients. Acta Biochimica Polonica 69: 113–117.PubMed
35.
go back to reference Gupta, U., S. Ghosh, C.T. Wallace, P. Shang, Y. Xin, A. P. Nair, et al. 2023. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 19: 92–111.CrossRefPubMed Gupta, U., S. Ghosh, C.T. Wallace, P. Shang, Y. Xin, A. P. Nair, et al. 2023. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 19: 92–111.CrossRefPubMed
36.
go back to reference Wang, D., X. Li, D. Jiao, Y. Cai, L. Qian, Y. Shen, et al. 2023. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. Journal of Hematology & Oncology 16: 30.CrossRef Wang, D., X. Li, D. Jiao, Y. Cai, L. Qian, Y. Shen, et al. 2023. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. Journal of Hematology & Oncology 16: 30.CrossRef
Metadata
Title
Targeting Lcn2 to Inhibit Myocardial Cell Ferroptosis is a Potential Therapy for Alleviating Septic Cardiomyopathy
Authors
Cheng Jiang
MingTong Hou
Shougang Sun
Gang Chen
Feng Bai
Shengbao Wang
Publication date
03-02-2025
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-025-02250-3

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more