Skip to main content
Top
Published in:

Open Access 01-12-2024 | Cancer Therapy | Review

Towards precision medicine: design considerations for nanozymes in tumor treatment

Authors: Xinqiao Li, Jinpeng Hu, Qi Zhao, Weifeng Yao, Zhitao Jing, Zhizhong Jin

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Since the discovery of Fe3O4 nanoparticles with enzyme-like activity in 2007, nanozymes have emerged as a promising class of catalysts, offering advantages such as high catalytic efficiency, low cost, mild reaction conditions, and excellent stability. These properties make nanozymes highly suitable for large-scale production. In recent years, the convergence of nanomedicine and nanocatalysis has highlighted the potential of nanozymes in diagnostic and therapeutic applications, particularly in tumor therapy. Despite these advancements, the clinical translation of nanozymes remains hindered by the lack of designs tailored to specific tumor characteristics, limiting their effectiveness in targeted therapy. This review addresses the mechanisms by which nanozymes induce cell death in various tumor types and emphasizes the key design considerations needed to enhance their therapeutic potential. By identifying the challenges and opportunities in the field, this study aims to provide a foundation for future nanozyme development, ultimately contributing to more precise and effective cancer treatments.
Literature
1.
go back to reference Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54.PubMedCrossRef Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54.PubMedCrossRef
2.
go back to reference Rosic G, Selakovic D, Omarova S. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv Biol Earth Sci. 2024;9:11–34.CrossRef Rosic G, Selakovic D, Omarova S. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv Biol Earth Sci. 2024;9:11–34.CrossRef
3.
go back to reference Pei Z, Chen S, Ding L, et al. Current perspectives and trend of nanomedicine in cancer: a review and bibliometric analysis. J Control Release. 2022;352:211–41.PubMedCrossRef Pei Z, Chen S, Ding L, et al. Current perspectives and trend of nanomedicine in cancer: a review and bibliometric analysis. J Control Release. 2022;352:211–41.PubMedCrossRef
4.
go back to reference Amirova M. Specific biochemical indicators and inflammatory markers in rheumatoid arthritis (RA). Adv Biol Earth Sci. 2024;9(1):175–83.CrossRef Amirova M. Specific biochemical indicators and inflammatory markers in rheumatoid arthritis (RA). Adv Biol Earth Sci. 2024;9(1):175–83.CrossRef
5.
go back to reference Miryusifova K, et al. The saffron effects on the dynamics of experimental epilepsy. Adv Biol Earth Sci. 2024;9(1):196–202.CrossRef Miryusifova K, et al. The saffron effects on the dynamics of experimental epilepsy. Adv Biol Earth Sci. 2024;9(1):196–202.CrossRef
6.
go back to reference Karadağ M, et al. Use of Prunus armeniaca L. seed oil and pulp in health and cosmetic products. Adv Biol Earth Sci. 2024;9(1):105–10.CrossRef Karadağ M, et al. Use of Prunus armeniaca L. seed oil and pulp in health and cosmetic products. Adv Biol Earth Sci. 2024;9(1):105–10.CrossRef
8.
go back to reference Salahshour P, et al. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs. Adv Biol Earth Sci. 2024;9:97–104.CrossRef Salahshour P, et al. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs. Adv Biol Earth Sci. 2024;9:97–104.CrossRef
10.
go back to reference Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.PubMedPubMedCentralCrossRef Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.PubMedPubMedCentralCrossRef
11.
go back to reference Yao J, Peng H, Qiu Y, et al. Nanoplatform-mediated calcium overload for cancer therapy. J Mater Chem B. 2022;10(10):1508–19.PubMedCrossRef Yao J, Peng H, Qiu Y, et al. Nanoplatform-mediated calcium overload for cancer therapy. J Mater Chem B. 2022;10(10):1508–19.PubMedCrossRef
12.
go back to reference Li J, Yi X, Liu L, et al. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis. 2023;28(7–8):1198–215.PubMedCrossRef Li J, Yi X, Liu L, et al. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis. 2023;28(7–8):1198–215.PubMedCrossRef
13.
go back to reference Zhang X, Chen X, Zhao Y. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano Micro Lett. 2022;14(1):95.CrossRef Zhang X, Chen X, Zhao Y. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano Micro Lett. 2022;14(1):95.CrossRef
14.
go back to reference Gomaa EZ. Nanozymes: a promising horizon for medical and environmental applications. J Cluster Sci. 2022;33(4):1275–97.CrossRef Gomaa EZ. Nanozymes: a promising horizon for medical and environmental applications. J Cluster Sci. 2022;33(4):1275–97.CrossRef
15.
go back to reference Ji S, Jiang B, Hao H, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat Catal. 2021;4(5):407–17.CrossRef Ji S, Jiang B, Hao H, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat Catal. 2021;4(5):407–17.CrossRef
16.
go back to reference Liu C-P, Wu T-H, Liu C-Y, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13(26):1700278.CrossRef Liu C-P, Wu T-H, Liu C-Y, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13(26):1700278.CrossRef
17.
go back to reference Muhammad P, Hanif S, Li J, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today. 2022;45: 101530.CrossRef Muhammad P, Hanif S, Li J, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today. 2022;45: 101530.CrossRef
18.
go back to reference Chen X, Yang Y, Ye G, et al. Chiral ruthenium nanozymes with self-cascade reaction driven the no generation induced macrophage M1 polarization realizing the lung cancer “cocktail therapy.” Small. 2023;19:2207823.CrossRef Chen X, Yang Y, Ye G, et al. Chiral ruthenium nanozymes with self-cascade reaction driven the no generation induced macrophage M1 polarization realizing the lung cancer “cocktail therapy.” Small. 2023;19:2207823.CrossRef
19.
go back to reference Tao N, Li H, Deng L, et al. A cascade nanozyme with amplified sonodynamic therapeutic effects through comodulation of hypoxia and immunosuppression against cancer. ACS Nano. 2022;16(1):485–501.PubMedCrossRef Tao N, Li H, Deng L, et al. A cascade nanozyme with amplified sonodynamic therapeutic effects through comodulation of hypoxia and immunosuppression against cancer. ACS Nano. 2022;16(1):485–501.PubMedCrossRef
20.
go back to reference Jana D, He B, Chen Y, et al. A defect-engineered nanozyme for targeted NIR-II photothermal immunotherapy of cancer. Adv Mater. 2022;36:2206401.CrossRef Jana D, He B, Chen Y, et al. A defect-engineered nanozyme for targeted NIR-II photothermal immunotherapy of cancer. Adv Mater. 2022;36:2206401.CrossRef
21.
go back to reference Peng F, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):1–66. Peng F, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):1–66.
22.
go back to reference Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J Mol Biol. 2022;434(4): 167378.PubMedCrossRef Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J Mol Biol. 2022;434(4): 167378.PubMedCrossRef
23.
25.
go back to reference Li B, Bai Y, Yion C, et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano. 2023;17(8):7511–29.PubMedCrossRef Li B, Bai Y, Yion C, et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano. 2023;17(8):7511–29.PubMedCrossRef
26.
go back to reference Cao F, Sang Y, Liu C, et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano. 2022;16(1):855–68.PubMedCrossRef Cao F, Sang Y, Liu C, et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano. 2022;16(1):855–68.PubMedCrossRef
27.
go back to reference Meng X, Li D, Chen L, et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano. 2021;15(3):5735–51.PubMedCrossRef Meng X, Li D, Chen L, et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano. 2021;15(3):5735–51.PubMedCrossRef
28.
go back to reference Xu T, Ma Y, Yuan Q, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano. 2020;14(3):3414–25.PubMedCrossRef Xu T, Ma Y, Yuan Q, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano. 2020;14(3):3414–25.PubMedCrossRef
29.
go back to reference Dong C, Dai X, Wang X, et al. A calcium fluoride nanozyme for ultrasound-amplified and Ca2+ -overload-enhanced catalytic tumor nanotherapy. Adv Mater (Deerfield Beach, Fla). 2022;34(43): e2205680.CrossRef Dong C, Dai X, Wang X, et al. A calcium fluoride nanozyme for ultrasound-amplified and Ca2+ -overload-enhanced catalytic tumor nanotherapy. Adv Mater (Deerfield Beach, Fla). 2022;34(43): e2205680.CrossRef
30.
go back to reference Wang Z, Wang X, Dai X, et al. 2D catalytic nanozyme enables cascade enzyodynamic effect-boosted and Ca2+ overload-induced synergistic ferroptosis/apoptosis in tumor. Adv Mater (Deerfield Beach, Fla). 2024;36: e2312316.CrossRef Wang Z, Wang X, Dai X, et al. 2D catalytic nanozyme enables cascade enzyodynamic effect-boosted and Ca2+ overload-induced synergistic ferroptosis/apoptosis in tumor. Adv Mater (Deerfield Beach, Fla). 2024;36: e2312316.CrossRef
31.
go back to reference Chang M, Zhang L, Zhang T, et al. Ultrasound-augmented enzyodynamic-Ca2+ overload synergetic tumor nanotherapy. Biomaterials. 2024;307: 122513.PubMedCrossRef Chang M, Zhang L, Zhang T, et al. Ultrasound-augmented enzyodynamic-Ca2+ overload synergetic tumor nanotherapy. Biomaterials. 2024;307: 122513.PubMedCrossRef
32.
go back to reference Chang M, Wang Z, Dong C, et al. Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv Mater. 2022;35:2208817.CrossRef Chang M, Wang Z, Dong C, et al. Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv Mater. 2022;35:2208817.CrossRef
33.
go back to reference Tao N, Jiao L, Li H, et al. A mild hyperthermia hollow carbon nanozyme as pyroptosis inducer for boosted antitumor immunity. ACS Nano. 2023;17(22):22844–58.PubMedCrossRef Tao N, Jiao L, Li H, et al. A mild hyperthermia hollow carbon nanozyme as pyroptosis inducer for boosted antitumor immunity. ACS Nano. 2023;17(22):22844–58.PubMedCrossRef
34.
go back to reference Yao H, Gong X, Geng M, et al. Cascade nanozymes based on the “butterfly effect” for enhanced starvation therapy through the regulation of autophagy. Biomater Sci. 2022;10(14):4008–22.PubMedCrossRef Yao H, Gong X, Geng M, et al. Cascade nanozymes based on the “butterfly effect” for enhanced starvation therapy through the regulation of autophagy. Biomater Sci. 2022;10(14):4008–22.PubMedCrossRef
35.
go back to reference Wang Y, Huang Y, Fu Y, et al. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res. 2023;16(4):5226–36.PubMedCrossRef Wang Y, Huang Y, Fu Y, et al. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res. 2023;16(4):5226–36.PubMedCrossRef
36.
go back to reference Yin N, Wang Y, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv Sci. 2023;10(3): e2204937.CrossRef Yin N, Wang Y, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv Sci. 2023;10(3): e2204937.CrossRef
38.
go back to reference Shen Z, Song J, Yung BC, et al. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30(12):1704007.CrossRef Shen Z, Song J, Yung BC, et al. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30(12):1704007.CrossRef
39.
go back to reference Zhou H, Guo M, Li J, et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J Am Chem Soc. 2021;143(4):1846–53.PubMedCrossRef Zhou H, Guo M, Li J, et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J Am Chem Soc. 2021;143(4):1846–53.PubMedCrossRef
40.
go back to reference Zheng P, Ding B, Shi R, et al. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv Mater. 2021;33(15):2007426.CrossRef Zheng P, Ding B, Shi R, et al. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv Mater. 2021;33(15):2007426.CrossRef
41.
go back to reference Pesakhov S, Nachliely M, Barvish Z, et al. Cancer-selective cytotoxic Ca 2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7(22):31847–61.PubMedPubMedCentralCrossRef Pesakhov S, Nachliely M, Barvish Z, et al. Cancer-selective cytotoxic Ca 2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7(22):31847–61.PubMedPubMedCentralCrossRef
42.
go back to reference Shen J, Yu H, Shu Y, et al. A robust ROS generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading. Adv Func Mater. 2021;31(50):2106106.CrossRef Shen J, Yu H, Shu Y, et al. A robust ROS generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading. Adv Func Mater. 2021;31(50):2106106.CrossRef
43.
go back to reference Chu X, Jiang X, Liu Y, et al. Nitric oxide modulating calcium store for ca2+-initiated cancer therapy. Adv Func Mater. 2021;31(13):2008507.CrossRef Chu X, Jiang X, Liu Y, et al. Nitric oxide modulating calcium store for ca2+-initiated cancer therapy. Adv Func Mater. 2021;31(13):2008507.CrossRef
44.
go back to reference Gong F, Xu J, Liu B, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem. 2022;8(1):268–86.CrossRef Gong F, Xu J, Liu B, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem. 2022;8(1):268–86.CrossRef
45.
go back to reference Zhang M, Song R, Liu Y, et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem. 2019;5(8):2171–82.CrossRef Zhang M, Song R, Liu Y, et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem. 2019;5(8):2171–82.CrossRef
46.
go back to reference Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9.PubMedCrossRef Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9.PubMedCrossRef
48.
go back to reference Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4.PubMedCrossRef Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4.PubMedCrossRef
49.
go back to reference Zheng P, Ding B, Zhu G, et al. Biodegradable Ca 2+ nanomodulators activate pyroptosis through mitochondrial Ca 2+ overload for cancer immunotherapy. Angew Chem Int Ed. 2022;61(36): e202204904.CrossRef Zheng P, Ding B, Zhu G, et al. Biodegradable Ca 2+ nanomodulators activate pyroptosis through mitochondrial Ca 2+ overload for cancer immunotherapy. Angew Chem Int Ed. 2022;61(36): e202204904.CrossRef
50.
go back to reference Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–30.PubMedPubMedCentralCrossRef Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–30.PubMedPubMedCentralCrossRef
51.
go back to reference Wang Y, Lin Y-X, Wang J, et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano. 2019;13(7):7568–77.PubMedCrossRef Wang Y, Lin Y-X, Wang J, et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano. 2019;13(7):7568–77.PubMedCrossRef
52.
go back to reference Duo Y, Yang M, Du Z, et al. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater. 2018;79:317–30.PubMedCrossRef Duo Y, Yang M, Du Z, et al. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater. 2018;79:317–30.PubMedCrossRef
53.
go back to reference Wang X, Li M, Ren K, et al. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy. Adv Mater. 2020;32(32):2002160.CrossRef Wang X, Li M, Ren K, et al. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy. Adv Mater. 2020;32(32):2002160.CrossRef
54.
go back to reference Yin N, Wang Y, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv Sci. 2023;10(3):2204937.CrossRef Yin N, Wang Y, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Adv Sci. 2023;10(3):2204937.CrossRef
55.
go back to reference Nie D, Ling Y, Lv W, et al. In situ attached photothermal immunomodulation-enhanced nanozyme for the inhibition of postoperative malignant glioma recurrence. ACS Nano. 2023;17(14):13885–902.PubMedCrossRef Nie D, Ling Y, Lv W, et al. In situ attached photothermal immunomodulation-enhanced nanozyme for the inhibition of postoperative malignant glioma recurrence. ACS Nano. 2023;17(14):13885–902.PubMedCrossRef
56.
go back to reference Qian X, Shi R, Chen J, et al. The single-atom iron nanozyme mimicking peroxidase remodels energy metabolism and tumor immune landscape for synergistic chemodynamic therapy and photothermal therapy of triple-negative breast cancer. Front Bioeng Biotechnol. 2022;10:1026761.PubMedPubMedCentralCrossRef Qian X, Shi R, Chen J, et al. The single-atom iron nanozyme mimicking peroxidase remodels energy metabolism and tumor immune landscape for synergistic chemodynamic therapy and photothermal therapy of triple-negative breast cancer. Front Bioeng Biotechnol. 2022;10:1026761.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Xie Y, Wang M, Qian Y, et al. Novel PdPtCu nanozymes for reprogramming tumor microenvironment to boost immunotherapy through endoplasmic reticulum stress and blocking IDO-mediated immune escape. Small. 2023;19:2303596.CrossRef Xie Y, Wang M, Qian Y, et al. Novel PdPtCu nanozymes for reprogramming tumor microenvironment to boost immunotherapy through endoplasmic reticulum stress and blocking IDO-mediated immune escape. Small. 2023;19:2303596.CrossRef
59.
go back to reference Liu J, Wang A, Liu S, et al. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew Chem Int Ed. 2021;60(48):25328–38.CrossRef Liu J, Wang A, Liu S, et al. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew Chem Int Ed. 2021;60(48):25328–38.CrossRef
60.
go back to reference Zeng W, Yu M, Chen T, et al. Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy. Adv Sci. 2022;9(23):2201703.CrossRef Zeng W, Yu M, Chen T, et al. Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy. Adv Sci. 2022;9(23):2201703.CrossRef
61.
go back to reference Zhu Y, Wang W, Cheng J, et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem. 2021;133(17):9566–74.CrossRef Zhu Y, Wang W, Cheng J, et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem. 2021;133(17):9566–74.CrossRef
62.
go back to reference Liu Y, Wang B, Zhu J, et al. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv Mater. 2023;35:2208512.CrossRef Liu Y, Wang B, Zhu J, et al. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv Mater. 2023;35:2208512.CrossRef
63.
go back to reference Cai S, Liu J, Ding J, et al. Tumor-microenvironment-responsive cascade reactions by a cobalt-single-atom nanozyme for synergistic nanocatalytic chemotherapy. Angew Chem Int Ed. 2022;61(48): e202204502.CrossRef Cai S, Liu J, Ding J, et al. Tumor-microenvironment-responsive cascade reactions by a cobalt-single-atom nanozyme for synergistic nanocatalytic chemotherapy. Angew Chem Int Ed. 2022;61(48): e202204502.CrossRef
64.
go back to reference Xu B, Li S, Zheng L, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv Mater. 2022;34(15):2107088.CrossRef Xu B, Li S, Zheng L, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv Mater. 2022;34(15):2107088.CrossRef
65.
go back to reference Ye J, Lv W, Li C, et al. Tumor response and NIR-II photonic thermal co-enhanced catalytic therapy based on single-atom manganese nanozyme. Adv Func Mater. 2022;32(47):2206157.CrossRef Ye J, Lv W, Li C, et al. Tumor response and NIR-II photonic thermal co-enhanced catalytic therapy based on single-atom manganese nanozyme. Adv Func Mater. 2022;32(47):2206157.CrossRef
66.
go back to reference Yuan H, Xia P, Sun X, et al. Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small. 2022;18(41):2202161.CrossRef Yuan H, Xia P, Sun X, et al. Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small. 2022;18(41):2202161.CrossRef
67.
go back to reference Zhang C, Chen L, Bai Q, et al. Nonmetal graphdiyne nanozyme-based ferroptosis-apoptosis strategy for colon cancer therapy. ACS Appl Mater Interfaces. 2022;14(24):27720–32.PubMedCrossRef Zhang C, Chen L, Bai Q, et al. Nonmetal graphdiyne nanozyme-based ferroptosis-apoptosis strategy for colon cancer therapy. ACS Appl Mater Interfaces. 2022;14(24):27720–32.PubMedCrossRef
68.
go back to reference Wang L, Zhang X, You Z, et al. Charges-enhanced molybdenum disulfide nanozyme activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew Chem Int Ed. 2022;135:202217448.CrossRef Wang L, Zhang X, You Z, et al. Charges-enhanced molybdenum disulfide nanozyme activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew Chem Int Ed. 2022;135:202217448.CrossRef
69.
go back to reference Wei Y, Wu S, Liu Z, et al. Tumor associated macrophages reprogrammed by targeted bifunctional bioorthogonal nanozymes for enhanced tumor immunotherapy. Mater Today. 2022;56:16–28.CrossRef Wei Y, Wu S, Liu Z, et al. Tumor associated macrophages reprogrammed by targeted bifunctional bioorthogonal nanozymes for enhanced tumor immunotherapy. Mater Today. 2022;56:16–28.CrossRef
70.
go back to reference Zhao J, Duan W, Liu X, et al. Microneedle patch integrated with porous silicon confined dual nanozymes for synergistic and hyperthermia-enhanced nanocatalytic ferroptosis treatment of melanoma. Adv Func Mater. 2023;33(47):2308183.CrossRef Zhao J, Duan W, Liu X, et al. Microneedle patch integrated with porous silicon confined dual nanozymes for synergistic and hyperthermia-enhanced nanocatalytic ferroptosis treatment of melanoma. Adv Func Mater. 2023;33(47):2308183.CrossRef
71.
go back to reference Tang M, Shi Y, Lu L, et al. Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem Eng J. 2022;449: 137847.CrossRef Tang M, Shi Y, Lu L, et al. Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem Eng J. 2022;449: 137847.CrossRef
72.
go back to reference Liang Y, Liao C, Guo X, et al. RhRu alloy-anchored mxene nanozyme for synergistic osteosarcoma therapy. Small. 2023;19(22):2205511.CrossRef Liang Y, Liao C, Guo X, et al. RhRu alloy-anchored mxene nanozyme for synergistic osteosarcoma therapy. Small. 2023;19(22):2205511.CrossRef
73.
go back to reference Sun Y, Liu X, Wang L, et al. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater. 2022;10:117–30.PubMed Sun Y, Liu X, Wang L, et al. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater. 2022;10:117–30.PubMed
74.
go back to reference Kong F, He H, Bai H, et al. A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioact Mater. 2022;18:526–38.PubMedPubMedCentral Kong F, He H, Bai H, et al. A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioact Mater. 2022;18:526–38.PubMedPubMedCentral
75.
go back to reference Kong F, Bai H, Ma M, et al. Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today. 2021;37: 101106.CrossRef Kong F, Bai H, Ma M, et al. Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today. 2021;37: 101106.CrossRef
77.
go back to reference Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.PubMedCrossRef Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.PubMedCrossRef
78.
go back to reference Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRef Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRef
79.
go back to reference Zhou Y, Peng Z, Seven ES, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.PubMedCrossRef Zhou Y, Peng Z, Seven ES, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.PubMedCrossRef
80.
go back to reference Li X, Geng X, Chen Z, et al. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res. 2022;179: 106218.PubMedCrossRef Li X, Geng X, Chen Z, et al. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res. 2022;179: 106218.PubMedCrossRef
81.
go back to reference Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater (Deerfield Beach, Fla). 2017;29(13): e28134459. Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater (Deerfield Beach, Fla). 2017;29(13): e28134459.
82.
go back to reference Ou M, Cho H-Y, Fu J, et al. Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate. Autophagy. 2023;19(12):3169–88.PubMedPubMedCentralCrossRef Ou M, Cho H-Y, Fu J, et al. Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate. Autophagy. 2023;19(12):3169–88.PubMedPubMedCentralCrossRef
83.
go back to reference Zhan Z, Zeng W, Liu J, et al. Engineered biomimetic copper sulfide nanozyme mediates “don’t eat me” signaling for photothermal and chemodynamic precision therapies of breast cancer. ACS Appl Mater Interfaces. 2023;15(20):24071–83.PubMedCrossRef Zhan Z, Zeng W, Liu J, et al. Engineered biomimetic copper sulfide nanozyme mediates “don’t eat me” signaling for photothermal and chemodynamic precision therapies of breast cancer. ACS Appl Mater Interfaces. 2023;15(20):24071–83.PubMedCrossRef
84.
go back to reference Zhou S, Tian T, Meng T, et al. Tumor-derived covalent organic framework nanozymes for targeted chemo-photothermal combination therapy. IScience. 2023;26(8):107348.PubMedPubMedCentralCrossRef Zhou S, Tian T, Meng T, et al. Tumor-derived covalent organic framework nanozymes for targeted chemo-photothermal combination therapy. IScience. 2023;26(8):107348.PubMedPubMedCentralCrossRef
85.
go back to reference Wang X, Chen Q, Zhu Y, et al. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct Target Ther. 2023;8(1):1–12. Wang X, Chen Q, Zhu Y, et al. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct Target Ther. 2023;8(1):1–12.
87.
go back to reference Kabel AM. Tumor markers of breast cancer: new prospectives. J Oncol Sci. 2017;3(1):5–11.CrossRef Kabel AM. Tumor markers of breast cancer: new prospectives. J Oncol Sci. 2017;3(1):5–11.CrossRef
88.
go back to reference Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012: 743193.PubMedPubMedCentral Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012: 743193.PubMedPubMedCentral
89.
go back to reference Pareja F, Geyer FC, Marchiò C, et al. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. Npj Breast Cancer. 2016;2(1):1–11.CrossRef Pareja F, Geyer FC, Marchiò C, et al. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. Npj Breast Cancer. 2016;2(1):1–11.CrossRef
90.
go back to reference Wan G, Chen B, Li L, et al. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials. 2018;155:25–40.PubMedCrossRef Wan G, Chen B, Li L, et al. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials. 2018;155:25–40.PubMedCrossRef
91.
go back to reference Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.PubMedCrossRef Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.PubMedCrossRef
92.
go back to reference Zeng X, Ruan Y, Chen Q, et al. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chem Eng J. 2023;452: 138422.CrossRef Zeng X, Ruan Y, Chen Q, et al. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chem Eng J. 2023;452: 138422.CrossRef
93.
go back to reference Kadkhoda J, Tarighatnia A, Tohidkia MR, et al. Photothermal therapy-mediated autophagy in breast cancer treatment: progress and trends. Life Sci. 2022;298: 120499.PubMedCrossRef Kadkhoda J, Tarighatnia A, Tohidkia MR, et al. Photothermal therapy-mediated autophagy in breast cancer treatment: progress and trends. Life Sci. 2022;298: 120499.PubMedCrossRef
94.
go back to reference Gustalik J, Aebisher D, Bartusik-Aebisher D. Photodynamic therapy in breast cancer treatment. J Appl Biomed. 2022;20(3):98–105.PubMedCrossRef Gustalik J, Aebisher D, Bartusik-Aebisher D. Photodynamic therapy in breast cancer treatment. J Appl Biomed. 2022;20(3):98–105.PubMedCrossRef
95.
go back to reference Liu G, Liu M, Li X, et al. Peroxide-simulating and GSH-depleting nanozyme for enhanced chemodynamic/photodynamic therapy via induction of multisource ROS. ACS Appl Mater Interfaces. 2023;15(41):47955–68.PubMedCrossRef Liu G, Liu M, Li X, et al. Peroxide-simulating and GSH-depleting nanozyme for enhanced chemodynamic/photodynamic therapy via induction of multisource ROS. ACS Appl Mater Interfaces. 2023;15(41):47955–68.PubMedCrossRef
96.
go back to reference Liu Y, Wang P, Liu Q, et al. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. Ultrason Sonochem. 2016;31:437–48.PubMedCrossRef Liu Y, Wang P, Liu Q, et al. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. Ultrason Sonochem. 2016;31:437–48.PubMedCrossRef
100.
go back to reference The Lancet Null. Lung cancer: some progress, but still a lot more to do. Lancet (London, England). 2019;394(10212):1880.CrossRef The Lancet Null. Lung cancer: some progress, but still a lot more to do. Lancet (London, England). 2019;394(10212):1880.CrossRef
101.
go back to reference Chaft JE, Rimner A, Weder W, et al. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 2021;18(9):547–57.PubMedPubMedCentralCrossRef Chaft JE, Rimner A, Weder W, et al. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 2021;18(9):547–57.PubMedPubMedCentralCrossRef
102.
go back to reference Allison R, Moghissi K, Downie G, et al. Photodynamic therapy (PDT) for lung cancer. Photodiagn Photodyn Ther. 2011;8(3):231–9.CrossRef Allison R, Moghissi K, Downie G, et al. Photodynamic therapy (PDT) for lung cancer. Photodiagn Photodyn Ther. 2011;8(3):231–9.CrossRef
104.
go back to reference Zhou K, Li S, Zhao Y, et al. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol. 2023;14:1127071.PubMedPubMedCentralCrossRef Zhou K, Li S, Zhao Y, et al. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol. 2023;14:1127071.PubMedPubMedCentralCrossRef
105.
107.
go back to reference Anwanwan D, Singh SK, Singh S, et al. (2020) Challenges in liver cancer and possible treatment approaches. Biochim Et Biophys Acta. 1873;1:188314. Anwanwan D, Singh SK, Singh S, et al. (2020) Challenges in liver cancer and possible treatment approaches. Biochim Et Biophys Acta. 1873;1:188314.
108.
go back to reference Li X, Ramadori P, Pfister D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21(9):541–57.PubMedCrossRef Li X, Ramadori P, Pfister D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21(9):541–57.PubMedCrossRef
110.
go back to reference Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells. 2020;9(6):1370.PubMedPubMedCentralCrossRef Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells. 2020;9(6):1370.PubMedPubMedCentralCrossRef
111.
go back to reference Tsukuma H, Tanaka H, Ajiki W, et al. Liver cancer and its prevention. Asian Pac J Cancer Prev APJCP. 2005;6(3):244–50.PubMed Tsukuma H, Tanaka H, Ajiki W, et al. Liver cancer and its prevention. Asian Pac J Cancer Prev APJCP. 2005;6(3):244–50.PubMed
112.
go back to reference Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol. 2018;43(1):13–25.CrossRef Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol. 2018;43(1):13–25.CrossRef
113.
go back to reference Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy. Biomark Res. 2013;1(1):10.PubMedPubMedCentralCrossRef Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy. Biomark Res. 2013;1(1):10.PubMedPubMedCentralCrossRef
114.
go back to reference Jing H, Ren Y, Zhou Y, et al. Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity. Acta Pharm Sin B. 2023;13(12):5030–47.PubMedPubMedCentralCrossRef Jing H, Ren Y, Zhou Y, et al. Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity. Acta Pharm Sin B. 2023;13(12):5030–47.PubMedPubMedCentralCrossRef
115.
go back to reference Favoriti P, Carbone G, Greco M, et al. Worldwide burden of colorectal cancer: a review. Updat Surg. 2016;68(1):7–11.CrossRef Favoriti P, Carbone G, Greco M, et al. Worldwide burden of colorectal cancer: a review. Updat Surg. 2016;68(1):7–11.CrossRef
116.
go back to reference Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet (London, England). 2014;383(9927):1490–502.PubMedCrossRef Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet (London, England). 2014;383(9927):1490–502.PubMedCrossRef
117.
118.
go back to reference Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRef Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRef
119.
go back to reference Vong LB, Yoshitomi T, Matsui H, et al. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 2015;55:54–63.PubMedCrossRef Vong LB, Yoshitomi T, Matsui H, et al. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 2015;55:54–63.PubMedCrossRef
120.
go back to reference Miao Z, Jiang S, Ding M, et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020;20(5):3079–89.PubMedCrossRef Miao Z, Jiang S, Ding M, et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020;20(5):3079–89.PubMedCrossRef
121.
go back to reference Huang S, Ding D, Lan T, et al. Multifunctional nanodrug performs sonodynamic therapy and inhibits TGF-β to boost immune response against colorectal cancer and liver metastasis. Acta Biomater. 2023;164:538–52.PubMedCrossRef Huang S, Ding D, Lan T, et al. Multifunctional nanodrug performs sonodynamic therapy and inhibits TGF-β to boost immune response against colorectal cancer and liver metastasis. Acta Biomater. 2023;164:538–52.PubMedCrossRef
122.
go back to reference Zhang Y, Zhao J, Zhang L, et al. A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today. 2023;49: 101798.CrossRef Zhang Y, Zhao J, Zhang L, et al. A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today. 2023;49: 101798.CrossRef
123.
go back to reference Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 2023;20(7):429–52.PubMedCrossRef Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 2023;20(7):429–52.PubMedCrossRef
124.
125.
go back to reference Chen C, Xie L, Ren T, et al. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021;500:1–10.PubMedCrossRef Chen C, Xie L, Ren T, et al. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021;500:1–10.PubMedCrossRef
126.
go back to reference Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.PubMedPubMedCentralCrossRef Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.PubMedPubMedCentralCrossRef
127.
go back to reference Smeland S, Bielack SS, Whelan J, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50.PubMedPubMedCentralCrossRef Smeland S, Bielack SS, Whelan J, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50.PubMedPubMedCentralCrossRef
128.
go back to reference Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385(22):2066–76.PubMedCrossRef Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385(22):2066–76.PubMedCrossRef
129.
go back to reference Chen B, Xiang H, Pan S, et al. Advanced theragenerative biomaterials with therapeutic and regeneration multifunctionality. Adv Func Mater. 2020;30(34):2002621.CrossRef Chen B, Xiang H, Pan S, et al. Advanced theragenerative biomaterials with therapeutic and regeneration multifunctionality. Adv Func Mater. 2020;30(34):2002621.CrossRef
131.
go back to reference Aglietta M, De Vincentiis A, Lanata L, Lanza F, Lemoli RM, Menichella G, Tafuri A, Zanon P, Tura S. Peripheral blood stem cells in acute myeloid leukemia: biology and clinical applications. Haematologica. 1996;81:77.PubMed Aglietta M, De Vincentiis A, Lanata L, Lanza F, Lemoli RM, Menichella G, Tafuri A, Zanon P, Tura S. Peripheral blood stem cells in acute myeloid leukemia: biology and clinical applications. Haematologica. 1996;81:77.PubMed
132.
go back to reference Rautenberg C, Germing U, Haas R, et al. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: prevention, detection, and treatment. Int J Mol Sci. 2019;20(1):228.PubMedPubMedCentralCrossRef Rautenberg C, Germing U, Haas R, et al. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: prevention, detection, and treatment. Int J Mol Sci. 2019;20(1):228.PubMedPubMedCentralCrossRef
134.
135.
go back to reference Zhang H, Fang H, Wang K. Reactive oxygen species in eradicating acute myeloid leukemic stem cells. Stem Cell Investig. 2014;1:13.PubMedPubMedCentral Zhang H, Fang H, Wang K. Reactive oxygen species in eradicating acute myeloid leukemic stem cells. Stem Cell Investig. 2014;1:13.PubMedPubMedCentral
136.
Metadata
Title
Towards precision medicine: design considerations for nanozymes in tumor treatment
Authors
Xinqiao Li
Jinpeng Hu
Qi Zhao
Weifeng Yao
Zhitao Jing
Zhizhong Jin
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05845-w

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more