Skip to main content
Top
Published in:

Open Access 01-12-2024 | Review

Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications

Authors: Hua-Qi Si, Peng Wang, Fei Long, Wei Zhong, Yuan-Dong Meng, Yuan Rong, Xiang-Yu Meng, Fu-Bing Wang

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Liquid biopsies, in particular, analysis of cell-free DNA, are expected to revolutionize the current landscape of cancer diagnostics and treatment. However, the existing methods for cfDNA-based liquid biopsies for cancer have certain limitations, such as fragment interruption and GC bias, which are likely to be resolved by the emerging Oxford Nanopore Technologies (ONT), characterized by long read-length, fast read-times, high throughput, and polymerase chain reaction-free. In this review, we summarized the current literatures regarding the feasibility and applications of cfDNA-based liquid biopsies using ONT for cancer management, a possible game-changer that we believe is promising in detecting multimodal biomarkers and can be applied in a wide range of oncology utilities including early screening, diagnosis, and treatment monitoring.

Graphical abstract

Literature
1.
go back to reference Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63.PubMedCrossRef Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63.PubMedCrossRef
2.
go back to reference Li S, et al. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int J Cancer. 2021;148(11):2640–51.PubMedCrossRef Li S, et al. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int J Cancer. 2021;148(11):2640–51.PubMedCrossRef
3.
go back to reference Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef
4.
go back to reference Luo H, et al. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med. 2021;27(5):482–500.PubMedCrossRef Luo H, et al. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med. 2021;27(5):482–500.PubMedCrossRef
5.
go back to reference Lo YMD. et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616. Lo YMD. et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616.
6.
go back to reference Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain. 2023;146(5):1758–74.PubMedCrossRef Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain. 2023;146(5):1758–74.PubMedCrossRef
7.
go back to reference Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer–a survey. Biochim Biophys Acta. 2007;1775(1):181–232.PubMed Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer–a survey. Biochim Biophys Acta. 2007;1775(1):181–232.PubMed
8.
go back to reference Liu MC, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–59.PubMedCrossRef Liu MC, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–59.PubMedCrossRef
9.
go back to reference Shen SY, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–83.PubMedCrossRef Shen SY, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–83.PubMedCrossRef
10.
go back to reference Pascual J, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2022;33(8):750–68.PubMedCrossRef Pascual J, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2022;33(8):750–68.PubMedCrossRef
12.
go back to reference Santis G, et al. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PLoS ONE. 2011;6(9):e25191.PubMedPubMedCentralCrossRef Santis G, et al. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PLoS ONE. 2011;6(9):e25191.PubMedPubMedCentralCrossRef
13.
go back to reference Sorenson GD, et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994;3(1):67–71.PubMed Sorenson GD, et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994;3(1):67–71.PubMed
14.
go back to reference Sorber L, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–7.PubMedCrossRef Sorber L, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–7.PubMedCrossRef
15.
go back to reference van Dijk EL, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26.PubMedCrossRef van Dijk EL, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26.PubMedCrossRef
16.
go back to reference Yu SCY. et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc Natl Acad Sci USA. 2021;118(50):e2114937118. Yu SCY. et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc Natl Acad Sci USA. 2021;118(50):e2114937118.
17.
go back to reference Clarke J, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.PubMedCrossRef Clarke J, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.PubMedCrossRef
19.
go back to reference Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem. 2024;16(3):314–34.PubMedCrossRef Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem. 2024;16(3):314–34.PubMedCrossRef
20.
go back to reference Katsman E, et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022;23(1):158.PubMedPubMedCentralCrossRef Katsman E, et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022;23(1):158.PubMedPubMedCentralCrossRef
21.
go back to reference van der Pol Y, et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol Med. 2023;15(12):e17282.PubMedPubMedCentralCrossRef van der Pol Y, et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol Med. 2023;15(12):e17282.PubMedPubMedCentralCrossRef
22.
go back to reference Yu SCY, et al. Comparison of single molecule, real-time sequencing and nanopore sequencing for analysis of the size, end-motif, and tissue-of-origin of long cell-free DNA in plasma. Clin Chem. 2023;69(2):168–79.PubMedCrossRef Yu SCY, et al. Comparison of single molecule, real-time sequencing and nanopore sequencing for analysis of the size, end-motif, and tissue-of-origin of long cell-free DNA in plasma. Clin Chem. 2023;69(2):168–79.PubMedCrossRef
23.
go back to reference Hosny G, Farahat N, Hainaut P. TP53 mutations in circulating free DNA from Egyptian patients with non-Hodgkin’s lymphoma. Cancer Lett. 2009;275(2):234–9.PubMedCrossRef Hosny G, Farahat N, Hainaut P. TP53 mutations in circulating free DNA from Egyptian patients with non-Hodgkin’s lymphoma. Cancer Lett. 2009;275(2):234–9.PubMedCrossRef
24.
go back to reference Hosny G, et al. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with hepatocellular carcinoma versus chronic liver diseases. Cancer Lett. 2008;264(2):201–8.PubMedCrossRef Hosny G, et al. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with hepatocellular carcinoma versus chronic liver diseases. Cancer Lett. 2008;264(2):201–8.PubMedCrossRef
25.
go back to reference Dobrzycka B, et al. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann Oncol. 2011;22(5):1133–40.PubMedCrossRef Dobrzycka B, et al. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann Oncol. 2011;22(5):1133–40.PubMedCrossRef
26.
go back to reference Castellanos-Rizaldos E, et al. Temperature-tolerant COLD-PCR reduces temperature stringency and enables robust mutation enrichment. Clin Chem. 2012;58(7):1130–8.PubMedPubMedCentralCrossRef Castellanos-Rizaldos E, et al. Temperature-tolerant COLD-PCR reduces temperature stringency and enables robust mutation enrichment. Clin Chem. 2012;58(7):1130–8.PubMedPubMedCentralCrossRef
27.
go back to reference Zhang L, et al. Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 2022;211:114344.PubMedCrossRef Zhang L, et al. Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 2022;211:114344.PubMedCrossRef
29.
go back to reference Song P, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng. 2022;6(3):232–45.PubMedPubMedCentralCrossRef Song P, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng. 2022;6(3):232–45.PubMedPubMedCentralCrossRef
32.
34.
go back to reference Zhang K, et al. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer. 2024;10(2):161–74.PubMedCrossRef Zhang K, et al. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer. 2024;10(2):161–74.PubMedCrossRef
35.
go back to reference Forshew T, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.PubMedCrossRef Forshew T, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.PubMedCrossRef
36.
go back to reference Tie J, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22.PubMedPubMedCentralCrossRef Tie J, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Rothé F, et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol. 2014;25(10):1959–65.PubMedCrossRef Rothé F, et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol. 2014;25(10):1959–65.PubMedCrossRef
39.
go back to reference Moldovan N, et al. Multi-modal cell-free DNA genomic and fragmentomic patterns enhance cancer survival and recurrence analysis. Cell Rep Med. 2024;5(1):101349.PubMedCrossRef Moldovan N, et al. Multi-modal cell-free DNA genomic and fragmentomic patterns enhance cancer survival and recurrence analysis. Cell Rep Med. 2024;5(1):101349.PubMedCrossRef
40.
go back to reference Taiwo O, et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc. 2012;7(4):617–36.PubMedCrossRef Taiwo O, et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc. 2012;7(4):617–36.PubMedCrossRef
43.
go back to reference Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38(2):391–9.PubMedCrossRef Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38(2):391–9.PubMedCrossRef
46.
go back to reference Walker B, et al. A pore-forming protein with a metal-actuated switch. Protein Eng. 1994;7(5):655–62.PubMedCrossRef Walker B, et al. A pore-forming protein with a metal-actuated switch. Protein Eng. 1994;7(5):655–62.PubMedCrossRef
47.
go back to reference Ying YL, et al. Nanopore-based technologies beyond DNA sequencing. Nat Nanotechnol. 2022;17(11):1136–46.PubMedCrossRef Ying YL, et al. Nanopore-based technologies beyond DNA sequencing. Nat Nanotechnol. 2022;17(11):1136–46.PubMedCrossRef
49.
go back to reference Zheng P, et al. Nanopore sequencing technology and its applications. MedComm (2020). 2023;4(4):316.CrossRef Zheng P, et al. Nanopore sequencing technology and its applications. MedComm (2020). 2023;4(4):316.CrossRef
50.
go back to reference Petersen LM. et al. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol. 2019;58(1):e01315–19. Petersen LM. et al. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol. 2019;58(1):e01315–19.
53.
go back to reference Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genom Proteom Bioinform. 2015;13(5):278–89.CrossRef Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genom Proteom Bioinform. 2015;13(5):278–89.CrossRef
54.
go back to reference Ardui S, et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.PubMedPubMedCentralCrossRef Ardui S, et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46(5):2159–68.PubMedPubMedCentralCrossRef
55.
56.
59.
go back to reference Helmersen K, Aamot HV. DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Sci Rep. 2020;10(1):2985.PubMedPubMedCentralCrossRef Helmersen K, Aamot HV. DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Sci Rep. 2020;10(1):2985.PubMedPubMedCentralCrossRef
60.
go back to reference Huang YT, Liu PY, Shih PW. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 2021;22(1):95.PubMedPubMedCentralCrossRef Huang YT, Liu PY, Shih PW. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 2021;22(1):95.PubMedPubMedCentralCrossRef
61.
62.
go back to reference Nawroz H, et al. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2(9):1035–7.PubMedCrossRef Nawroz H, et al. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2(9):1035–7.PubMedCrossRef
63.
go back to reference Lo YM, et al. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet. 1998;351(9112):1329–30.PubMedCrossRef Lo YM, et al. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet. 1998;351(9112):1329–30.PubMedCrossRef
64.
go back to reference Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef
65.
go back to reference Stadler JC, et al. Current and future clinical applications of ctDNA in immuno-oncology. Cancer Res. 2022;82(3):349–58.PubMedCrossRef Stadler JC, et al. Current and future clinical applications of ctDNA in immuno-oncology. Cancer Res. 2022;82(3):349–58.PubMedCrossRef
67.
go back to reference Anagnostou V, Velculescu VE. Pushing the boundaries of liquid biopsies for early precision intervention. Cancer Discov. 2024;14(4):615–9.PubMedCrossRef Anagnostou V, Velculescu VE. Pushing the boundaries of liquid biopsies for early precision intervention. Cancer Discov. 2024;14(4):615–9.PubMedCrossRef
68.
go back to reference Martignano F, et al. Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients. Mol Cancer. 2021;20(1):32.PubMedPubMedCentralCrossRef Martignano F, et al. Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients. Mol Cancer. 2021;20(1):32.PubMedPubMedCentralCrossRef
70.
go back to reference Afflerbach AK, et al. Classification of brain tumors by nanopore sequencing of cell-free DNA from cerebrospinal fluid. Clin Chem. 2024;70(1):250–60.PubMedCrossRef Afflerbach AK, et al. Classification of brain tumors by nanopore sequencing of cell-free DNA from cerebrospinal fluid. Clin Chem. 2024;70(1):250–60.PubMedCrossRef
71.
go back to reference Bruzek AK, et al. Electronic DNA analysis of CSF cell-free tumor DNA to quantify multi-gene molecular response in pediatric high-grade glioma. Clin Cancer Res. 2020;26(23):6266–76.PubMedPubMedCentralCrossRef Bruzek AK, et al. Electronic DNA analysis of CSF cell-free tumor DNA to quantify multi-gene molecular response in pediatric high-grade glioma. Clin Cancer Res. 2020;26(23):6266–76.PubMedPubMedCentralCrossRef
73.
go back to reference Burck N, et al. Nanopore identification of single nucleotide mutations in circulating tumor DNA by multiplexed ligation. Clin Chem. 2021;67(5):753–62.PubMedCrossRef Burck N, et al. Nanopore identification of single nucleotide mutations in circulating tumor DNA by multiplexed ligation. Clin Chem. 2021;67(5):753–62.PubMedCrossRef
74.
go back to reference Sol N, et al. Glioblastoma, IDH-wildtype with primarily leptomeningeal localization diagnosed by nanopore sequencing of cell-free DNA from cerebrospinal fluid. Acta Neuropathol. 2024;148(1):35.PubMedPubMedCentralCrossRef Sol N, et al. Glioblastoma, IDH-wildtype with primarily leptomeningeal localization diagnosed by nanopore sequencing of cell-free DNA from cerebrospinal fluid. Acta Neuropathol. 2024;148(1):35.PubMedPubMedCentralCrossRef
75.
go back to reference Sampathi S, et al. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front Oncol. 2022;12:958673.PubMedPubMedCentralCrossRef Sampathi S, et al. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front Oncol. 2022;12:958673.PubMedPubMedCentralCrossRef
79.
go back to reference Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.PubMedCrossRef Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.PubMedCrossRef
80.
go back to reference van Belzen I, et al. Structural variant detection in cancer genomes: computational challenges and perspectives for precision oncology. NPJ Precis Oncol. 2021;5(1):15.PubMedPubMedCentralCrossRef van Belzen I, et al. Structural variant detection in cancer genomes: computational challenges and perspectives for precision oncology. NPJ Precis Oncol. 2021;5(1):15.PubMedPubMedCentralCrossRef
81.
go back to reference Akkhasutthikun P, et al. Tissue and plasma-based highly sensitive blocker displacement amplicon nanopore sequencing for EGFR mutations in lung cancer. Cancer Res Treat. 2024;56(2):455–63.PubMedCrossRef Akkhasutthikun P, et al. Tissue and plasma-based highly sensitive blocker displacement amplicon nanopore sequencing for EGFR mutations in lung cancer. Cancer Res Treat. 2024;56(2):455–63.PubMedCrossRef
84.
go back to reference Lang J, et al. Nano2NGS-Muta: a framework for converting nanopore sequencing data to NGS-liked sequencing data for hotspot mutation detection. NAR Genom Bioinform. 2022;4(2):lqa033.CrossRef Lang J, et al. Nano2NGS-Muta: a framework for converting nanopore sequencing data to NGS-liked sequencing data for hotspot mutation detection. NAR Genom Bioinform. 2022;4(2):lqa033.CrossRef
86.
87.
go back to reference Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21(3):171–89.PubMedCrossRef Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21(3):171–89.PubMedCrossRef
88.
90.
go back to reference Chan KC, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8.PubMedPubMedCentralCrossRef Chan KC, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8.PubMedPubMedCentralCrossRef
92.
go back to reference Ehrlich M, Lacey M. DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol. 2013;754:31–56.PubMedCrossRef Ehrlich M, Lacey M. DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol. 2013;754:31–56.PubMedCrossRef
93.
go back to reference Moss J, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068.PubMedPubMedCentralCrossRef Moss J, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068.PubMedPubMedCentralCrossRef
94.
go back to reference Sun K, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112(40):E5503–12.PubMedPubMedCentralCrossRef Sun K, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112(40):E5503–12.PubMedPubMedCentralCrossRef
97.
go back to reference Im YR, et al. Next-generation liquid biopsies: embracing data science in oncology. Trends Cancer. 2021;7(4):283–92.PubMedCrossRef Im YR, et al. Next-generation liquid biopsies: embracing data science in oncology. Trends Cancer. 2021;7(4):283–92.PubMedCrossRef
100.
go back to reference van der Vaart M, Pretorius PJ. Characterization of circulating DNA in healthy human plasma. Clin Chim Acta. 2008;395(1–2):186.PubMedCrossRef van der Vaart M, Pretorius PJ. Characterization of circulating DNA in healthy human plasma. Clin Chim Acta. 2008;395(1–2):186.PubMedCrossRef
101.
102.
go back to reference Hou Y, Meng XY, Zhou X. Systematically evaluating cell-free DNA fragmentation patterns for cancer diagnosis and enhanced cancer detection via integrating multiple fragmentation patterns. Adv Sci (Weinh). 2024;11(30):e2308243.PubMedCrossRef Hou Y, Meng XY, Zhou X. Systematically evaluating cell-free DNA fragmentation patterns for cancer diagnosis and enhanced cancer detection via integrating multiple fragmentation patterns. Adv Sci (Weinh). 2024;11(30):e2308243.PubMedCrossRef
103.
go back to reference Sun K, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 2019;29(3):418–27.PubMedPubMedCentralCrossRef Sun K, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 2019;29(3):418–27.PubMedPubMedCentralCrossRef
104.
go back to reference Zill OA, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res. 2018;24(15):3528–38.PubMedCrossRef Zill OA, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res. 2018;24(15):3528–38.PubMedCrossRef
105.
go back to reference Yang J, et al. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol. 2023;20(4):211–28.PubMedCrossRef Yang J, et al. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol. 2023;20(4):211–28.PubMedCrossRef
106.
go back to reference Rostami A, et al. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 2020;31(13):107830.PubMedCrossRef Rostami A, et al. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 2020;31(13):107830.PubMedCrossRef
107.
go back to reference Sprang M, Paret C, Faber J. CpG-islands as markers for liquid biopsies of cancer patients. Cells. 2020;9(8):1820. Sprang M, Paret C, Faber J. CpG-islands as markers for liquid biopsies of cancer patients. Cells. 2020;9(8):1820.
108.
109.
go back to reference Pagès-Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 2023;24(1):71.PubMedPubMedCentralCrossRef Pagès-Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 2023;24(1):71.PubMedPubMedCentralCrossRef
110.
go back to reference Moser T, et al. Bridging biological cfDNA features and machine learning approaches. Trends Genet. 2023;39(4):285–307.PubMedCrossRef Moser T, et al. Bridging biological cfDNA features and machine learning approaches. Trends Genet. 2023;39(4):285–307.PubMedCrossRef
112.
go back to reference Lin B, Hui J, Mao H. Nanopore technology and its applications in gene sequencing. Biosensors (Basel). 2021;11(7):214. Lin B, Hui J, Mao H. Nanopore technology and its applications in gene sequencing. Biosensors (Basel). 2021;11(7):214.
113.
go back to reference Xie S, et al. Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era. Innovation (Camb). 2021;2(4):100153.PubMed Xie S, et al. Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era. Innovation (Camb). 2021;2(4):100153.PubMed
114.
go back to reference Wan YK, et al. Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data. Trends Genet. 2022;38(3):246–57.PubMedCrossRef Wan YK, et al. Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data. Trends Genet. 2022;38(3):246–57.PubMedCrossRef
115.
116.
117.
go back to reference Xu Y. et al. Nanopore metagenomic sequencing of influenza virus directly from respiratory samples: diagnosis, drug resistance and nosocomial transmission, United Kingdom, 2018/19 influenza season. Euro Surveill. 2021;26(27):2000004. Xu Y. et al. Nanopore metagenomic sequencing of influenza virus directly from respiratory samples: diagnosis, drug resistance and nosocomial transmission, United Kingdom, 2018/19 influenza season. Euro Surveill. 2021;26(27):2000004.
118.
go back to reference Fukuda Y, et al. Nanopore sequencing in distinguishing between wild-type and vaccine strains of Varicella-Zoster virus. Vaccine. 2024;42(11):2927–32.PubMedCrossRef Fukuda Y, et al. Nanopore sequencing in distinguishing between wild-type and vaccine strains of Varicella-Zoster virus. Vaccine. 2024;42(11):2927–32.PubMedCrossRef
119.
go back to reference Thijssen R, et al. Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy. Blood. 2022;140(20):2127–41.PubMedPubMedCentralCrossRef Thijssen R, et al. Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy. Blood. 2022;140(20):2127–41.PubMedPubMedCentralCrossRef
120.
go back to reference Cortés-López M, et al. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. Cell Stem Cell. 2023;30(9):1262-1281.e8.PubMedPubMedCentralCrossRef Cortés-López M, et al. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. Cell Stem Cell. 2023;30(9):1262-1281.e8.PubMedPubMedCentralCrossRef
123.
go back to reference Abbosh C, et al. Implementing circulating tumor DNA as a prognostic biomarker in resectable non-small cell lung cancer. Trends Cancer. 2024;10(7):643–54.PubMedCrossRef Abbosh C, et al. Implementing circulating tumor DNA as a prognostic biomarker in resectable non-small cell lung cancer. Trends Cancer. 2024;10(7):643–54.PubMedCrossRef
Metadata
Title
Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications
Authors
Hua-Qi Si
Peng Wang
Fei Long
Wei Zhong
Yuan-Dong Meng
Yuan Rong
Xiang-Yu Meng
Fu-Bing Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-02178-6
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now