Skip to main content
Top
Published in:

03-01-2024 | Cancer Immunotherapy | Review

NK cells as powerful therapeutic tool in cancer immunotherapy

Authors: Mao Huang, Yixuan Liu, Qijia Yan, Miao Peng, Junshang Ge, Yongzhen Mo, Yumin Wang, Fuyan Wang, Zhaoyang Zeng, Yong Li, Chunmei Fan, Wei Xiong

Published in: Cellular Oncology | Issue 3/2024

Login to get access

Abstract

Background

Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results.

Conclusion

This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Literature
2.
go back to reference A.K. Singh, J.P. McGuirk, CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21, e168–e178 (2020)PubMedCrossRef A.K. Singh, J.P. McGuirk, CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21, e168–e178 (2020)PubMedCrossRef
3.
go back to reference S. Bagchi, R. Yuan, E.G. Engleman, Immune Checkpoint inhibitors for the treatment of Cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021)PubMedCrossRef S. Bagchi, R. Yuan, E.G. Engleman, Immune Checkpoint inhibitors for the treatment of Cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021)PubMedCrossRef
4.
go back to reference O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, E. Vivier, Harnessing innate immunity in cancer therapy. Nature. 574, 45–56 (2019)PubMedCrossRef O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, E. Vivier, Harnessing innate immunity in cancer therapy. Nature. 574, 45–56 (2019)PubMedCrossRef
6.
go back to reference A. Kumar, C.A. Swain, L.A. Shevde, Informing the new developments and future of cancer immunotherapy. Cancer Metastasis Rev. 40, 549–562 (2021)PubMedCrossRef A. Kumar, C.A. Swain, L.A. Shevde, Informing the new developments and future of cancer immunotherapy. Cancer Metastasis Rev. 40, 549–562 (2021)PubMedCrossRef
7.
go back to reference M.G. Morvan, L.L. Lanier, NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer. 16, 7–19 (2016)PubMedCrossRef M.G. Morvan, L.L. Lanier, NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer. 16, 7–19 (2016)PubMedCrossRef
8.
go back to reference T. Timonen, J.R. Ortaldo, R.B. Herberman, Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med. 153, 569–582 (1981)PubMedPubMedCentralCrossRef T. Timonen, J.R. Ortaldo, R.B. Herberman, Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med. 153, 569–582 (1981)PubMedPubMedCentralCrossRef
9.
go back to reference M. Anft, P. Netter, D. Urlaub, I. Prager, S. Schaffner, C. Watzl, NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell. Mol. Immunol. 17, 347–355 (2020)PubMedCrossRef M. Anft, P. Netter, D. Urlaub, I. Prager, S. Schaffner, C. Watzl, NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell. Mol. Immunol. 17, 347–355 (2020)PubMedCrossRef
12.
go back to reference C. Fauriat, E.O. Long, H.-G. Ljunggren, Y.T. Bryceson, Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115, 2167–2176 (2010)PubMedPubMedCentralCrossRef C. Fauriat, E.O. Long, H.-G. Ljunggren, Y.T. Bryceson, Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115, 2167–2176 (2010)PubMedPubMedCentralCrossRef
14.
go back to reference P. Dogra, C. Rancan, W. Ma, M. Toth, T. Senda, D.J. Carpenter et al., Tissue determinants of human NK Cell Development, function, and Residence. Cell. 180, 749–763e13 (2020)PubMedPubMedCentralCrossRef P. Dogra, C. Rancan, W. Ma, M. Toth, T. Senda, D.J. Carpenter et al., Tissue determinants of human NK Cell Development, function, and Residence. Cell. 180, 749–763e13 (2020)PubMedPubMedCentralCrossRef
15.
go back to reference E. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier et al., Innate or adaptive immunity? The Example of Natural Killer cells. Science. 331, 44–49 (2011)PubMedPubMedCentralCrossRef E. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier et al., Innate or adaptive immunity? The Example of Natural Killer cells. Science. 331, 44–49 (2011)PubMedPubMedCentralCrossRef
17.
go back to reference F. Nimmerjahn, J.V. Ravetch, Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008)PubMedCrossRef F. Nimmerjahn, J.V. Ravetch, Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008)PubMedCrossRef
19.
go back to reference I. Prager, C. Watzl, Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019)PubMedCrossRef I. Prager, C. Watzl, Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019)PubMedCrossRef
20.
go back to reference M.J. Smyth, E. Cretney, J.M. Kelly, J.A. Westwood, S.E.A. Street, H. Yagita et al., Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005)PubMedCrossRef M.J. Smyth, E. Cretney, J.M. Kelly, J.A. Westwood, S.E.A. Street, H. Yagita et al., Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005)PubMedCrossRef
21.
go back to reference I. Prager, C. Liesche, van H. Ooijen, D. Urlaub, Q. Verron, N. Sandström et al., NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019)PubMedPubMedCentralCrossRef I. Prager, C. Liesche, van H. Ooijen, D. Urlaub, Q. Verron, N. Sandström et al., NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019)PubMedPubMedCentralCrossRef
22.
go back to reference D. Piccioli, S. Sbrana, E. Melandri, N.M. Valiante, Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002)PubMedPubMedCentralCrossRef D. Piccioli, S. Sbrana, E. Melandri, N.M. Valiante, Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002)PubMedPubMedCentralCrossRef
23.
go back to reference B. Cózar, M. Greppi, S. Carpentier, E. Narni-Mancinelli, L. Chiossone, E. Vivier, Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021)PubMedCrossRef B. Cózar, M. Greppi, S. Carpentier, E. Narni-Mancinelli, L. Chiossone, E. Vivier, Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021)PubMedCrossRef
24.
go back to reference E. Schlecker, N. Fiegler, A. Arnold, P. Altevogt, S. Rose-John, G. Moldenhauer et al., Metalloprotease-mediated Tumor Cell Shedding of B7-H6, the ligand of the natural killer cell–activating receptor NKp30. Cancer Res. 74, 3429–3440 (2014)PubMedCrossRef E. Schlecker, N. Fiegler, A. Arnold, P. Altevogt, S. Rose-John, G. Moldenhauer et al., Metalloprotease-mediated Tumor Cell Shedding of B7-H6, the ligand of the natural killer cell–activating receptor NKp30. Cancer Res. 74, 3429–3440 (2014)PubMedCrossRef
25.
go back to reference F. Ghiringhelli, C. Ménard, M. Terme, C. Flament, J. Taieb, N. Chaput et al., CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 202, 1075–1085 (2005)PubMedPubMedCentralCrossRef F. Ghiringhelli, C. Ménard, M. Terme, C. Flament, J. Taieb, N. Chaput et al., CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 202, 1075–1085 (2005)PubMedPubMedCentralCrossRef
26.
go back to reference Á. Teijeira, S. Garasa, M. Gato, C. Alfaro, I. Migueliz, A. Cirella et al., CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce Neutrophil Extracellular traps that interfere with Immune cytotoxicity. Immunity. 52, 856–871e8 (2020)PubMedCrossRef Á. Teijeira, S. Garasa, M. Gato, C. Alfaro, I. Migueliz, A. Cirella et al., CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce Neutrophil Extracellular traps that interfere with Immune cytotoxicity. Immunity. 52, 856–871e8 (2020)PubMedCrossRef
27.
go back to reference X. Zheng, Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen et al., Mitochondrial fragmentation limits NK cell-based Tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019)PubMedCrossRef X. Zheng, Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen et al., Mitochondrial fragmentation limits NK cell-based Tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019)PubMedCrossRef
28.
go back to reference J. Ni, X. Wang, A. Stojanovic, Q. Zhang, M. Wincher, L. Bühler et al., Single-cell RNA sequencing of Tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK Cell activity. Immunity. 52, 1075–1087e8 (2020)PubMedCrossRef J. Ni, X. Wang, A. Stojanovic, Q. Zhang, M. Wincher, L. Bühler et al., Single-cell RNA sequencing of Tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK Cell activity. Immunity. 52, 1075–1087e8 (2020)PubMedCrossRef
29.
go back to reference S.E. Keating, V. Zaiatz-Bittencourt, R.M. Loftus, C. Keane, K. Brennan, D.K. Finlay et al., Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016)PubMedCrossRef S.E. Keating, V. Zaiatz-Bittencourt, R.M. Loftus, C. Keane, K. Brennan, D.K. Finlay et al., Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016)PubMedCrossRef
30.
go back to reference M.G. Badur, C.M. Metallo, Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human Disease. Metab. Eng. 45, 95–108 (2018)PubMedCrossRef M.G. Badur, C.M. Metallo, Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human Disease. Metab. Eng. 45, 95–108 (2018)PubMedCrossRef
31.
go back to reference C.-H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi, J.D. Curtis et al., Metabolic competition in the Tumor Microenvironment is a driver of Cancer Progression. Cell. 162, 1229–1241 (2015)PubMedPubMedCentralCrossRef C.-H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi, J.D. Curtis et al., Metabolic competition in the Tumor Microenvironment is a driver of Cancer Progression. Cell. 162, 1229–1241 (2015)PubMedPubMedCentralCrossRef
32.
go back to reference R.M. Loftus, N. Assmann, N. Kedia-Mehta, K.L. O’Brien, A. Garcia, C. Gillespie et al., Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018)PubMedPubMedCentralCrossRef R.M. Loftus, N. Assmann, N. Kedia-Mehta, K.L. O’Brien, A. Garcia, C. Gillespie et al., Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018)PubMedPubMedCentralCrossRef
33.
go back to reference X. Zheng, Z. Hou, Y. Qian, Y. Zhang, Q. Cui, X. Wang et al., Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nat. Immunol. 24, 802–813 (2023)PubMedCrossRef X. Zheng, Z. Hou, Y. Qian, Y. Zhang, Q. Cui, X. Wang et al., Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nat. Immunol. 24, 802–813 (2023)PubMedCrossRef
34.
go back to reference X. Michelet, L. Dyck, A. Hogan, R.M. Loftus, D. Duquette, K. Wei et al., Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018)PubMedCrossRef X. Michelet, L. Dyck, A. Hogan, R.M. Loftus, D. Duquette, K. Wei et al., Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018)PubMedCrossRef
35.
go back to reference C. Harmon, M.W. Robinson, F. Hand, D. Almuaili, K. Mentor, D.D. Houlihan et al., Lactate-mediated acidification of Tumor Microenvironment induces apoptosis of Liver-Resident NK cells in Colorectal Liver Metastasis. Cancer Immunol. Res. 7, 335–346 (2019)PubMedCrossRef C. Harmon, M.W. Robinson, F. Hand, D. Almuaili, K. Mentor, D.D. Houlihan et al., Lactate-mediated acidification of Tumor Microenvironment induces apoptosis of Liver-Resident NK cells in Colorectal Liver Metastasis. Cancer Immunol. Res. 7, 335–346 (2019)PubMedCrossRef
36.
go back to reference D.J. Propper, F.R. Balkwill, Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022)PubMedCrossRef D.J. Propper, F.R. Balkwill, Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022)PubMedCrossRef
37.
go back to reference N.W. Zwirner, C.I. Domaica, Cytokine regulation of natural killer cell effector functions. BioFactors. 36, 274–288 (2010)PubMedCrossRef N.W. Zwirner, C.I. Domaica, Cytokine regulation of natural killer cell effector functions. BioFactors. 36, 274–288 (2010)PubMedCrossRef
38.
go back to reference R. Spolski, P. Li, W.J. Leonard, Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018)PubMedCrossRef R. Spolski, P. Li, W.J. Leonard, Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018)PubMedCrossRef
39.
go back to reference W. Domzig, B.M. Stadler, R.B. Herberman, Interleukin 2 dependence of human natural killer (NK) cell activity. J. Immunol. 130, 1970–1973 (1983)PubMedCrossRef W. Domzig, B.M. Stadler, R.B. Herberman, Interleukin 2 dependence of human natural killer (NK) cell activity. J. Immunol. 130, 1970–1973 (1983)PubMedCrossRef
41.
go back to reference K.E. Harris, K.J. Lorentsen, H.K. Malik-Chaudhry, K. Loughlin, H.M. Basappa, S. Hartstein et al., A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021)PubMedPubMedCentralCrossRef K.E. Harris, K.J. Lorentsen, H.K. Malik-Chaudhry, K. Loughlin, H.M. Basappa, S. Hartstein et al., A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021)PubMedPubMedCentralCrossRef
42.
go back to reference A.M. Levin, D.L. Bates, A.M. Ring, C. Krieg, J.T. Lin, L. Su et al., Exploiting a natural conformational switch to engineer an Interleukin-2 superkine. Nature. 484, 529–533 (2012)PubMedPubMedCentralCrossRef A.M. Levin, D.L. Bates, A.M. Ring, C. Krieg, J.T. Lin, L. Su et al., Exploiting a natural conformational switch to engineer an Interleukin-2 superkine. Nature. 484, 529–533 (2012)PubMedPubMedCentralCrossRef
43.
go back to reference N. Arenas-Ramirez, C. Zou, S. Popp, D. Zingg, B. Brannetti, E. Wirth et al., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl Med. 8, 367ra166 (2016)PubMedCrossRef N. Arenas-Ramirez, C. Zou, S. Popp, D. Zingg, B. Brannetti, E. Wirth et al., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl Med. 8, 367ra166 (2016)PubMedCrossRef
44.
go back to reference J.L. Ptacin, C.E. Caffaro, L. Ma, K.M. San Jose Gall, H.R. Aerni, N.V. Acuff et al., An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021)PubMedPubMedCentralCrossRef J.L. Ptacin, C.E. Caffaro, L. Ma, K.M. San Jose Gall, H.R. Aerni, N.V. Acuff et al., An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021)PubMedPubMedCentralCrossRef
45.
go back to reference B. Becknell, M.A. Caligiuri, Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005)PubMedCrossRef B. Becknell, M.A. Caligiuri, Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005)PubMedCrossRef
46.
go back to reference J.G. Giri, D.M. Anderson, S. Kumaki, L.S. Park, K.H. Grabstein, D. Cosman, IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J. Leukoc. Biol. 57, 763–766 (1995)PubMedCrossRef J.G. Giri, D.M. Anderson, S. Kumaki, L.S. Park, K.H. Grabstein, D. Cosman, IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J. Leukoc. Biol. 57, 763–766 (1995)PubMedCrossRef
47.
48.
go back to reference X. Zhou, J. Yu, X. Cheng, B. Zhao, G.C. Manyam, L. Zhang et al., The deubiquitinase Otub1 controls the activation of CD8 + T cells and NK cells by regulating IL-15-mediated priming. Nat. Immunol. 20, 879–889 (2019)PubMedPubMedCentralCrossRef X. Zhou, J. Yu, X. Cheng, B. Zhao, G.C. Manyam, L. Zhang et al., The deubiquitinase Otub1 controls the activation of CD8 + T cells and NK cells by regulating IL-15-mediated priming. Nat. Immunol. 20, 879–889 (2019)PubMedPubMedCentralCrossRef
49.
go back to reference Y. Wang, Y. Zhang, P. Yi, W. Dong, A.P. Nalin, J. Zhang et al., The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat. Immunol. 20, 10–17 (2019)PubMedCrossRef Y. Wang, Y. Zhang, P. Yi, W. Dong, A.P. Nalin, J. Zhang et al., The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat. Immunol. 20, 10–17 (2019)PubMedCrossRef
50.
go back to reference K. Imada, E.T. Bloom, H. Nakajima, J.A. Horvath-Arcidiacono, G.B. Udy, H.W. Davey et al., Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998)PubMedPubMedCentralCrossRef K. Imada, E.T. Bloom, H. Nakajima, J.A. Horvath-Arcidiacono, G.B. Udy, H.W. Davey et al., Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998)PubMedPubMedCentralCrossRef
51.
go back to reference H. Song, J. Song, M. Cheng, M. Zheng, T. Wang, S. Tian et al., METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12, 5522 (2021)PubMedPubMedCentralCrossRef H. Song, J. Song, M. Cheng, M. Zheng, T. Wang, S. Tian et al., METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12, 5522 (2021)PubMedPubMedCentralCrossRef
52.
go back to reference M. Zhang, B. Wen, O.M. Anton, Z. Yao, S. Dubois, W. Ju et al., IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl. Acad. Sci. U S A 115, E10915–E10924 (2018)PubMedPubMedCentralCrossRef M. Zhang, B. Wen, O.M. Anton, Z. Yao, S. Dubois, W. Ju et al., IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl. Acad. Sci. U S A 115, E10915–E10924 (2018)PubMedPubMedCentralCrossRef
53.
go back to reference Y. Guo, L. Luan, N.K. Patil, E.R. Sherwood, Immunobiology of the IL-15-IL-15Rα complex as an Antitumor and Antiviral Agent. Cytokine Growth Factor Rev. 38, 10–21 (2017)PubMedPubMedCentralCrossRef Y. Guo, L. Luan, N.K. Patil, E.R. Sherwood, Immunobiology of the IL-15-IL-15Rα complex as an Antitumor and Antiviral Agent. Cytokine Growth Factor Rev. 38, 10–21 (2017)PubMedPubMedCentralCrossRef
54.
go back to reference S. Zhang, J. Zhao, X. Bai, M. Handley, F. Shan, Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int. Immunopharmacol. 91, 107318 (2021)PubMedCrossRef S. Zhang, J. Zhao, X. Bai, M. Handley, F. Shan, Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int. Immunopharmacol. 91, 107318 (2021)PubMedCrossRef
55.
go back to reference S. Cooley, F. He, V. Bachanova, G.M. Vercellotti, T.E. DeFor, J.M. Curtsinger et al., First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute Myeloid Leukemia. Blood Adv. 3, 1970–1980 (2019)PubMedPubMedCentralCrossRef S. Cooley, F. He, V. Bachanova, G.M. Vercellotti, T.E. DeFor, J.M. Curtsinger et al., First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute Myeloid Leukemia. Blood Adv. 3, 1970–1980 (2019)PubMedPubMedCentralCrossRef
56.
go back to reference K.M. Knudson, J.W. Hodge, J. Schlom, S.R. Gameiro, Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther. 20, 705–709 (2020)PubMedCrossRef K.M. Knudson, J.W. Hodge, J. Schlom, S.R. Gameiro, Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther. 20, 705–709 (2020)PubMedCrossRef
57.
go back to reference K. Margolin, C. Morishima, V. Velcheti, J.S. Miller, S.M. Lee, A.W. Silk et al., Phase I Trial of ALT-803, a novel recombinant IL15 complex, in patients with Advanced Solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018)PubMedPubMedCentralCrossRef K. Margolin, C. Morishima, V. Velcheti, J.S. Miller, S.M. Lee, A.W. Silk et al., Phase I Trial of ALT-803, a novel recombinant IL15 complex, in patients with Advanced Solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018)PubMedPubMedCentralCrossRef
58.
go back to reference J.M. Wrangle, V. Velcheti, M.R. Patel, E. Garrett-Mayer, E.G. Hill, J.G. Ravenel et al., ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell Lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018)PubMedPubMedCentralCrossRef J.M. Wrangle, V. Velcheti, M.R. Patel, E. Garrett-Mayer, E.G. Hill, J.G. Ravenel et al., ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell Lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018)PubMedPubMedCentralCrossRef
59.
go back to reference J.A. Hangasky, W. Chen, S.P. Dubois, A. Daenthanasanmak, J.R. Müller, R. Reid et al., A very long-acting IL-15: implications for the immunotherapy of cancer. J. Immunother Cancer. 10, e004104 (2022)PubMedPubMedCentralCrossRef J.A. Hangasky, W. Chen, S.P. Dubois, A. Daenthanasanmak, J.R. Müller, R. Reid et al., A very long-acting IL-15: implications for the immunotherapy of cancer. J. Immunother Cancer. 10, e004104 (2022)PubMedPubMedCentralCrossRef
60.
go back to reference M. Patidar, N. Yadav, S.K. Dalai, Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev. 31, 49–59 (2016)PubMedCrossRef M. Patidar, N. Yadav, S.K. Dalai, Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev. 31, 49–59 (2016)PubMedCrossRef
61.
go back to reference S.A. Perez, L.G. Mahaira, P.A. Sotiropoulou, A.D. Gritzapis, E.G. Iliopoulou, D.K. Niarchos et al., Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int. Immunol. 18, 49–58 (2006)PubMedCrossRef S.A. Perez, L.G. Mahaira, P.A. Sotiropoulou, A.D. Gritzapis, E.G. Iliopoulou, D.K. Niarchos et al., Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int. Immunol. 18, 49–58 (2006)PubMedCrossRef
62.
go back to reference J. Parrish-Novak, S.R. Dillon, A. Nelson, A. Hammond, C. Sprecher, J.A. Gross et al., Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 408, 57–63 (2000)PubMedCrossRef J. Parrish-Novak, S.R. Dillon, A. Nelson, A. Hammond, C. Sprecher, J.A. Gross et al., Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 408, 57–63 (2000)PubMedCrossRef
63.
go back to reference K. Skak, K.S. Frederiksen, D. Lundsgaard, Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology. 123, 575–583 (2008)PubMedPubMedCentralCrossRef K. Skak, K.S. Frederiksen, D. Lundsgaard, Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology. 123, 575–583 (2008)PubMedPubMedCentralCrossRef
64.
go back to reference H. Seo, I. Jeon, B.-S. Kim, M. Park, E.-A. Bae, B. Song et al., IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017)PubMedPubMedCentralCrossRef H. Seo, I. Jeon, B.-S. Kim, M. Park, E.-A. Bae, B. Song et al., IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017)PubMedPubMedCentralCrossRef
66.
go back to reference G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 184, 5309–5337 (2021)PubMedPubMedCentralCrossRef G. Morad, B.A. Helmink, P. Sharma, J.A. Wargo, Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 184, 5309–5337 (2021)PubMedPubMedCentralCrossRef
67.
go back to reference N. Stanietsky, H. Simic, J. Arapovic, A. Toporik, O. Levy, A. Novik et al., The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. U S A 106, 17858–17863 (2009)PubMedPubMedCentralCrossRef N. Stanietsky, H. Simic, J. Arapovic, A. Toporik, O. Levy, A. Novik et al., The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. U S A 106, 17858–17863 (2009)PubMedPubMedCentralCrossRef
68.
69.
go back to reference Q. Zhang, J. Bi, X. Zheng, Y. Chen, H. Wang, W. Wu et al., Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018)PubMedCrossRef Q. Zhang, J. Bi, X. Zheng, Y. Chen, H. Wang, W. Wu et al., Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018)PubMedCrossRef
70.
go back to reference G. Liu, Q. Zhang, J. Yang, X. Li, L. Xian, W. Li et al., Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunol. Immunother. 71, 277–287 (2022)PubMedCrossRef G. Liu, Q. Zhang, J. Yang, X. Li, L. Xian, W. Li et al., Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunol. Immunother. 71, 277–287 (2022)PubMedCrossRef
71.
go back to reference L. Martinet, M.J. Smyth, Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015)PubMedCrossRef L. Martinet, M.J. Smyth, Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015)PubMedCrossRef
72.
go back to reference B.C. Cho, D.R. Abreu, M. Hussein, M. Cobo, A.J. Patel, N. Secen et al., Tiragolumab plus Atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell Lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022)PubMedCrossRef B.C. Cho, D.R. Abreu, M. Hussein, M. Cobo, A.J. Patel, N. Secen et al., Tiragolumab plus Atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell Lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022)PubMedCrossRef
73.
go back to reference Tiragolumab Results Cast Shadow on TIGIT Pipeline, Cancer Discov. 12, 1603–1604 (2022) Tiragolumab Results Cast Shadow on TIGIT Pipeline, Cancer Discov. 12, 1603–1604 (2022)
74.
go back to reference F. Borrego, M. Masilamani, J. Kabat, T.B. Sanni, J.E. Coligan, The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol. Immunol. 42, 485–488 (2005)PubMedCrossRef F. Borrego, M. Masilamani, J. Kabat, T.B. Sanni, J.E. Coligan, The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol. Immunol. 42, 485–488 (2005)PubMedCrossRef
75.
go back to reference L. Borst, van der S.H. Burg, van T. Hall, The NKG2A–HLA-E Axis as a Novel checkpoint in the Tumor Microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020)PubMedCrossRef L. Borst, van der S.H. Burg, van T. Hall, The NKG2A–HLA-E Axis as a Novel checkpoint in the Tumor Microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020)PubMedCrossRef
76.
go back to reference C. Sun, J. Xu, Q. Huang, M. Huang, H. Wen, C. Zhang et al., High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with Liver cancer. Oncoimmunology. 6, e1264562 (2016)PubMedPubMedCentralCrossRef C. Sun, J. Xu, Q. Huang, M. Huang, H. Wen, C. Zhang et al., High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with Liver cancer. Oncoimmunology. 6, e1264562 (2016)PubMedPubMedCentralCrossRef
77.
go back to reference E.M. McWilliams, J.M. Mele, C. Cheney, E.A. Timmerman, F. Fiazuddin, E.J. Strattan et al., Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic Leukemia. Oncoimmunology. 5, e1226720 (2016)PubMedPubMedCentralCrossRef E.M. McWilliams, J.M. Mele, C. Cheney, E.A. Timmerman, F. Fiazuddin, E.J. Strattan et al., Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic Leukemia. Oncoimmunology. 5, e1226720 (2016)PubMedPubMedCentralCrossRef
78.
go back to reference P. André, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez, T. Arnoux et al., Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK Cells. Cell. 175, 1731–1743e13 (2018)PubMedPubMedCentralCrossRef P. André, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez, T. Arnoux et al., Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK Cells. Cell. 175, 1731–1743e13 (2018)PubMedPubMedCentralCrossRef
79.
go back to reference A.V. Tinker, H.W. Hirte, D. Provencher, M. Butler, H. Ritter, D. Tu et al., Dose-ranging and cohort-expansion study of Monalizumab (IPH2201) in patients with Advanced Gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin. Cancer Res. 25, 6052–6060 (2019)PubMedCrossRef A.V. Tinker, H.W. Hirte, D. Provencher, M. Butler, H. Ritter, D. Tu et al., Dose-ranging and cohort-expansion study of Monalizumab (IPH2201) in patients with Advanced Gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin. Cancer Res. 25, 6052–6060 (2019)PubMedCrossRef
80.
go back to reference N.H. Segal, J. Naidoo, G. Curigliano, S. Patel, S. Sahebjam, K.P. Papadopoulos et al., First-in-human dose escalation of monalizumab plus durvalumab, with expansion in patients with metastatic microsatellite-stable Colorectal cancer. JCO. 36, 3540–3540 (2018)CrossRef N.H. Segal, J. Naidoo, G. Curigliano, S. Patel, S. Sahebjam, K.P. Papadopoulos et al., First-in-human dose escalation of monalizumab plus durvalumab, with expansion in patients with metastatic microsatellite-stable Colorectal cancer. JCO. 36, 3540–3540 (2018)CrossRef
81.
go back to reference C. Zhu, A.C. Anderson, A. Schubart, H. Xiong, J. Imitola, S.J. Khoury et al., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005)PubMedCrossRef C. Zhu, A.C. Anderson, A. Schubart, H. Xiong, J. Imitola, S.J. Khoury et al., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005)PubMedCrossRef
82.
go back to reference Y. Wolf, A.C. Anderson, V.K. Kuchroo, TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020)PubMedCrossRef Y. Wolf, A.C. Anderson, V.K. Kuchroo, TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020)PubMedCrossRef
83.
go back to reference R. Yang, L. Sun, C.-F. Li, Y.-H. Wang, J. Yao, H. Li et al., Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021)PubMedPubMedCentralCrossRef R. Yang, L. Sun, C.-F. Li, Y.-H. Wang, J. Yao, H. Li et al., Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021)PubMedPubMedCentralCrossRef
85.
go back to reference L.C. Ndhlovu, S. Lopez-Vergès, J.D. Barbour, R.B. Jones, A.R. Jha, B.R. Long et al., Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood. 119, 3734–3743 (2012)PubMedPubMedCentralCrossRef L.C. Ndhlovu, S. Lopez-Vergès, J.D. Barbour, R.B. Jones, A.R. Jha, B.R. Long et al., Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood. 119, 3734–3743 (2012)PubMedPubMedCentralCrossRef
86.
go back to reference da I.P. Silva, A. Gallois, S. Jimenez-Baranda, S. Khan, A.C. Anderson, V.K. Kuchroo et al., Reversal of NK cell exhaustion in advanced Melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014)PubMedPubMedCentralCrossRef da I.P. Silva, A. Gallois, S. Jimenez-Baranda, S. Khan, A.C. Anderson, V.K. Kuchroo et al., Reversal of NK cell exhaustion in advanced Melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014)PubMedPubMedCentralCrossRef
87.
go back to reference L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu et al., Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol. 29, 635–641 (2015)PubMedCrossRef L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu et al., Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol. 29, 635–641 (2015)PubMedCrossRef
88.
go back to reference S. Tan, Y. Xu, Z. Wang, T. Wang, X. Du, X. Song et al., Tim-3 hampers Tumor Surveillance of Liver-Resident and Conventional NK cells by disrupting PI3K signaling. Cancer Res. 80, 1130–1142 (2020)PubMedCrossRef S. Tan, Y. Xu, Z. Wang, T. Wang, X. Du, X. Song et al., Tim-3 hampers Tumor Surveillance of Liver-Resident and Conventional NK cells by disrupting PI3K signaling. Cancer Res. 80, 1130–1142 (2020)PubMedCrossRef
89.
go back to reference O. Demaria, L. Gauthier, G. Debroas, E. Vivier, Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur. J. Immunol. 51, 1934–1942 (2021)PubMedCrossRef O. Demaria, L. Gauthier, G. Debroas, E. Vivier, Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur. J. Immunol. 51, 1934–1942 (2021)PubMedCrossRef
90.
go back to reference L.N. Kerbauy, N.D. Marin, M. Kaplan, P.P. Banerjee, M.M. Berrien-Elliott, M. Becker-Hapak et al., Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30 + malignancies. Clin. Cancer Res. 27, 3744–3756 (2021)PubMedPubMedCentralCrossRef L.N. Kerbauy, N.D. Marin, M. Kaplan, P.P. Banerjee, M.M. Berrien-Elliott, M. Becker-Hapak et al., Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30 + malignancies. Clin. Cancer Res. 27, 3744–3756 (2021)PubMedPubMedCentralCrossRef
91.
go back to reference A. Rothe, S. Sasse, M.S. Topp, D.A. Eichenauer, H. Hummel, K.S. Reiners et al., A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 125, 4024–4031 (2015)PubMedPubMedCentralCrossRef A. Rothe, S. Sasse, M.S. Topp, D.A. Eichenauer, H. Hummel, K.S. Reiners et al., A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 125, 4024–4031 (2015)PubMedPubMedCentralCrossRef
92.
go back to reference N.L. Bartlett, A.F. Herrera, E. Domingo-Domenech, A. Mehta, A. Forero-Torres, R. Garcia-Sanz et al., A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 136, 2401–2409 (2020)PubMedPubMedCentralCrossRef N.L. Bartlett, A.F. Herrera, E. Domingo-Domenech, A. Mehta, A. Forero-Torres, R. Garcia-Sanz et al., A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin Lymphoma. Blood. 136, 2401–2409 (2020)PubMedPubMedCentralCrossRef
93.
go back to reference C. Zhang, J. Röder, A. Scherer, M. Bodden, J. Pfeifer Serrahima, A. Bhatti et al., Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J. Immunother Cancer. 9, e002980 (2021)PubMedPubMedCentralCrossRef C. Zhang, J. Röder, A. Scherer, M. Bodden, J. Pfeifer Serrahima, A. Bhatti et al., Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J. Immunother Cancer. 9, e002980 (2021)PubMedPubMedCentralCrossRef
94.
go back to reference Y. Wang, H. Li, W. Xu, M. Pan, C. Qiao, J. Cai et al., BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against Multiple Myeloma. J. Immunother. 43, 175–188 (2020)PubMedCrossRef Y. Wang, H. Li, W. Xu, M. Pan, C. Qiao, J. Cai et al., BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against Multiple Myeloma. J. Immunother. 43, 175–188 (2020)PubMedCrossRef
95.
go back to reference T. Wang, F. Sun, W. Xie, M. Tang, H. He, X. Jia et al., A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178 (2016)PubMedCrossRef T. Wang, F. Sun, W. Xie, M. Tang, H. He, X. Jia et al., A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178 (2016)PubMedCrossRef
96.
go back to reference von E.P. Strandmann, H.P. Hansen, K.S. Reiners, R. Schnell, P. Borchmann, S. Merkert et al., A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human Multiple Myeloma in vitro and in vivo. Blood. 107, 1955–1962 (2006)CrossRef von E.P. Strandmann, H.P. Hansen, K.S. Reiners, R. Schnell, P. Borchmann, S. Merkert et al., A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human Multiple Myeloma in vitro and in vivo. Blood. 107, 1955–1962 (2006)CrossRef
97.
go back to reference T. Wang, F. Sun, Y. Wang, J. Jiang, M. Pan, M. Yuan et al., NKG2D Immunoligand rG7S-MICA enhances NK Cell-mediated Immunosurveillance in Colorectal Carcinoma. J. Immunother. 41, 109–117 (2018)PubMedCrossRef T. Wang, F. Sun, Y. Wang, J. Jiang, M. Pan, M. Yuan et al., NKG2D Immunoligand rG7S-MICA enhances NK Cell-mediated Immunosurveillance in Colorectal Carcinoma. J. Immunother. 41, 109–117 (2018)PubMedCrossRef
98.
go back to reference D.A. Vallera, M. Felices, R. McElmurry, V. McCullar, X. Zhou, J.U. Schmohl et al., IL-15 trispecific killer engagers (TriKEs) make natural killer cells specific to CD33 + targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016)PubMedPubMedCentralCrossRef D.A. Vallera, M. Felices, R. McElmurry, V. McCullar, X. Zhou, J.U. Schmohl et al., IL-15 trispecific killer engagers (TriKEs) make natural killer cells specific to CD33 + targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016)PubMedPubMedCentralCrossRef
99.
go back to reference M. Felices, T.R. Lenvik, B. Kodal, A.J. Lenvik, P. Hinderlie, L.E. Bendzick et al., Potent cytolytic activity and specific IL15 delivery in a second-generation Trispecific Killer Engager. Cancer Immunol. Res. 8, 1139–1149 (2020)PubMedPubMedCentralCrossRef M. Felices, T.R. Lenvik, B. Kodal, A.J. Lenvik, P. Hinderlie, L.E. Bendzick et al., Potent cytolytic activity and specific IL15 delivery in a second-generation Trispecific Killer Engager. Cancer Immunol. Res. 8, 1139–1149 (2020)PubMedPubMedCentralCrossRef
100.
go back to reference L. Gauthier, A. Morel, N. Anceriz, B. Rossi, A. Blanchard-Alvarez, G. Grondin et al., Multifunctional natural killer cell engagers targeting NKp46 trigger protective Tumor immunity. Cell. 177, 1701–1713e16 (2019)PubMedCrossRef L. Gauthier, A. Morel, N. Anceriz, B. Rossi, A. Blanchard-Alvarez, G. Grondin et al., Multifunctional natural killer cell engagers targeting NKp46 trigger protective Tumor immunity. Cell. 177, 1701–1713e16 (2019)PubMedCrossRef
101.
go back to reference L. Gauthier, A. Virone-Oddos, J. Beninga, B. Rossi, C. Nicolazzi, C. Amara et al., Control of acute Myeloid Leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. 41, 1296–1306 (2023)PubMedPubMedCentralCrossRef L. Gauthier, A. Virone-Oddos, J. Beninga, B. Rossi, C. Nicolazzi, C. Amara et al., Control of acute Myeloid Leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. 41, 1296–1306 (2023)PubMedPubMedCentralCrossRef
102.
go back to reference O. Demaria, L. Gauthier, M. Vetizou, A. Blanchard Alvarez, C. Vagne, G. Habif et al., Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell. Rep. Med. 3, 100783 (2022)PubMedPubMedCentralCrossRef O. Demaria, L. Gauthier, M. Vetizou, A. Blanchard Alvarez, C. Vagne, G. Habif et al., Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell. Rep. Med. 3, 100783 (2022)PubMedPubMedCentralCrossRef
103.
go back to reference M. Marotel, M.S. Hasim, A. Hagerman, M. Ardolino, The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 59–68 (2020)PubMedCrossRef M. Marotel, M.S. Hasim, A. Hagerman, M. Ardolino, The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 59–68 (2020)PubMedCrossRef
104.
go back to reference M. Wantoch, E.B. Wilson, A.P. Droop, S.L. Phillips, M. Coffey, Y.M. El-Sherbiny et al., Oncolytic virus treatment differentially affects the CD56dim and CD56bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology. 166, 104–120 (2022)PubMedCrossRef M. Wantoch, E.B. Wilson, A.P. Droop, S.L. Phillips, M. Coffey, Y.M. El-Sherbiny et al., Oncolytic virus treatment differentially affects the CD56dim and CD56bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology. 166, 104–120 (2022)PubMedCrossRef
105.
go back to reference C.A. Alvarez-Breckenridge, J. Yu, R. Price, J. Wojton, J. Pradarelli, H. Mao et al., NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat. Med. 18, 1827–1834 (2012)PubMedPubMedCentralCrossRef C.A. Alvarez-Breckenridge, J. Yu, R. Price, J. Wojton, J. Pradarelli, H. Mao et al., NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat. Med. 18, 1827–1834 (2012)PubMedPubMedCentralCrossRef
106.
go back to reference B. Xu, R. Ma, L. Russell, J.Y. Yoo, J. Han, H. Cui et al., An oncolytic herpes virus expressing E-cadherin resists NK cell clearance and improves viral spread and glioblastoma virotherapy. Nat Biotechnol. 2018;10.1038/nbt.4302 B. Xu, R. Ma, L. Russell, J.Y. Yoo, J. Han, H. Cui et al., An oncolytic herpes virus expressing E-cadherin resists NK cell clearance and improves viral spread and glioblastoma virotherapy. Nat Biotechnol. 2018;10.1038/nbt.4302
107.
go back to reference A.P. Aspirin, de V.A.A. Los Reyes, Y. Kim, Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment. J. R Soc. Interface. 18, 20200669 (2021)PubMedPubMedCentralCrossRef A.P. Aspirin, de V.A.A. Los Reyes, Y. Kim, Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment. J. R Soc. Interface. 18, 20200669 (2021)PubMedPubMedCentralCrossRef
108.
go back to reference N.S. Senekal, K.J. Mahasa, A. Eladdadi, de L. Pillis, R. Ouifki, Natural Killer Cells Recruitment in Oncolytic Virotherapy: a Mathematical Model. Bull. Math. Biol. 83, 75 (2021)PubMedCrossRef N.S. Senekal, K.J. Mahasa, A. Eladdadi, de L. Pillis, R. Ouifki, Natural Killer Cells Recruitment in Oncolytic Virotherapy: a Mathematical Model. Bull. Math. Biol. 83, 75 (2021)PubMedCrossRef
109.
go back to reference Y. Kim, J.Y. Yoo, T.J. Lee, J. Liu, J. Yu, M.A. Caligiuri et al., Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc. Natl. Acad. Sci. U S A 115, 4927–4932 (2018)PubMedPubMedCentralCrossRef Y. Kim, J.Y. Yoo, T.J. Lee, J. Liu, J. Yu, M.A. Caligiuri et al., Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc. Natl. Acad. Sci. U S A 115, 4927–4932 (2018)PubMedPubMedCentralCrossRef
110.
go back to reference A.A. Alkayyal, L.-H. Tai, M.A. Kennedy, de C.T. Souza, J. Zhang, C. Lefebvre et al., NK-Cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol. Res. 5, 211–221 (2017)PubMedCrossRef A.A. Alkayyal, L.-H. Tai, M.A. Kennedy, de C.T. Souza, J. Zhang, C. Lefebvre et al., NK-Cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol. Res. 5, 211–221 (2017)PubMedCrossRef
111.
go back to reference K. Rajani, C. Parrish, T. Kottke, J. Thompson, S. Zaidi, L. Ilett et al., Combination therapy with Reovirus and Anti-PD-1 Blockade controls Tumor Growth through Innate and Adaptive Immune responses. Mol. Ther. 24, 166–174 (2016)PubMedCrossRef K. Rajani, C. Parrish, T. Kottke, J. Thompson, S. Zaidi, L. Ilett et al., Combination therapy with Reovirus and Anti-PD-1 Blockade controls Tumor Growth through Innate and Adaptive Immune responses. Mol. Ther. 24, 166–174 (2016)PubMedCrossRef
112.
go back to reference S.B. Willingham, J.-P. Volkmer, A.J. Gentles, D. Sahoo, P. Dalerba, S.S. Mitra et al., The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. U S A 109, 6662–6667 (2012)PubMedPubMedCentralCrossRef S.B. Willingham, J.-P. Volkmer, A.J. Gentles, D. Sahoo, P. Dalerba, S.S. Mitra et al., The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. U S A 109, 6662–6667 (2012)PubMedPubMedCentralCrossRef
113.
go back to reference L. Tian, B. Xu, K.-Y. Teng, M. Song, Z. Zhu, Y. Chen et al., Targeting fc receptor-mediated effects and the don’t eat me signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic Ovarian cancer. Clin. Cancer Res. 28, 201–214 (2022)PubMedCrossRef L. Tian, B. Xu, K.-Y. Teng, M. Song, Z. Zhu, Y. Chen et al., Targeting fc receptor-mediated effects and the don’t eat me signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic Ovarian cancer. Clin. Cancer Res. 28, 201–214 (2022)PubMedCrossRef
114.
go back to reference A.M. Noonan, M.R. Farren, S.M. Geyer, Y. Huang, S. Tahiri, D. Ahn et al., Randomized phase 2 trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of metastatic pancreatic adenocarcinoma. Mol. Ther. 24, 1150–1158 (2016)PubMedPubMedCentralCrossRef A.M. Noonan, M.R. Farren, S.M. Geyer, Y. Huang, S. Tahiri, D. Ahn et al., Randomized phase 2 trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of metastatic pancreatic adenocarcinoma. Mol. Ther. 24, 1150–1158 (2016)PubMedPubMedCentralCrossRef
115.
go back to reference N. Lamers-Kok, D. Panella, A.-M. Georgoudaki, H. Liu, D. Özkazanc, L. Kučerová et al., Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J. Hematol. Oncol. 15, 164 (2022)PubMedPubMedCentralCrossRef N. Lamers-Kok, D. Panella, A.-M. Georgoudaki, H. Liu, D. Özkazanc, L. Kučerová et al., Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J. Hematol. Oncol. 15, 164 (2022)PubMedPubMedCentralCrossRef
116.
go back to reference T. Mamo, S.M. Williams, S. Kinney, K.M. Tessier, T.E. DeFor, S. Cooley et al., Infusion reactions in natural killer cell immunotherapy: a retrospective review. Cytotherapy. 23, 627–634 (2021)PubMedPubMedCentralCrossRef T. Mamo, S.M. Williams, S. Kinney, K.M. Tessier, T.E. DeFor, S. Cooley et al., Infusion reactions in natural killer cell immunotherapy: a retrospective review. Cytotherapy. 23, 627–634 (2021)PubMedPubMedCentralCrossRef
117.
go back to reference A. Curti, L. Ruggeri, S. Parisi, A. Bontadini, E. Dan, M.R. Motta et al., Larger size of Donor Alloreactive NK Cell Repertoire correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia patients. Clin. Cancer Res. 22, 1914–1921 (2016)PubMedCrossRef A. Curti, L. Ruggeri, S. Parisi, A. Bontadini, E. Dan, M.R. Motta et al., Larger size of Donor Alloreactive NK Cell Repertoire correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia patients. Clin. Cancer Res. 22, 1914–1921 (2016)PubMedCrossRef
118.
go back to reference S. Parisi, L. Ruggeri, E. Dan, S. Rizzi, B. Sinigaglia, D. Ocadlikova et al., Long-term Outcome after adoptive Immunotherapy with Natural Killer cells: alloreactive NK cell dose still matters. Front. Immunol. 12, 804988 (2022)PubMedPubMedCentralCrossRef S. Parisi, L. Ruggeri, E. Dan, S. Rizzi, B. Sinigaglia, D. Ocadlikova et al., Long-term Outcome after adoptive Immunotherapy with Natural Killer cells: alloreactive NK cell dose still matters. Front. Immunol. 12, 804988 (2022)PubMedPubMedCentralCrossRef
119.
go back to reference J.H. Gong, G. Maki, H.G. Klingemann, Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 8, 652–658 (1994)PubMed J.H. Gong, G. Maki, H.G. Klingemann, Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 8, 652–658 (1994)PubMed
120.
go back to reference G. Maki, H.G. Klingemann, J.A. Martinson, Y.K. Tam, Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J. Hematother Stem Cell. Res. 10, 369–383 (2001)PubMedCrossRef G. Maki, H.G. Klingemann, J.A. Martinson, Y.K. Tam, Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J. Hematother Stem Cell. Res. 10, 369–383 (2001)PubMedCrossRef
121.
go back to reference H. Klingemann, L. Boissel, F. Toneguzzo, Natural killer cells for immunotherapy – advantages of the NK-92 cell line over blood NK cells. Front. Immunol. 7, 91 (2016)PubMedPubMedCentralCrossRef H. Klingemann, L. Boissel, F. Toneguzzo, Natural killer cells for immunotherapy – advantages of the NK-92 cell line over blood NK cells. Front. Immunol. 7, 91 (2016)PubMedPubMedCentralCrossRef
122.
go back to reference S. Nagashima, R. Mailliard, Y. Kashii, T.E. Reichert, R.B. Herberman, P. Robbins et al., Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood. 91, 3850–3861 (1998)PubMedCrossRef S. Nagashima, R. Mailliard, Y. Kashii, T.E. Reichert, R.B. Herberman, P. Robbins et al., Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood. 91, 3850–3861 (1998)PubMedCrossRef
123.
go back to reference Y.K. Tam, G. Maki, B. Miyagawa, B. Hennemann, T. Tonn, H.G. Klingemann, Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 10, 1359–1373 (1999)PubMedCrossRef Y.K. Tam, G. Maki, B. Miyagawa, B. Hennemann, T. Tonn, H.G. Klingemann, Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 10, 1359–1373 (1999)PubMedCrossRef
124.
go back to reference L. Gao, L. Yang, S. Zhang, Z. Ge, M. Su, Y. Shi et al., Engineering NK-92 cell by upregulating CXCR2 and IL-2 Via CRISPR-Cas9 improves its Antitumor effects as Cellular Immunotherapy for human Colon Cancer. J. Interferon Cytokine Res. 41, 450–460 (2021)PubMedCrossRef L. Gao, L. Yang, S. Zhang, Z. Ge, M. Su, Y. Shi et al., Engineering NK-92 cell by upregulating CXCR2 and IL-2 Via CRISPR-Cas9 improves its Antitumor effects as Cellular Immunotherapy for human Colon Cancer. J. Interferon Cytokine Res. 41, 450–460 (2021)PubMedCrossRef
125.
go back to reference C. Jochems, J.W. Hodge, M. Fantini, R. Fujii, Y.M. Maurice, J.W. Greiner et al., An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 7, 86359–86373 (2016)PubMedPubMedCentralCrossRef C. Jochems, J.W. Hodge, M. Fantini, R. Fujii, Y.M. Maurice, J.W. Greiner et al., An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 7, 86359–86373 (2016)PubMedPubMedCentralCrossRef
126.
go back to reference J. Zhang, R. Sun, H. Wei, J. Zhang, Z. Tian, Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica. 89, 338–347 (2004)PubMed J. Zhang, R. Sun, H. Wei, J. Zhang, Z. Tian, Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica. 89, 338–347 (2004)PubMed
127.
go back to reference S. Arai, R. Meagher, M. Swearingen, H. Myint, E. Rich, J. Martinson et al., Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or Melanoma: a phase I trial. Cytotherapy. 10, 625–632 (2008)PubMedCrossRef S. Arai, R. Meagher, M. Swearingen, H. Myint, E. Rich, J. Martinson et al., Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or Melanoma: a phase I trial. Cytotherapy. 10, 625–632 (2008)PubMedCrossRef
128.
go back to reference T. Tonn, D. Schwabe, H.G. Klingemann, S. Becker, R. Esser, U. Koehl et al., Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 15, 1563–1570 (2013)PubMedCrossRef T. Tonn, D. Schwabe, H.G. Klingemann, S. Becker, R. Esser, U. Koehl et al., Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 15, 1563–1570 (2013)PubMedCrossRef
129.
go back to reference M. Boyiadzis, M. Agha, R.L. Redner, A. Sehgal, A. Im, J.-Z. Hou et al., Phase 1 clinical trial of adoptive immunotherapy using off-the-shelf activated natural killer cells in patients with refractory and relapsed acute Myeloid Leukemia. Cytotherapy. 19, 1225–1232 (2017)PubMedCrossRef M. Boyiadzis, M. Agha, R.L. Redner, A. Sehgal, A. Im, J.-Z. Hou et al., Phase 1 clinical trial of adoptive immunotherapy using off-the-shelf activated natural killer cells in patients with refractory and relapsed acute Myeloid Leukemia. Cytotherapy. 19, 1225–1232 (2017)PubMedCrossRef
130.
go back to reference S.A. Lim, T.-J. Kim, J.E. Lee, C.H. Sonn, K. Kim, J. Kim et al., Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated Tumor cells for adoptive immunotherapy. Cancer Res. 73, 2598–2607 (2013)PubMedCrossRef S.A. Lim, T.-J. Kim, J.E. Lee, C.H. Sonn, K. Kim, J. Kim et al., Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated Tumor cells for adoptive immunotherapy. Cancer Res. 73, 2598–2607 (2013)PubMedCrossRef
131.
go back to reference Y.H. Choi, E.J. Lim, S.W. Kim, Y.W. Moon, K.S. Park, H.-J. An, IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother Cancer. 7, 168 (2019)PubMedPubMedCentralCrossRef Y.H. Choi, E.J. Lim, S.W. Kim, Y.W. Moon, K.S. Park, H.-J. An, IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother Cancer. 7, 168 (2019)PubMedPubMedCentralCrossRef
132.
go back to reference C.J. Denman, V.V. Senyukov, S.S. Somanchi, P.V. Phatarpekar, L.M. Kopp, J.L. Johnson et al., Membrane-bound IL-21 promotes sustained Ex vivo proliferation of human natural killer cells. PLoS One. 7, e30264 (2012)PubMedPubMedCentralCrossRef C.J. Denman, V.V. Senyukov, S.S. Somanchi, P.V. Phatarpekar, L.M. Kopp, J.L. Johnson et al., Membrane-bound IL-21 promotes sustained Ex vivo proliferation of human natural killer cells. PLoS One. 7, e30264 (2012)PubMedPubMedCentralCrossRef
133.
go back to reference X.-Y. Zhao, Q. Jiang, H. Jiang, L.-J. Hu, T. Zhao, X.-X. Yu et al., Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute Myeloid Leukemia in vivo. Eur. J. Immunol. 50, 1374–1385 (2020)PubMedCrossRef X.-Y. Zhao, Q. Jiang, H. Jiang, L.-J. Hu, T. Zhao, X.-X. Yu et al., Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute Myeloid Leukemia in vivo. Eur. J. Immunol. 50, 1374–1385 (2020)PubMedCrossRef
134.
go back to reference S.O. Ciurea, J.R. Schafer, R. Bassett, C.J. Denman, K. Cao, D. Willis et al., Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation. Blood. 130, 1857–1868 (2017)PubMedPubMedCentralCrossRef S.O. Ciurea, J.R. Schafer, R. Bassett, C.J. Denman, K. Cao, D. Willis et al., Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation. Blood. 130, 1857–1868 (2017)PubMedPubMedCentralCrossRef
135.
go back to reference S.O. Ciurea, P. Kongtim, D. Soebbing, P. Trikha, G. Behbehani, G. Rondon et al., Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 36, 155–164 (2022)PubMedCrossRef S.O. Ciurea, P. Kongtim, D. Soebbing, P. Trikha, G. Behbehani, G. Rondon et al., Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 36, 155–164 (2022)PubMedCrossRef
136.
go back to reference J.L. Oyer, V. Pandey, R.Y. Igarashi, S.S. Somanchi, A. Zakari, M. Solh et al., Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: clinical implications for cancer treatment. Cytotherapy. 18, 653–663 (2016)PubMedCrossRef J.L. Oyer, V. Pandey, R.Y. Igarashi, S.S. Somanchi, A. Zakari, M. Solh et al., Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: clinical implications for cancer treatment. Cytotherapy. 18, 653–663 (2016)PubMedCrossRef
137.
go back to reference J.L. Oyer, T.J. Croom-Perez, T.A. Dieffenthaller, L.D. Robles-Carillo, S.B. Gitto, D.A. Altomare et al., Cryopreserved PM21-Particle-expanded natural killer cells maintain cytotoxicity and Effector functions in Vitro and in vivo. Front. Immunol. 13, 861681 (2022)PubMedPubMedCentralCrossRef J.L. Oyer, T.J. Croom-Perez, T.A. Dieffenthaller, L.D. Robles-Carillo, S.B. Gitto, D.A. Altomare et al., Cryopreserved PM21-Particle-expanded natural killer cells maintain cytotoxicity and Effector functions in Vitro and in vivo. Front. Immunol. 13, 861681 (2022)PubMedPubMedCentralCrossRef
138.
go back to reference J.S. Miller, Y. Soignier, A. Panoskaltsis-Mortari, S.A. McNearney, G.H. Yun, S.K. Fautsch et al., Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105, 3051–3057 (2005)PubMedCrossRef J.S. Miller, Y. Soignier, A. Panoskaltsis-Mortari, S.A. McNearney, G.H. Yun, S.K. Fautsch et al., Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105, 3051–3057 (2005)PubMedCrossRef
139.
go back to reference L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti et al., Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 295, 2097–2100 (2002)PubMedCrossRef L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti et al., Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 295, 2097–2100 (2002)PubMedCrossRef
140.
go back to reference J.E. Rubnitz, H. Inaba, R.C. Ribeiro, S. Pounds, B. Rooney, T. Bell et al., NKAML: a pilot study to determine the safety and feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J. Clin. Oncol. 28, 955–959 (2010)PubMedPubMedCentralCrossRef J.E. Rubnitz, H. Inaba, R.C. Ribeiro, S. Pounds, B. Rooney, T. Bell et al., NKAML: a pilot study to determine the safety and feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J. Clin. Oncol. 28, 955–959 (2010)PubMedPubMedCentralCrossRef
141.
go back to reference A. Curti, L. Ruggeri, A. D’Addio, A. Bontadini, E. Dan, M.R. Motta et al., Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute Myeloid Leukemia patients. Blood. 118, 3273–3279 (2011)PubMedCrossRef A. Curti, L. Ruggeri, A. D’Addio, A. Bontadini, E. Dan, M.R. Motta et al., Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute Myeloid Leukemia patients. Blood. 118, 3273–3279 (2011)PubMedCrossRef
142.
go back to reference W. Hu, G. Wang, D. Huang, M. Sui, Y. Xu, Cancer Immunotherapy based on natural killer cells: current progress and New opportunities. Front. Immunol. 10, 1205 (2019)PubMedPubMedCentralCrossRef W. Hu, G. Wang, D. Huang, M. Sui, Y. Xu, Cancer Immunotherapy based on natural killer cells: current progress and New opportunities. Front. Immunol. 10, 1205 (2019)PubMedPubMedCentralCrossRef
143.
go back to reference M. Lin, H. Luo, S. Liang, J. Chen, A. Liu, L. Niu et al., Pembrolizumab plus allogeneic NK cells in advanced non-small cell Lung cancer patients. J. Clin. Invest. 130, 2560–2569 (2020)PubMedPubMedCentralCrossRef M. Lin, H. Luo, S. Liang, J. Chen, A. Liu, L. Niu et al., Pembrolizumab plus allogeneic NK cells in advanced non-small cell Lung cancer patients. J. Clin. Invest. 130, 2560–2569 (2020)PubMedPubMedCentralCrossRef
144.
go back to reference S. Querol, P. Rubinstein, A. Madrigal, The wider perspective: cord blood banks and their future prospects. Br. J. Haematol. 195, 507–517 (2021)PubMedCrossRef S. Querol, P. Rubinstein, A. Madrigal, The wider perspective: cord blood banks and their future prospects. Br. J. Haematol. 195, 507–517 (2021)PubMedCrossRef
145.
go back to reference T. Nham, S.M. Poznanski, I.Y. Fan, F. Vahedi, M.M. Shenouda, A.J. Lee et al., Ex vivo-expanded natural killer cells derived from long-term Cryopreserved Cord blood are cytotoxic against primary Breast Cancer cells. J. Immunother. 41, 64–72 (2018)PubMedCrossRef T. Nham, S.M. Poznanski, I.Y. Fan, F. Vahedi, M.M. Shenouda, A.J. Lee et al., Ex vivo-expanded natural killer cells derived from long-term Cryopreserved Cord blood are cytotoxic against primary Breast Cancer cells. J. Immunother. 41, 64–72 (2018)PubMedCrossRef
146.
go back to reference R. Alnabhan, A. Madrigal, A. Saudemont, Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 17, 73–85 (2015)PubMedCrossRef R. Alnabhan, A. Madrigal, A. Saudemont, Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 17, 73–85 (2015)PubMedCrossRef
147.
go back to reference C. Reina-Ortiz, M. Constantinides, A. Fayd-Herbe-de-Maudave, J. Présumey, J. Hernandez, G. Cartron et al., Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against Tumor cells from Multiple Myeloma patients. OncoImmunology. 10, 1853314 (2021)CrossRef C. Reina-Ortiz, M. Constantinides, A. Fayd-Herbe-de-Maudave, J. Présumey, J. Hernandez, G. Cartron et al., Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against Tumor cells from Multiple Myeloma patients. OncoImmunology. 10, 1853314 (2021)CrossRef
148.
go back to reference L. Herrera, J.M. Salcedo, S. Santos, M. Vesga, F. Borrego, C. Eguizabal, OP9 feeder cells are Superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front. Immunol. 8, 755 (2017)PubMedPubMedCentralCrossRef L. Herrera, J.M. Salcedo, S. Santos, M. Vesga, F. Borrego, C. Eguizabal, OP9 feeder cells are Superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front. Immunol. 8, 755 (2017)PubMedPubMedCentralCrossRef
149.
go back to reference J. Spanholtz, M. Tordoir, D. Eissens, F. Preijers, van der A. Meer, I. Joosten et al., High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 5, e9221 (2010)PubMedPubMedCentralCrossRef J. Spanholtz, M. Tordoir, D. Eissens, F. Preijers, van der A. Meer, I. Joosten et al., High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 5, e9221 (2010)PubMedPubMedCentralCrossRef
150.
go back to reference H. Dolstra, M.W.H. Roeven, J. Spanholtz, B.N. Hangalapura, M. Tordoir, F. Maas et al., Successful transfer of umbilical cord blood CD34 + hematopoietic stem and progenitor-derived NK Cells in older Acute Myeloid Leukemia patients. Clin. Cancer Res. 23, 4107–4118 (2017)PubMedCrossRef H. Dolstra, M.W.H. Roeven, J. Spanholtz, B.N. Hangalapura, M. Tordoir, F. Maas et al., Successful transfer of umbilical cord blood CD34 + hematopoietic stem and progenitor-derived NK Cells in older Acute Myeloid Leukemia patients. Clin. Cancer Res. 23, 4107–4118 (2017)PubMedCrossRef
151.
go back to reference D.A. Knorr, Z. Ni, D. Hermanson, M.K. Hexum, L. Bendzick, L.J.N. Cooper et al., Clinical-scale derivation of natural killer cells from human pluripotent stem cells for Cancer Therapy. Stem Cells Transl Med. 2, 274–283 (2013)PubMedPubMedCentralCrossRef D.A. Knorr, Z. Ni, D. Hermanson, M.K. Hexum, L. Bendzick, L.J.N. Cooper et al., Clinical-scale derivation of natural killer cells from human pluripotent stem cells for Cancer Therapy. Stem Cells Transl Med. 2, 274–283 (2013)PubMedPubMedCentralCrossRef
152.
go back to reference H. Zhu, D.S. Kaufman, An Improved Method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol. Biol. 2048, 107–119 (2019)PubMedCrossRef H. Zhu, D.S. Kaufman, An Improved Method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol. Biol. 2048, 107–119 (2019)PubMedCrossRef
153.
go back to reference K.B. Lupo, J.-I. Moon, A.M. Chambers, S. Matosevic, Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 23, 939–952 (2021)PubMedCrossRef K.B. Lupo, J.-I. Moon, A.M. Chambers, S. Matosevic, Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 23, 939–952 (2021)PubMedCrossRef
154.
go back to reference K. Shankar, C.M. Capitini, K. Saha, Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell. Res. Ther. 11, 234 (2020)PubMedPubMedCentralCrossRef K. Shankar, C.M. Capitini, K. Saha, Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell. Res. Ther. 11, 234 (2020)PubMedPubMedCentralCrossRef
155.
go back to reference F. Cichocki, R. Bjordahl, S. Gaidarova, S. Mahmood, R. Abujarour, H. Wang et al., iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo Tumor control in concert with T cells and anti-PD-1 therapy. Sci. Transl Med. 12, eaaz5618 (2020)PubMedPubMedCentralCrossRef F. Cichocki, R. Bjordahl, S. Gaidarova, S. Mahmood, R. Abujarour, H. Wang et al., iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo Tumor control in concert with T cells and anti-PD-1 therapy. Sci. Transl Med. 12, eaaz5618 (2020)PubMedPubMedCentralCrossRef
156.
go back to reference P.S. Woll, B. Grzywacz, X. Tian, R.K. Marcus, D.A. Knorr, M.R. Verneris et al., Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 113, 6094–6101 (2009)PubMedPubMedCentralCrossRef P.S. Woll, B. Grzywacz, X. Tian, R.K. Marcus, D.A. Knorr, M.R. Verneris et al., Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 113, 6094–6101 (2009)PubMedPubMedCentralCrossRef
157.
go back to reference D.L. Hermanson, L. Bendzick, L. Pribyl, V. McCullar, R.I. Vogel, J.S. Miller et al., Induced pluripotent stem cell-derived natural killer cells for treatment of Ovarian cancer. Stem Cells. 34, 93–101 (2016)PubMedCrossRef D.L. Hermanson, L. Bendzick, L. Pribyl, V. McCullar, R.I. Vogel, J.S. Miller et al., Induced pluripotent stem cell-derived natural killer cells for treatment of Ovarian cancer. Stem Cells. 34, 93–101 (2016)PubMedCrossRef
158.
go back to reference M.M. Berrien-Elliott, M.T. Jacobs, T.A. Fehniger, Allogeneic natural killer cell therapy. Blood. 141, 856 (2023)PubMedCrossRef M.M. Berrien-Elliott, M.T. Jacobs, T.A. Fehniger, Allogeneic natural killer cell therapy. Blood. 141, 856 (2023)PubMedCrossRef
159.
go back to reference H. Zhu, R.H. Blum, R. Bjordahl, S. Gaidarova, P. Rogers, T.T. Lee et al., Pluripotent stem cell–derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 135, 399–410 (2020)PubMedPubMedCentralCrossRef H. Zhu, R.H. Blum, R. Bjordahl, S. Gaidarova, P. Rogers, T.T. Lee et al., Pluripotent stem cell–derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 135, 399–410 (2020)PubMedPubMedCentralCrossRef
160.
go back to reference H. Zhu, R.H. Blum, D. Bernareggi, E.H. Ask, Z. Wu, H.J. Hoel et al., Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell. Stem Cell. 27, 224–237e6 (2020)PubMedPubMedCentralCrossRef H. Zhu, R.H. Blum, D. Bernareggi, E.H. Ask, Z. Wu, H.J. Hoel et al., Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell. Stem Cell. 27, 224–237e6 (2020)PubMedPubMedCentralCrossRef
161.
go back to reference H. Dong, J.D. Ham, G. Hu, G. Xie, J. Vergara, Y. Liang et al., Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute Myeloid Leukemia. Proc. Natl. Acad. Sci. U S A 119, e2122379119 (2022)PubMedPubMedCentralCrossRef H. Dong, J.D. Ham, G. Hu, G. Xie, J. Vergara, Y. Liang et al., Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute Myeloid Leukemia. Proc. Natl. Acad. Sci. U S A 119, e2122379119 (2022)PubMedPubMedCentralCrossRef
162.
163.
go back to reference A. Cerwenka, L.L. Lanier, Natural killer cell memory in Infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016)PubMedCrossRef A. Cerwenka, L.L. Lanier, Natural killer cell memory in Infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016)PubMedCrossRef
164.
go back to reference I. Terrén, A. Orrantia, A. Mosteiro, J. Vitallé, O. Zenarruzabeitia, F. Borrego, Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci. Rep. 11, 6472 (2021)PubMedPubMedCentralCrossRef I. Terrén, A. Orrantia, A. Mosteiro, J. Vitallé, O. Zenarruzabeitia, F. Borrego, Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci. Rep. 11, 6472 (2021)PubMedPubMedCentralCrossRef
165.
go back to reference E.-M. Ewen, J.H.W. Pahl, M. Miller, C. Watzl, A. Cerwenka, KIR downregulation by IL-12/15/18 unleashes human NK cells from KIR/HLA-I inhibition and enhances killing of Tumor cells. Eur. J. Immunol. 48, 355–365 (2018)PubMedCrossRef E.-M. Ewen, J.H.W. Pahl, M. Miller, C. Watzl, A. Cerwenka, KIR downregulation by IL-12/15/18 unleashes human NK cells from KIR/HLA-I inhibition and enhances killing of Tumor cells. Eur. J. Immunol. 48, 355–365 (2018)PubMedCrossRef
166.
go back to reference J.W. Leong, J.M. Chase, R. Romee, S.E. Schneider, R.P. Sullivan, M.A. Cooper et al., Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol. Blood Marrow Transplant. 20, 463–473 (2014)PubMedPubMedCentralCrossRef J.W. Leong, J.M. Chase, R. Romee, S.E. Schneider, R.P. Sullivan, M.A. Cooper et al., Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol. Blood Marrow Transplant. 20, 463–473 (2014)PubMedPubMedCentralCrossRef
167.
go back to reference M. Boieri, A. Ulvmoen, A. Sudworth, C. Lendrem, M. Collin, A.M. Dickinson et al., IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic Leukemia and delay Leukemia development in vivo. OncoImmunology. 6, e1274478 (2017)PubMedPubMedCentralCrossRef M. Boieri, A. Ulvmoen, A. Sudworth, C. Lendrem, M. Collin, A.M. Dickinson et al., IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic Leukemia and delay Leukemia development in vivo. OncoImmunology. 6, e1274478 (2017)PubMedPubMedCentralCrossRef
168.
go back to reference M.A. Cooper, J.M. Elliott, P.A. Keyel, L. Yang, J.A. Carrero, W.M. Yokoyama, Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. U S A 106, 1915–1919 (2009)PubMedPubMedCentralCrossRef M.A. Cooper, J.M. Elliott, P.A. Keyel, L. Yang, J.A. Carrero, W.M. Yokoyama, Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. U S A 106, 1915–1919 (2009)PubMedPubMedCentralCrossRef
169.
go back to reference J. Ni, M. Miller, A. Stojanovic, N. Garbi, A. Cerwenka, Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012)PubMedPubMedCentralCrossRef J. Ni, M. Miller, A. Stojanovic, N. Garbi, A. Cerwenka, Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012)PubMedPubMedCentralCrossRef
170.
go back to reference R. Romee, M. Rosario, M.M. Berrien-Elliott, J.A. Wagner, B.A. Jewell, T. Schappe et al., Cytokine-induced memory-like natural killer cells exhibit enhanced responses against Myeloid Leukemia. Sci. Transl Med. 8, 357ra123 (2016)PubMedPubMedCentralCrossRef R. Romee, M. Rosario, M.M. Berrien-Elliott, J.A. Wagner, B.A. Jewell, T. Schappe et al., Cytokine-induced memory-like natural killer cells exhibit enhanced responses against Myeloid Leukemia. Sci. Transl Med. 8, 357ra123 (2016)PubMedPubMedCentralCrossRef
171.
go back to reference N.D. Marin, B.A. Krasnick, M. Becker-Hapak, L. Conant, S.P. Goedegebuure, M.M. Berrien-Elliott et al., Memory-like differentiation enhances NK cell responses to Melanoma. Clin. Cancer Res. 27, 4859–4869 (2021)PubMedPubMedCentralCrossRef N.D. Marin, B.A. Krasnick, M. Becker-Hapak, L. Conant, S.P. Goedegebuure, M.M. Berrien-Elliott et al., Memory-like differentiation enhances NK cell responses to Melanoma. Clin. Cancer Res. 27, 4859–4869 (2021)PubMedPubMedCentralCrossRef
172.
go back to reference L.D. Uppendahl, M. Felices, L. Bendzick, C. Ryan, B. Kodal, P. Hinderlie et al., Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against Ovarian cancer cells. Gynecol. Oncol. 153, 149–157 (2019)PubMedPubMedCentralCrossRef L.D. Uppendahl, M. Felices, L. Bendzick, C. Ryan, B. Kodal, P. Hinderlie et al., Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against Ovarian cancer cells. Gynecol. Oncol. 153, 149–157 (2019)PubMedPubMedCentralCrossRef
173.
go back to reference J.N. Kochenderfer, S.A. Rosenberg, Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013)PubMedPubMedCentralCrossRef J.N. Kochenderfer, S.A. Rosenberg, Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013)PubMedPubMedCentralCrossRef
174.
go back to reference C. Lin, J. Zhang, Reformation in chimeric antigen receptor based cancer immunotherapy: redirecting natural killer cell. Biochimica et Biophysica Acta (BBA) - reviews on Cancer. 2018;1869:200–215 C. Lin, J. Zhang, Reformation in chimeric antigen receptor based cancer immunotherapy: redirecting natural killer cell. Biochimica et Biophysica Acta (BBA) - reviews on Cancer. 2018;1869:200–215
175.
go back to reference M. Chmielewski, H. Abken, TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 15, 1145–1154 (2015)PubMedCrossRef M. Chmielewski, H. Abken, TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 15, 1145–1154 (2015)PubMedCrossRef
177.
go back to reference Y. Gong, R.G.J. Klein Wolterink, J. Wang, G.M.J. Bos, W.T.V. Germeraad, Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 14, 73 (2021)PubMedPubMedCentralCrossRef Y. Gong, R.G.J. Klein Wolterink, J. Wang, G.M.J. Bos, W.T.V. Germeraad, Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 14, 73 (2021)PubMedPubMedCentralCrossRef
178.
go back to reference Y. Li, D.L. Hermanson, B.S. Moriarity, D.S. Kaufman, Human iPSC-Derived natural killer cells Engineered with chimeric Antigen receptors enhance anti-tumor activity. Cell. Stem Cell. 23, 181–192e5 (2018)PubMedPubMedCentralCrossRef Y. Li, D.L. Hermanson, B.S. Moriarity, D.S. Kaufman, Human iPSC-Derived natural killer cells Engineered with chimeric Antigen receptors enhance anti-tumor activity. Cell. Stem Cell. 23, 181–192e5 (2018)PubMedPubMedCentralCrossRef
179.
go back to reference K.-Y. Teng, A.G. Mansour, Z. Zhu, Z. Li, L. Tian, S. Ma et al., Off-the-Shelf prostate Stem Cell Antigen–Directed chimeric Antigen receptor Natural Killer Cell Therapy to treat Pancreatic Cancer. Gastroenterology. 162, 1319–1333 (2022)PubMedCrossRef K.-Y. Teng, A.G. Mansour, Z. Zhu, Z. Li, L. Tian, S. Ma et al., Off-the-Shelf prostate Stem Cell Antigen–Directed chimeric Antigen receptor Natural Killer Cell Therapy to treat Pancreatic Cancer. Gastroenterology. 162, 1319–1333 (2022)PubMedCrossRef
180.
go back to reference M. Gang, N.D. Marin, P. Wong, C.C. Neal, L. Marsala, M. Foster et al., CAR-modified memory-like NK cells exhibit potent responses to NK-resistant Lymphomas. Blood. 136, 2308–2318 (2020)PubMedPubMedCentralCrossRef M. Gang, N.D. Marin, P. Wong, C.C. Neal, L. Marsala, M. Foster et al., CAR-modified memory-like NK cells exhibit potent responses to NK-resistant Lymphomas. Blood. 136, 2308–2318 (2020)PubMedPubMedCentralCrossRef
181.
go back to reference B. Cao, M. Liu, J. Huang, J. Zhou, J. Li, H. Lian et al., Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 17, 3850–3861 (2021)PubMedPubMedCentralCrossRef B. Cao, M. Liu, J. Huang, J. Zhou, J. Li, H. Lian et al., Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 17, 3850–3861 (2021)PubMedPubMedCentralCrossRef
182.
go back to reference M. Liu, W. Huang, Y. Guo, Y. Zhou, C. Zhi, J. Chen et al., CAR NK-92 cells targeting DLL3 kill effectively small cell Lung cancer cells in vitro and in vivo. J. Leukoc. Biol. 2022 M. Liu, W. Huang, Y. Guo, Y. Zhou, C. Zhi, J. Chen et al., CAR NK-92 cells targeting DLL3 kill effectively small cell Lung cancer cells in vitro and in vivo. J. Leukoc. Biol. 2022
183.
go back to reference L. Wu, F. Liu, L. Yin, F. Wang, H. Shi, Q. Zhao et al., The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant Prostate cancer and the induction of ferroptosis-related cell death. Cancer Commun. (Lond) 2022 L. Wu, F. Liu, L. Yin, F. Wang, H. Shi, Q. Zhao et al., The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant Prostate cancer and the induction of ferroptosis-related cell death. Cancer Commun. (Lond) 2022
184.
go back to reference H. Liu, B. Yang, T. Sun, L. Lin, Y. Hu, M. Deng et al., Specific growth inhibition of ErbB2–expressing human Breast cancer cells by genetically modified NK–92 cells. Oncol. Rep. 33, 95–102 (2015)PubMed H. Liu, B. Yang, T. Sun, L. Lin, Y. Hu, M. Deng et al., Specific growth inhibition of ErbB2–expressing human Breast cancer cells by genetically modified NK–92 cells. Oncol. Rep. 33, 95–102 (2015)PubMed
185.
go back to reference R. Ma, T. Lu, Z. Li, K.-Y. Teng, A.G. Mansour, M. Yu et al., An oncolytic virus expressing IL-15/IL-15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. 81, 3635–3648 (2021)PubMedPubMedCentralCrossRef R. Ma, T. Lu, Z. Li, K.-Y. Teng, A.G. Mansour, M. Yu et al., An oncolytic virus expressing IL-15/IL-15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. 81, 3635–3648 (2021)PubMedPubMedCentralCrossRef
186.
go back to reference E. Liu, D. Marin, P. Banerjee, H.A. Macapinlac, P. Thompson, R. Basar et al., Use of CAR-Transduced Natural Killer cells in CD19-Positive lymphoid tumors. N Engl. J. Med. 382, 545–553 (2020)PubMedPubMedCentralCrossRef E. Liu, D. Marin, P. Banerjee, H.A. Macapinlac, P. Thompson, R. Basar et al., Use of CAR-Transduced Natural Killer cells in CD19-Positive lymphoid tumors. N Engl. J. Med. 382, 545–553 (2020)PubMedPubMedCentralCrossRef
189.
go back to reference X. Zhang, Y. Guo, Y. Ji, Y. Gao, M. Zhang, Y. Liu et al., Cytokine release Syndrome after Modified CAR-NK Therapy in an Advanced Non-small Cell Lung Cancer patient: a Case Report. Cell Transpl. 31, 09636897221094244 (2022)CrossRef X. Zhang, Y. Guo, Y. Ji, Y. Gao, M. Zhang, Y. Liu et al., Cytokine release Syndrome after Modified CAR-NK Therapy in an Advanced Non-small Cell Lung Cancer patient: a Case Report. Cell Transpl. 31, 09636897221094244 (2022)CrossRef
190.
go back to reference X. Wang, X. Yang, X. Yuan, W. Wang, Y. Wang, Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp. Hematol. Oncol. 11, 85 (2022)PubMedPubMedCentralCrossRef X. Wang, X. Yang, X. Yuan, W. Wang, Y. Wang, Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp. Hematol. Oncol. 11, 85 (2022)PubMedPubMedCentralCrossRef
191.
go back to reference I. Nakase, N. Ueno, M. Matsuzawa, K. Noguchi, M. Hirano, M. Omura et al., Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open. Bio. 11, 753–767 (2021)PubMedPubMedCentralCrossRef I. Nakase, N. Ueno, M. Matsuzawa, K. Noguchi, M. Hirano, M. Omura et al., Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open. Bio. 11, 753–767 (2021)PubMedPubMedCentralCrossRef
192.
go back to reference A. Görgens, G. Corso, D.W. Hagey, R. Jawad Wiklander, M.O. Gustafsson, U. Felldin et al., Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles. 11, e12238 (2022)PubMedPubMedCentralCrossRef A. Görgens, G. Corso, D.W. Hagey, R. Jawad Wiklander, M.O. Gustafsson, U. Felldin et al., Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles. 11, e12238 (2022)PubMedPubMedCentralCrossRef
193.
go back to reference L. Lugini, S. Cecchetti, V. Huber, F. Luciani, G. Macchia, F. Spadaro et al., Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 189, 2833–2842 (2012)PubMedCrossRef L. Lugini, S. Cecchetti, V. Huber, F. Luciani, G. Macchia, F. Spadaro et al., Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 189, 2833–2842 (2012)PubMedCrossRef
194.
go back to reference K. Kaban, C. Hinterleitner, Y. Zhou, E. Salva, A.G. Kantarci, H.R. Salih et al., Therapeutic silencing of BCL-2 using NK Cell-Derived exosomes as a Novel Therapeutic Approach in Breast Cancer. Cancers (Basel). 13, 2397 (2021)PubMedCrossRef K. Kaban, C. Hinterleitner, Y. Zhou, E. Salva, A.G. Kantarci, H.R. Salih et al., Therapeutic silencing of BCL-2 using NK Cell-Derived exosomes as a Novel Therapeutic Approach in Breast Cancer. Cancers (Basel). 13, 2397 (2021)PubMedCrossRef
195.
go back to reference Y. Qi, X. Zhao, Y. Dong, M. Wang, J. Wang, Z. Fan et al., Opportunities and challenges of natural killer cell-derived extracellular vesicles. Front. Bioeng. Biotechnol. 11, 1122585 (2023)PubMedPubMedCentralCrossRef Y. Qi, X. Zhao, Y. Dong, M. Wang, J. Wang, Z. Fan et al., Opportunities and challenges of natural killer cell-derived extracellular vesicles. Front. Bioeng. Biotechnol. 11, 1122585 (2023)PubMedPubMedCentralCrossRef
196.
go back to reference C.-H. Wu, J. Li, L. Li, J. Sun, M. Fabbri, A.S. Wayne et al., Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J. Extracell. Vesicles. 8, 1588538 (2019)PubMedPubMedCentralCrossRef C.-H. Wu, J. Li, L. Li, J. Sun, M. Fabbri, A.S. Wayne et al., Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J. Extracell. Vesicles. 8, 1588538 (2019)PubMedPubMedCentralCrossRef
197.
go back to reference F. Wu, M. Xie, M. Hun, Z. She, C. Li, S. Luo et al., Natural killer cell-derived extracellular vesicles: Novel players in Cancer Immunotherapy. Front. Immunol. 12, 658698 (2021)PubMedPubMedCentralCrossRef F. Wu, M. Xie, M. Hun, Z. She, C. Li, S. Luo et al., Natural killer cell-derived extracellular vesicles: Novel players in Cancer Immunotherapy. Front. Immunol. 12, 658698 (2021)PubMedPubMedCentralCrossRef
198.
go back to reference A.M.L. Chan, J.M. Cheah, Y. Lokanathan, M.H. Ng, J.X. Law, Natural killer cell-derived extracellular vesicles as a Promising Immunotherapeutic Strategy for Cancer: a systematic review. Int. J. Mol. Sci. 24, 4026 (2023)PubMedPubMedCentralCrossRef A.M.L. Chan, J.M. Cheah, Y. Lokanathan, M.H. Ng, J.X. Law, Natural killer cell-derived extracellular vesicles as a Promising Immunotherapeutic Strategy for Cancer: a systematic review. Int. J. Mol. Sci. 24, 4026 (2023)PubMedPubMedCentralCrossRef
199.
go back to reference L. Zhu, S. Kalimuthu, J.M. Oh, P. Gangadaran, S.H. Baek, S.Y. Jeong et al., Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials. 190–191, 38–50 (2019)PubMedCrossRef L. Zhu, S. Kalimuthu, J.M. Oh, P. Gangadaran, S.H. Baek, S.Y. Jeong et al., Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials. 190–191, 38–50 (2019)PubMedCrossRef
200.
go back to reference M. Aarsund, F.M. Segers, Y. Wu, M. Inngjerdingen, Comparison of characteristics and Tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18. Cancer Immunol. Immunother 2022 M. Aarsund, F.M. Segers, Y. Wu, M. Inngjerdingen, Comparison of characteristics and Tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18. Cancer Immunol. Immunother 2022
201.
go back to reference P. Neviani, P.M. Wise, M. Murtadha, C.W. Liu, C.-H. Wu, A.Y. Jong et al., Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune Escape mechanisms. Cancer Res. 79, 1151–1164 (2019)PubMedCrossRef P. Neviani, P.M. Wise, M. Murtadha, C.W. Liu, C.-H. Wu, A.Y. Jong et al., Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune Escape mechanisms. Cancer Res. 79, 1151–1164 (2019)PubMedCrossRef
202.
go back to reference M. Zhang, W. Shao, T. Yang, H. Liu, S. Guo, D. Zhao et al., Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Adv Sci (Weinh). 2022;e2201135 M. Zhang, W. Shao, T. Yang, H. Liu, S. Guo, D. Zhao et al., Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Adv Sci (Weinh). 2022;e2201135
203.
go back to reference D. Han, K. Wang, T. Zhang, G.-C. Gao, H. Xu, Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur. Rev. Med. Pharmacol. Sci. 24, 5703–5713 (2020)PubMed D. Han, K. Wang, T. Zhang, G.-C. Gao, H. Xu, Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur. Rev. Med. Pharmacol. Sci. 24, 5703–5713 (2020)PubMed
204.
go back to reference S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020)PubMedCrossRef S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020)PubMedCrossRef
205.
go back to reference Y. Zhang, D.L. Wallace, de C.M. Lara, H. Ghattas, B. Asquith, A. Worth et al., In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral Infection. Immunology. 121, 258–265 (2007)PubMedPubMedCentralCrossRef Y. Zhang, D.L. Wallace, de C.M. Lara, H. Ghattas, B. Asquith, A. Worth et al., In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral Infection. Immunology. 121, 258–265 (2007)PubMedPubMedCentralCrossRef
206.
go back to reference M. Daher, K. Rezvani, Outlook for New CAR-Based therapies with a focus on CAR NK cells: what lies Beyond CAR-Engineered T cells in the race against Cancer. Cancer Discov. 11, 45–58 (2021)PubMedCrossRef M. Daher, K. Rezvani, Outlook for New CAR-Based therapies with a focus on CAR NK cells: what lies Beyond CAR-Engineered T cells in the race against Cancer. Cancer Discov. 11, 45–58 (2021)PubMedCrossRef
Metadata
Title
NK cells as powerful therapeutic tool in cancer immunotherapy
Authors
Mao Huang
Yixuan Liu
Qijia Yan
Miao Peng
Junshang Ge
Yongzhen Mo
Yumin Wang
Fuyan Wang
Zhaoyang Zeng
Yong Li
Chunmei Fan
Wei Xiong
Publication date
03-01-2024
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 3/2024
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-023-00909-3

ASH 2024 Annual Meeting Coverage

inMIND supports tafasitamab addition in follicular lymphoma

Combining tafasitamab with lenalidomide and rituximab significantly improves progression-free survival for patients with relapsed or refractory follicular lymphoma.

Featuring the official presentation video

Read more
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now