Skip to main content
Top

25-09-2024 | Breast MRI

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI

Authors: Yu Huang, Nicholas J. Leotta, Lukas Hirsch, Roberto Lo Gullo, Mary Hughes, Jeffrey Reiner, Nicole B. Saphier, Kelly S. Myers, Babita Panigrahi, Emily Ambinder, Philip Di Carlo, Lars J. Grimm, Dorothy Lowell, Sora Yoon, Sujata V. Ghate, Lucas C. Parra, Elizabeth J. Sutton

Published in: Journal of Imaging Informatics in Medicine

Login to get access

Abstract

This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85–0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists’ performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu E, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat Med. 2021 Feb;27(2):244–9.CrossRefPubMedPubMedCentral Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu E, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat Med. 2021 Feb;27(2):244–9.CrossRefPubMedPubMedCentral
2.
go back to reference McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020 Jan;577(7788):89–94.CrossRefPubMed McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020 Jan;577(7788):89–94.CrossRefPubMed
4.
go back to reference Schreier J, Attanasi F, Laaksonen H. Generalization vs. Specificity: In Which Cases Should a Clinic Train its Own Segmentation Models? Front Oncol. 2020 May 14;10:675. Schreier J, Attanasi F, Laaksonen H. Generalization vs. Specificity: In Which Cases Should a Clinic Train its Own Segmentation Models? Front Oncol. 2020 May 14;10:675.
5.
go back to reference AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med Phys. 2018 Mar;45(3):1150–8.CrossRefPubMed AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med Phys. 2018 Mar;45(3):1150–8.CrossRefPubMed
6.
go back to reference Zhu J, Geng J, Shan W, Zhang B, Shen H, Dong X, et al. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Front Oncol. 2022 Aug 11;12:946580.CrossRef Zhu J, Geng J, Shan W, Zhang B, Shen H, Dong X, et al. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Front Oncol. 2022 Aug 11;12:946580.CrossRef
7.
go back to reference Abhisheka B, Biswas S, Purkayastha B. A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning. Arch Comput Methods Eng. 2023 Jul 7;30. Abhisheka B, Biswas S, Purkayastha B. A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning. Arch Comput Methods Eng. 2023 Jul 7;30.
8.
go back to reference Balkenende L, Teuwen J, Mann RM. Application of Deep Learning in Breast Cancer Imaging. Semin Nucl Med. 2022 Sep;52(5):584–96.CrossRefPubMed Balkenende L, Teuwen J, Mann RM. Application of Deep Learning in Breast Cancer Imaging. Semin Nucl Med. 2022 Sep;52(5):584–96.CrossRefPubMed
9.
go back to reference Abdelrahman L, Al Ghamdi M, Collado-Mesa F, Abdel-Mottaleb M. Convolutional neural networks for breast cancer detection in mammography: A survey. Comput Biol Med. 2021 Apr;131:104248.CrossRefPubMed Abdelrahman L, Al Ghamdi M, Collado-Mesa F, Abdel-Mottaleb M. Convolutional neural networks for breast cancer detection in mammography: A survey. Comput Biol Med. 2021 Apr;131:104248.CrossRefPubMed
10.
go back to reference Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, et al. Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans Med Imaging. 2020 Apr;39(4):1184–94.CrossRefPubMed Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, et al. Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans Med Imaging. 2020 Apr;39(4):1184–94.CrossRefPubMed
11.
go back to reference Hirsch L, Huang Y, Luo S, Rossi Saccarelli C, Lo Gullo R, Daimiel Naranjo I, et al. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans. Radiol Artif Intell. 2022 Jan;4(1):e200231.CrossRefPubMed Hirsch L, Huang Y, Luo S, Rossi Saccarelli C, Lo Gullo R, Daimiel Naranjo I, et al. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans. Radiol Artif Intell. 2022 Jan;4(1):e200231.CrossRefPubMed
12.
go back to reference Yue W, Zhang H, Zhou J, Li G, Tang Z, Sun Z, et al. Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front Oncol. 2022 Aug 11;12:984626.CrossRef Yue W, Zhang H, Zhou J, Li G, Tang Z, Sun Z, et al. Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front Oncol. 2022 Aug 11;12:984626.CrossRef
13.
go back to reference Bellin MF, Van Der Molen AJ. Extracellular gadolinium-based contrast media: an overview. Eur J Radiol. 2008 May;66(2):160–7.CrossRefPubMed Bellin MF, Van Der Molen AJ. Extracellular gadolinium-based contrast media: an overview. Eur J Radiol. 2008 May;66(2):160–7.CrossRefPubMed
14.
go back to reference Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, et al. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer. 2018 Aug;119(4):508–16.CrossRefPubMedPubMedCentral Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, et al. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer. 2018 Aug;119(4):508–16.CrossRefPubMedPubMedCentral
15.
go back to reference Hirsch L, Huang Y, Parra LC. Segmentation of MRI head anatomy using deep volumetric networks and multiple spatial priors. J Med Imaging Bellingham Wash. 2021 May;8(3):034001. Hirsch L, Huang Y, Parra LC. Segmentation of MRI head anatomy using deep volumetric networks and multiple spatial priors. J Med Imaging Bellingham Wash. 2021 May;8(3):034001.
16.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999 Aug;18(8):712–21.CrossRefPubMed Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999 Aug;18(8):712–21.CrossRefPubMed
18.
go back to reference Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945;26(3):297–302.CrossRef Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945;26(3):297–302.CrossRef
19.
go back to reference Wang S, Li C, Wang R, Liu Z, Wang M, Tan H, et al. Annotation-efficient deep learning for automatic medical image segmentation. Nat Commun. 2021 Oct 8;12(1):5915.CrossRefPubMedPubMedCentral Wang S, Li C, Wang R, Liu Z, Wang M, Tan H, et al. Annotation-efficient deep learning for automatic medical image segmentation. Nat Commun. 2021 Oct 8;12(1):5915.CrossRefPubMedPubMedCentral
21.
go back to reference Anzalone N. Comparative Studies of Different Gadolinium Agents in Brain Tumors: Differences between Gadolinium Chelates and Their Possible Influence on Imaging Features. Am J Neuroradiol. 2010 Jun 1;31(6):981–2.CrossRefPubMedPubMedCentral Anzalone N. Comparative Studies of Different Gadolinium Agents in Brain Tumors: Differences between Gadolinium Chelates and Their Possible Influence on Imaging Features. Am J Neuroradiol. 2010 Jun 1;31(6):981–2.CrossRefPubMedPubMedCentral
22.
go back to reference Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, et al. Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage. 2023 Jul 1;274:120125.CrossRef Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, et al. Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage. 2023 Jul 1;274:120125.CrossRef
23.
go back to reference Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. NeuroImage. 2018 Feb 15;167:104–20.CrossRef Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. NeuroImage. 2018 Feb 15;167:104–20.CrossRef
24.
go back to reference Giordano AM, McElree B, Carrasco M. On the automaticity and flexibility of covert attention: A speed-accuracy trade-off analysis. J Vis. 2009 Mar 31;9(3):30.1–3010. Giordano AM, McElree B, Carrasco M. On the automaticity and flexibility of covert attention: A speed-accuracy trade-off analysis. J Vis. 2009 Mar 31;9(3):30.1–3010.
25.
go back to reference Witowski J, Heacock L, Reig B, Kang SK, Lewin A, Pysarenko K, et al. Improving breast cancer diagnostics with deep learning for MRI. Sci Transl Med. 2022;14(664):eabo4802. Witowski J, Heacock L, Reig B, Kang SK, Lewin A, Pysarenko K, et al. Improving breast cancer diagnostics with deep learning for MRI. Sci Transl Med. 2022;14(664):eabo4802.
Metadata
Title
Cross-site Validation of AI Segmentation and Harmonization in Breast MRI
Authors
Yu Huang
Nicholas J. Leotta
Lukas Hirsch
Roberto Lo Gullo
Mary Hughes
Jeffrey Reiner
Nicole B. Saphier
Kelly S. Myers
Babita Panigrahi
Emily Ambinder
Philip Di Carlo
Lars J. Grimm
Dorothy Lowell
Sora Yoon
Sujata V. Ghate
Lucas C. Parra
Elizabeth J. Sutton
Publication date
25-09-2024
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-01266-9