Skip to main content
Top
Published in:

01-10-2024 | Breast Cancer | Review Article

The treatment landscape of triple-negative breast cancer

Authors: Yi Hu, Chen Wang, Huishi Liang, Jie Li, Qiong Yang

Published in: Medical Oncology | Issue 10/2024

Login to get access

Abstract

Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Literature
2.
go back to reference Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13:4429–34.CrossRef Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13:4429–34.CrossRef
3.
go back to reference Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef
4.
go back to reference Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol OncolJ Hematol Oncol. 2023;16:100.CrossRef Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol OncolJ Hematol Oncol. 2023;16:100.CrossRef
6.
go back to reference Ricci-Vitiani L, Lombardi DG, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRef Ricci-Vitiani L, Lombardi DG, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRef
7.
go back to reference O’Conor CJ, et al. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12(7):813–20.PubMedCrossRef O’Conor CJ, et al. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12(7):813–20.PubMedCrossRef
8.
go back to reference Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018;174:1293–308.PubMedPubMedCentralCrossRef Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018;174:1293–308.PubMedPubMedCentralCrossRef
9.
go back to reference Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. The Breast. 2015;24:S36-40.PubMedCrossRef Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. The Breast. 2015;24:S36-40.PubMedCrossRef
10.
go back to reference Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232:142–50.PubMedPubMedCentralCrossRef Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232:142–50.PubMedPubMedCentralCrossRef
11.
go back to reference Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA. New strategies for triple-negative breast cancer–deciphering the heterogeneity. Clin Cancer Res: Offic J Am Assoc for Cancer Res. 2014;20:782–90.CrossRef Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA. New strategies for triple-negative breast cancer–deciphering the heterogeneity. Clin Cancer Res: Offic J Am Assoc for Cancer Res. 2014;20:782–90.CrossRef
12.
go back to reference Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SAW, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.PubMedCrossRef Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SAW, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.PubMedCrossRef
13.
go back to reference Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef
14.
go back to reference Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35:428-440.e5.PubMedCrossRef Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35:428-440.e5.PubMedCrossRef
15.
go back to reference Angelova M, Charoentong P, Hackl H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16(1):64.PubMedPubMedCentralCrossRef Angelova M, Charoentong P, Hackl H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16(1):64.PubMedPubMedCentralCrossRef
16.
go back to reference Li Y, Rogoff HA, Keates S, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 2015;112(6):1839–44.PubMedPubMedCentralCrossRef Li Y, Rogoff HA, Keates S, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 2015;112(6):1839–44.PubMedPubMedCentralCrossRef
17.
go back to reference Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.PubMedCrossRef Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.PubMedCrossRef
18.
go back to reference Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ, Tiao G, et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017;49:1476–86.PubMedPubMedCentralCrossRef Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ, Tiao G, et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017;49:1476–86.PubMedPubMedCentralCrossRef
19.
go back to reference Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12:68–78.CrossRef Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12:68–78.CrossRef
21.
go back to reference Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384:2394–405.PubMedPubMedCentralCrossRef Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384:2394–405.PubMedPubMedCentralCrossRef
22.
go back to reference Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379:753–63.PubMedPubMedCentralCrossRef Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379:753–63.PubMedPubMedCentralCrossRef
23.
go back to reference Eikesdal HP, Yndestad S, Elzawahry A, Llop-Guevara A, Gilje B, Blix ES, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2021;32:240–9.CrossRef Eikesdal HP, Yndestad S, Elzawahry A, Llop-Guevara A, Gilje B, Blix ES, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2021;32:240–9.CrossRef
24.
25.
go back to reference Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Lond Engl. 2017;390:1949–61.CrossRef Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Lond Engl. 2017;390:1949–61.CrossRef
26.
go back to reference Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.PubMedPubMedCentralCrossRef Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.PubMedPubMedCentralCrossRef
27.
go back to reference Patsouris A, Tredan O, et al. RUBY: a phase II study testing rucaparib in germline (g) BRCA wild-type patients presenting metastatic breast cancer (mBC) with homologous recombination deficiency (HRD). J Clin Oncol. 2019;37:1092–1092.CrossRef Patsouris A, Tredan O, et al. RUBY: a phase II study testing rucaparib in germline (g) BRCA wild-type patients presenting metastatic breast cancer (mBC) with homologous recombination deficiency (HRD). J Clin Oncol. 2019;37:1092–1092.CrossRef
28.
go back to reference Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol OncolJ Hematol Oncol. 2021;14:88.CrossRef Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol OncolJ Hematol Oncol. 2021;14:88.CrossRef
29.
go back to reference Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol OncolJ Hematol Oncol. 2019;12:94.CrossRef Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol OncolJ Hematol Oncol. 2019;12:94.CrossRef
30.
31.
go back to reference Son S, Shin S, Rao NV, et al. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int J Biol Macromol. 2018;110:406–15.PubMedCrossRef Son S, Shin S, Rao NV, et al. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int J Biol Macromol. 2018;110:406–15.PubMedCrossRef
32.
go back to reference Aditya B, Mayer IA, Vahdat LT, Tolaney SM, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741–51.CrossRef Aditya B, Mayer IA, Vahdat LT, Tolaney SM, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741–51.CrossRef
33.
go back to reference Sharkey RM, McBride WJ, Cardillo TM, Govindan SV, Wang Y, Rossi EA, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-trop-2-SN-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:5131–8.CrossRef Sharkey RM, McBride WJ, Cardillo TM, Govindan SV, Wang Y, Rossi EA, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-trop-2-SN-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:5131–8.CrossRef
34.
go back to reference Bardia A, Tolaney SM, Punie K, Loirat D, Oliveira M, Kalinsky K, et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021;32:1148–56.PubMedCrossRef Bardia A, Tolaney SM, Punie K, Loirat D, Oliveira M, Kalinsky K, et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021;32:1148–56.PubMedCrossRef
35.
go back to reference Tringler B, Zhuo S, Pilkington G, Torkko KC, et al. B7-H4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:1842–8.CrossRef Tringler B, Zhuo S, Pilkington G, Torkko KC, et al. B7-H4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:1842–8.CrossRef
36.
go back to reference Chambers CA, Kuhns MS, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.PubMedCrossRef Chambers CA, Kuhns MS, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.PubMedCrossRef
37.
go back to reference Toader D, Fessler SP, Collins SD, Conlon PR, Bollu R, Catcott KC, et al. Discovery and preclinical characterization of XMT-1660, an optimized B7-H4-targeted antibody-drug conjugate for the treatment of cancer. Mol Cancer Ther. 2023;22:999–1012.PubMedPubMedCentralCrossRef Toader D, Fessler SP, Collins SD, Conlon PR, Bollu R, Catcott KC, et al. Discovery and preclinical characterization of XMT-1660, an optimized B7-H4-targeted antibody-drug conjugate for the treatment of cancer. Mol Cancer Ther. 2023;22:999–1012.PubMedPubMedCentralCrossRef
38.
go back to reference Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef
39.
go back to reference Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24.PubMedPubMedCentralCrossRef Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24.PubMedPubMedCentralCrossRef
40.
go back to reference Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, et al. PIK3CA, and PTEN aberrations in early-phase trials with PI3K/AKT/mTOR inhibitors: experience with 1656 patients at MD anderson cancer center. Cell Rep. 2014;6:377–87.PubMedPubMedCentralCrossRef Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, et al. PIK3CA, and PTEN aberrations in early-phase trials with PI3K/AKT/mTOR inhibitors: experience with 1656 patients at MD anderson cancer center. Cell Rep. 2014;6:377–87.PubMedPubMedCentralCrossRef
41.
go back to reference Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
42.
go back to reference Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20:74–88.PubMedCrossRef Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20:74–88.PubMedCrossRef
44.
go back to reference Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30:1051–60.PubMedCrossRef Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30:1051–60.PubMedCrossRef
45.
go back to reference Dent R, Kim S-B, Oliveira M, Barrios C, O’Shaughnessy J, Isakoff SJ, et al. Abstract GS3-04: double-blind placebo (PBO)-controlled randomized phase III trial evaluating first-line ipatasertib (IPAT) combined with paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered locally advanced unresectable or metastatic triple-negative breast cancer (aTNBC): primary results from IPATunity130 Cohort A. Cancer. 2021;81:GS3-04. https://doi.org/10.1158/1538-7445.SABCS20-GS3-04.CrossRef Dent R, Kim S-B, Oliveira M, Barrios C, O’Shaughnessy J, Isakoff SJ, et al. Abstract GS3-04: double-blind placebo (PBO)-controlled randomized phase III trial evaluating first-line ipatasertib (IPAT) combined with paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered locally advanced unresectable or metastatic triple-negative breast cancer (aTNBC): primary results from IPATunity130 Cohort A. Cancer. 2021;81:GS3-04. https://​doi.​org/​10.​1158/​1538-7445.​SABCS20-GS3-04.CrossRef
46.
go back to reference Baselga J, et al. SANDPIPER: phase III study of the PI3-kinase (PI3K) inhibitor taselisib (GDC-0032) plus fulvestrant in patients (pts) with estrogen receptor (ER)-positive, HER2-negative locally advanced or metastatic breast cancer (BC) enriched for pts with PIK3CA mutant tumors. J Clin Oncol. 2015;33:629–629. Baselga J, et al. SANDPIPER: phase III study of the PI3-kinase (PI3K) inhibitor taselisib (GDC-0032) plus fulvestrant in patients (pts) with estrogen receptor (ER)-positive, HER2-negative locally advanced or metastatic breast cancer (BC) enriched for pts with PIK3CA mutant tumors. J Clin Oncol. 2015;33:629–629.
47.
go back to reference Dreyling M, Santoro A, Mollica L, Leppä S, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35:3898–905.PubMedCrossRef Dreyling M, Santoro A, Mollica L, Leppä S, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35:3898–905.PubMedCrossRef
48.
go back to reference Guo Z, Luo J, et al. Evaluation of copanlisib in combination with eribulin in triple-negative breast cancer patient-derived xenograft models. Cancer Res Commun. 2024;4(6):1430–40.PubMedPubMedCentralCrossRef Guo Z, Luo J, et al. Evaluation of copanlisib in combination with eribulin in triple-negative breast cancer patient-derived xenograft models. Cancer Res Commun. 2024;4(6):1430–40.PubMedPubMedCentralCrossRef
50.
go back to reference Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27:5511–26.PubMedCrossRef Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27:5511–26.PubMedCrossRef
51.
go back to reference Shapiro GI, Bell-McGuinn KM, Molina JR, Bendell JC, Spicer J, Kwak EL, et al. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:1888–95.CrossRef Shapiro GI, Bell-McGuinn KM, Molina JR, Bendell JC, Spicer J, Kwak EL, et al. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:1888–95.CrossRef
52.
go back to reference Wu X, Xu Y, Liang Q, Yang X, Huang J, Wang J, et al. Recent advances in dual PI3K/mTOR inhibitors for tumour treatment. Front Pharmacol. 2022;13:875372.PubMedPubMedCentralCrossRef Wu X, Xu Y, Liang Q, Yang X, Huang J, Wang J, et al. Recent advances in dual PI3K/mTOR inhibitors for tumour treatment. Front Pharmacol. 2022;13:875372.PubMedPubMedCentralCrossRef
53.
go back to reference Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, et al. A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 2017;7:102–13.PubMedCrossRef Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, et al. A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 2017;7:102–13.PubMedCrossRef
54.
go back to reference Lin F-M, Yost SE, Wen W, Frankel PH, Schmolze D, Chu P-G, et al. Differential gene expression and AKT targeting in triple negative breast cancer. Oncotarget. 2019;10:4356–68.PubMedPubMedCentralCrossRef Lin F-M, Yost SE, Wen W, Frankel PH, Schmolze D, Chu P-G, et al. Differential gene expression and AKT targeting in triple negative breast cancer. Oncotarget. 2019;10:4356–68.PubMedPubMedCentralCrossRef
55.
go back to reference Kim S-B, Dent R, Im S-A, Espié M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72.PubMedPubMedCentralCrossRef Kim S-B, Dent R, Im S-A, Espié M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72.PubMedPubMedCentralCrossRef
56.
go back to reference Oliveira M, Saura C, Nuciforo P, Calvo I, Andersen J, Passos-Coelho JL, et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 2019;30:1289–97.PubMedCrossRef Oliveira M, Saura C, Nuciforo P, Calvo I, Andersen J, Passos-Coelho JL, et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 2019;30:1289–97.PubMedCrossRef
57.
go back to reference Esumi H, Lu J, Kurashima Y, Hanaoka T. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-quinolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci. 2004;95:685–90.PubMedCrossRef Esumi H, Lu J, Kurashima Y, Hanaoka T. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-quinolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci. 2004;95:685–90.PubMedCrossRef
58.
go back to reference Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.PubMedCrossRef Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.PubMedCrossRef
60.
go back to reference Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D’Incalci M, et al. Targeting triple-negative breast cancer: Is p53 the answer? Cancer Treat Rev. 2013;39:541–50.PubMedCrossRef Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D’Incalci M, et al. Targeting triple-negative breast cancer: Is p53 the answer? Cancer Treat Rev. 2013;39:541–50.PubMedCrossRef
61.
go back to reference Gadhikar MA, Sciuto MR, Alves MVO, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12:1860–73.PubMedPubMedCentralCrossRef Gadhikar MA, Sciuto MR, Alves MVO, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12:1860–73.PubMedPubMedCentralCrossRef
62.
go back to reference Ma CX, Cai S, Li S, Ryan CE, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest. 2012;122:1541–52.PubMedPubMedCentralCrossRef Ma CX, Cai S, Li S, Ryan CE, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest. 2012;122:1541–52.PubMedPubMedCentralCrossRef
63.
go back to reference Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ, et al. A phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol. 2011;67:1225–37.PubMedCrossRef Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ, et al. A phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol. 2011;67:1225–37.PubMedCrossRef
64.
go back to reference Ho AL, et al. Phase I, open-label, dose-escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. J Clin Oncol. 2011;29:3033–3033.CrossRef Ho AL, et al. Phase I, open-label, dose-escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. J Clin Oncol. 2011;29:3033–3033.CrossRef
65.
go back to reference Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, et al. Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019;572:538–42.PubMedPubMedCentralCrossRef Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, et al. Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019;572:538–42.PubMedPubMedCentralCrossRef
66.
go back to reference Lang GA, Iwakuma T, Suh Y-A, Liu G, Rao VA, Parant JM, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell. 2004;119:861–72.PubMedCrossRef Lang GA, Iwakuma T, Suh Y-A, Liu G, Rao VA, Parant JM, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell. 2004;119:861–72.PubMedCrossRef
67.
go back to reference Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24:192–215.PubMedCrossRef Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24:192–215.PubMedCrossRef
68.
go back to reference Sarig R, Rivlin N, Brosh R, Bornstein C, et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med. 2010;207:2127–40.PubMedPubMedCentralCrossRef Sarig R, Rivlin N, Brosh R, Bornstein C, et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med. 2010;207:2127–40.PubMedPubMedCentralCrossRef
69.
go back to reference Park H, Shapiro GI, Gao X, Mahipal A, Starr J, Furqan M, et al. Phase Ib study of eprenetapopt (APR-246) in combination with pembrolizumab in patients with advanced or metastatic solid tumors. ESMO Open. 2022;7:100573.PubMedPubMedCentralCrossRef Park H, Shapiro GI, Gao X, Mahipal A, Starr J, Furqan M, et al. Phase Ib study of eprenetapopt (APR-246) in combination with pembrolizumab in patients with advanced or metastatic solid tumors. ESMO Open. 2022;7:100573.PubMedPubMedCentralCrossRef
70.
go back to reference Sharma A, Comstock CE, et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 2007;67(13):6192–203.PubMedPubMedCentralCrossRef Sharma A, Comstock CE, et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 2007;67(13):6192–203.PubMedPubMedCentralCrossRef
71.
go back to reference Jones RA, Robinson TJ, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126(10):3739–57.PubMedPubMedCentralCrossRef Jones RA, Robinson TJ, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126(10):3739–57.PubMedPubMedCentralCrossRef
72.
go back to reference Wonder E, Simón-Gracia L, et al. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials. 2018;166:52–63.PubMedPubMedCentralCrossRef Wonder E, Simón-Gracia L, et al. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials. 2018;166:52–63.PubMedPubMedCentralCrossRef
73.
go back to reference Adams GP, Schier R, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61(12):4750–5.PubMed Adams GP, Schier R, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61(12):4750–5.PubMed
74.
go back to reference Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol. 2023;14:1255820.PubMedPubMedCentralCrossRef Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol. 2023;14:1255820.PubMedPubMedCentralCrossRef
75.
go back to reference Mulkearns-Hubert EE, et al. Targeting NANOG and FAK via Cx26-derived cell-penetrating peptides in triple-negative breast cancer. Mol Cancer Ther. 2024;23(1):56–67.PubMedPubMedCentralCrossRef Mulkearns-Hubert EE, et al. Targeting NANOG and FAK via Cx26-derived cell-penetrating peptides in triple-negative breast cancer. Mol Cancer Ther. 2024;23(1):56–67.PubMedPubMedCentralCrossRef
76.
go back to reference Thiagarajan PS, Sinyuk M, et al. Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nat Commun. 2018;9(1):578.PubMedPubMedCentralCrossRef Thiagarajan PS, Sinyuk M, et al. Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nat Commun. 2018;9(1):578.PubMedPubMedCentralCrossRef
77.
go back to reference McHenry PR, Prosperi JR. Proteins found in the triple-negative breast cancer secretome and their therapeutic potential. Int J Mol Sci. 2023;24(3):2100.PubMedPubMedCentralCrossRef McHenry PR, Prosperi JR. Proteins found in the triple-negative breast cancer secretome and their therapeutic potential. Int J Mol Sci. 2023;24(3):2100.PubMedPubMedCentralCrossRef
78.
go back to reference Mantovani A, Locati M, Vecchi A, et al. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 2001;22(6):328–36.PubMedCrossRef Mantovani A, Locati M, Vecchi A, et al. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 2001;22(6):328–36.PubMedCrossRef
79.
go back to reference O’Neill LA, Dinarello CA. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today. 2000;21:206–9.PubMedCrossRef O’Neill LA, Dinarello CA. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today. 2000;21:206–9.PubMedCrossRef
80.
go back to reference So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): non-genetic tumor heterogeneity and immune microenvironment: emerging treatment options. Pharmacol Ther. 2022;237:108253.PubMedPubMedCentralCrossRef So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): non-genetic tumor heterogeneity and immune microenvironment: emerging treatment options. Pharmacol Ther. 2022;237:108253.PubMedPubMedCentralCrossRef
81.
go back to reference Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med Press). 2019;11:115–35.PubMed Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med Press). 2019;11:115–35.PubMed
82.
go back to reference Chekhun SV, Zadvorny TV, et al. CD44+/CD24− markers of cancer stem cells in patients with breast cancer of different molecular subtypes. Exp Oncol. 2015;37(1):58–63.PubMedCrossRef Chekhun SV, Zadvorny TV, et al. CD44+/CD24 markers of cancer stem cells in patients with breast cancer of different molecular subtypes. Exp Oncol. 2015;37(1):58–63.PubMedCrossRef
83.
go back to reference Chuthapisith S, Eremin J, et al. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19(1):27–32.PubMedCrossRef Chuthapisith S, Eremin J, et al. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19(1):27–32.PubMedCrossRef
84.
go back to reference Park SY, LeeHE, et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res. 2010;16(3):876–87.PubMedPubMedCentralCrossRef Park SY, LeeHE, et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res. 2010;16(3):876–87.PubMedPubMedCentralCrossRef
85.
go back to reference Lehmann BD, BauerJA, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef Lehmann BD, BauerJA, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef
86.
go back to reference Yu F, Yao H, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.PubMedCrossRef Yu F, Yao H, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.PubMedCrossRef
87.
88.
go back to reference Lapidot T, Sirard C, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.PubMedCrossRef Lapidot T, Sirard C, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.PubMedCrossRef
89.
go back to reference Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11(4):254–67.PubMedCrossRef Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11(4):254–67.PubMedCrossRef
91.
go back to reference Joshi M, Dey P, et al. Recent advancements in targeted protein knockdown technologies-emerging paradigms for targeted therapy. Explor Target Antitumor Ther. 2023;4(6):1227–48.PubMedPubMedCentralCrossRef Joshi M, Dey P, et al. Recent advancements in targeted protein knockdown technologies-emerging paradigms for targeted therapy. Explor Target Antitumor Ther. 2023;4(6):1227–48.PubMedPubMedCentralCrossRef
93.
go back to reference Cromm PM, Samarasinghe KTG, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140:17019–26.PubMedCrossRef Cromm PM, Samarasinghe KTG, et al. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140:17019–26.PubMedCrossRef
94.
go back to reference Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedPubMedCentralCrossRef Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedPubMedCentralCrossRef
95.
go back to reference Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.PubMedCrossRef Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.PubMedCrossRef
96.
go back to reference Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019;129:1785–800.PubMedPubMedCentralCrossRef Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019;129:1785–800.PubMedPubMedCentralCrossRef
97.
go back to reference Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib keynote-012 study. J Clin Oncol. 2016;34:2460–7.PubMedPubMedCentralCrossRef Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib keynote-012 study. J Clin Oncol. 2016;34:2460–7.PubMedPubMedCentralCrossRef
98.
go back to reference Voorwerk L, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25:920–8.PubMedCrossRef Voorwerk L, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25:920–8.PubMedCrossRef
99.
go back to reference Dirix LY, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study. Breast Cancer Res Treat. 2018;167:671–86.PubMedCrossRef Dirix LY, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study. Breast Cancer Res Treat. 2018;167:671–86.PubMedCrossRef
100.
go back to reference Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol. 2022;11:101.PubMedPubMedCentralCrossRef Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol. 2022;11:101.PubMedPubMedCentralCrossRef
101.
go back to reference Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174:1373-1387.e19.PubMedPubMedCentralCrossRef Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174:1373-1387.e19.PubMedPubMedCentralCrossRef
102.
go back to reference Ali HR, Glont S-E, Blows FM, Provenzano E, Dawson S-J, Liu B, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol Off J Eur Soc Med Oncol. 2015;26:1488–93.CrossRef Ali HR, Glont S-E, Blows FM, Provenzano E, Dawson S-J, Liu B, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol Off J Eur Soc Med Oncol. 2015;26:1488–93.CrossRef
103.
go back to reference Adams S, Loi S, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):405–11.PubMedCrossRef Adams S, Loi S, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):405–11.PubMedCrossRef
104.
go back to reference Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:499–511.PubMedCrossRef Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:499–511.PubMedCrossRef
105.
go back to reference Galluzzi L, Humeau J, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17:725–41.PubMedCrossRef Galluzzi L, Humeau J, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17:725–41.PubMedCrossRef
106.
go back to reference Schmid P, Adams S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef Schmid P, Adams S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef
107.
go back to reference Roussos Torres ET, Ho WJ, et al. Entinostat, nivolumab and ipilimumab for women with advanced HER2-negative breast cancer: a phase Ib trial. Nat Cancer. 2024;5(6):866–79.PubMedCrossRef Roussos Torres ET, Ho WJ, et al. Entinostat, nivolumab and ipilimumab for women with advanced HER2-negative breast cancer: a phase Ib trial. Nat Cancer. 2024;5(6):866–79.PubMedCrossRef
108.
go back to reference Zhang Y, Chen J, et al. The role of histone methylase and demethylase in antitumor immunity: a new direction for immunotherapy. Front Immunol. 2023;13:1–16.CrossRef Zhang Y, Chen J, et al. The role of histone methylase and demethylase in antitumor immunity: a new direction for immunotherapy. Front Immunol. 2023;13:1–16.CrossRef
109.
go back to reference Shimomura A, Fujiwara Y, et al. Tremelimumab-associated tumor regression following after initial progression: two case reports. Immunotherapy. 2016;8(1):9–15.PubMedCrossRef Shimomura A, Fujiwara Y, et al. Tremelimumab-associated tumor regression following after initial progression: two case reports. Immunotherapy. 2016;8(1):9–15.PubMedCrossRef
110.
go back to reference Klimovich B, Meyer L, Merle N, Neumann M, König AM, Ananikidis N, et al. Partial p53 reactivation is sufficient to induce cancer regression. J Exp Clin Cancer Res CR. 2022;41:80.PubMedCrossRef Klimovich B, Meyer L, Merle N, Neumann M, König AM, Ananikidis N, et al. Partial p53 reactivation is sufficient to induce cancer regression. J Exp Clin Cancer Res CR. 2022;41:80.PubMedCrossRef
111.
go back to reference Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev. 2019;48:4361–74.PubMedCrossRef Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev. 2019;48:4361–74.PubMedCrossRef
Metadata
Title
The treatment landscape of triple-negative breast cancer
Authors
Yi Hu
Chen Wang
Huishi Liang
Jie Li
Qiong Yang
Publication date
01-10-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 10/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02456-9

Other articles of this Issue 10/2024

Medical Oncology 10/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more