Skip to main content
Top
Published in:

16-01-2024 | Breast Cancer

The emerging roles of histone demethylases in cancers

Authors: Dali Tong, Ying Tang, Peng Zhong

Published in: Cancer and Metastasis Reviews | Issue 2/2024

Login to get access

Abstract

Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Literature
1.
go back to reference Huang, J., Sengupta, R., Espejo, A. B., Lee, M. G., Dorsey, J. A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M. T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105–108.PubMedCrossRef Huang, J., Sengupta, R., Espejo, A. B., Lee, M. G., Dorsey, J. A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M. T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105–108.PubMedCrossRef
2.
go back to reference Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 41(1), 125–129.PubMedCrossRef Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 41(1), 125–129.PubMedCrossRef
3.
go back to reference Kontaki, H., & Talianidis, I. (2010). Lysine methylation regulates E2F1-induced cell death. Molecular Cell, 39(1), 152–160.PubMedCrossRef Kontaki, H., & Talianidis, I. (2010). Lysine methylation regulates E2F1-induced cell death. Molecular Cell, 39(1), 152–160.PubMedCrossRef
4.
go back to reference Lu, T., Jackson, M. W., Wang, B., Yang, M., Chance, M. R., Miyagi, M., Gudkov, A. V., & Stark, G. R. (2010). Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 46–51.PubMedCrossRef Lu, T., Jackson, M. W., Wang, B., Yang, M., Chance, M. R., Miyagi, M., Gudkov, A. V., & Stark, G. R. (2010). Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 46–51.PubMedCrossRef
5.
go back to reference Chopra, A., Willmore, W. G., & Biggar, K. K. (2022). Insights into a cancer-target demethylase: substrate prediction through systematic specificity analysis for KDM3A. Biomolecules, 12(5), 641.PubMedPubMedCentralCrossRef Chopra, A., Willmore, W. G., & Biggar, K. K. (2022). Insights into a cancer-target demethylase: substrate prediction through systematic specificity analysis for KDM3A. Biomolecules, 12(5), 641.PubMedPubMedCentralCrossRef
6.
go back to reference Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C. A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nature Cell Biology, 13(6), 668–675.PubMedCrossRef Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C. A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nature Cell Biology, 13(6), 668–675.PubMedCrossRef
7.
go back to reference Feng, T., Yamamoto, A., Wilkins, S. E., Sokolova, E., Yates, L. A., Munzel, M., Singh, P., Hopkinson, R. J., Fischer, R., Cockman, M. E., et al. (2014). Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Molecular Cell, 53(4), 645–654.PubMedPubMedCentralCrossRef Feng, T., Yamamoto, A., Wilkins, S. E., Sokolova, E., Yates, L. A., Munzel, M., Singh, P., Hopkinson, R. J., Fischer, R., Cockman, M. E., et al. (2014). Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Molecular Cell, 53(4), 645–654.PubMedPubMedCentralCrossRef
8.
go back to reference Shen, J., Xiang, X., Chen, L., Wang, H., Wu, L., Sun, Y., Ma, L., Gu, X., Liu, H., Wang, L., et al. (2017). JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Reports, 18(12), 2131–2143.PubMedPubMedCentralCrossRef Shen, J., Xiang, X., Chen, L., Wang, H., Wu, L., Sun, Y., Ma, L., Gu, X., Liu, H., Wang, L., et al. (2017). JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Reports, 18(12), 2131–2143.PubMedPubMedCentralCrossRef
9.
go back to reference Liu, H., Wang, C., Lee, S., Ning, F., Wang, Y., Zhang, Q., Chen, Z., Zang, J., Nix, J., Dai, S., et al. (2018). Specific recognition of arginine methylated histone tails by JMJD5 and JMJD7. Science and Reports, 8(1), 3275.CrossRef Liu, H., Wang, C., Lee, S., Ning, F., Wang, Y., Zhang, Q., Chen, Z., Zang, J., Nix, J., Dai, S., et al. (2018). Specific recognition of arginine methylated histone tails by JMJD5 and JMJD7. Science and Reports, 8(1), 3275.CrossRef
10.
go back to reference Webby, C. J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M. L., Schmitz, C., Butler, D. S., Yates, J. R., 3rd., et al. (2009). Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science, 325(5936), 90–93.PubMedCrossRef Webby, C. J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M. L., Schmitz, C., Butler, D. S., Yates, J. R., 3rd., et al. (2009). Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science, 325(5936), 90–93.PubMedCrossRef
11.
go back to reference Mantri, M., Krojer, T., Bagg, E. A., Webby, C. A., Butler, D. S., Kochan, G., Kavanagh, K. L., Oppermann, U., McDonough, M. A., & Schofield, C. J. (2010). Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 401(2), 211–222.PubMedCrossRef Mantri, M., Krojer, T., Bagg, E. A., Webby, C. A., Butler, D. S., Kochan, G., Kavanagh, K. L., Oppermann, U., McDonough, M. A., & Schofield, C. J. (2010). Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 401(2), 211–222.PubMedCrossRef
12.
go back to reference Sterling, J., Menezes, S. V., Abbassi, R. H., & Munoz, L. (2020). Histone lysine demethylases and their functions in cancer. International Journal of Cancer, 148(10), 2375–2388.PubMedCrossRef Sterling, J., Menezes, S. V., Abbassi, R. H., & Munoz, L. (2020). Histone lysine demethylases and their functions in cancer. International Journal of Cancer, 148(10), 2375–2388.PubMedCrossRef
13.
go back to reference Hojfeldt, J. W., Agger, K., & Helin, K. (2013). Histone lysine demethylases as targets for anticancer therapy. Nature Reviews. Drug Discovery, 12(12), 917–930.PubMedCrossRef Hojfeldt, J. W., Agger, K., & Helin, K. (2013). Histone lysine demethylases as targets for anticancer therapy. Nature Reviews. Drug Discovery, 12(12), 917–930.PubMedCrossRef
14.
go back to reference Sarah, L., & Fujimori, D. (2023). Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Current opinion in structural biology, 83, 102707.PubMedPubMedCentralCrossRef Sarah, L., & Fujimori, D. (2023). Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Current opinion in structural biology, 83, 102707.PubMedPubMedCentralCrossRef
16.
go back to reference Young, D., Guha, C., & Sidoli, S. (2023). The role of histone H3 lysine demethylases in glioblastoma. Cancer and Metastasis Reviews, 42(2), 445–454.PubMedCrossRef Young, D., Guha, C., & Sidoli, S. (2023). The role of histone H3 lysine demethylases in glioblastoma. Cancer and Metastasis Reviews, 42(2), 445–454.PubMedCrossRef
17.
go back to reference Wu, C. Y., Hsieh, C. Y., Huang, K. E., Chang, C., & Kang, H. Y. (2012). Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. International Journal of Cancer, 131(6), 1423–1434.PubMedCrossRef Wu, C. Y., Hsieh, C. Y., Huang, K. E., Chang, C., & Kang, H. Y. (2012). Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. International Journal of Cancer, 131(6), 1423–1434.PubMedCrossRef
18.
go back to reference Gao, S., Chen, S., Han, D., Wang, Z., Li, M., Han, W., Besschetnova, A., Liu, M., Zhou, F., Barrett, D., et al. (2020). Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 52(10), 1011–1017.PubMedPubMedCentralCrossRef Gao, S., Chen, S., Han, D., Wang, Z., Li, M., Han, W., Besschetnova, A., Liu, M., Zhou, F., Barrett, D., et al. (2020). Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 52(10), 1011–1017.PubMedPubMedCentralCrossRef
19.
go back to reference Regufe da Mota, S., Bailey, S., Strivens, R. A., Hayden, A. L., Douglas, L. R., Duriez, P. J., Borrello, M. T., Benelkebir, H., Ganesan, A., Packham, G., et al. (2018). LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell International, 18, 71.PubMedPubMedCentralCrossRef Regufe da Mota, S., Bailey, S., Strivens, R. A., Hayden, A. L., Douglas, L. R., Duriez, P. J., Borrello, M. T., Benelkebir, H., Ganesan, A., Packham, G., et al. (2018). LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell International, 18, 71.PubMedPubMedCentralCrossRef
20.
go back to reference Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., 3rd., McWeeney, S. K., King, C. J., Schwartzman, J., Urrutia, J., Bisson, W. H., Coleman, D. J., et al. (2018). LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4179–E4188.PubMedPubMedCentral Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., 3rd., McWeeney, S. K., King, C. J., Schwartzman, J., Urrutia, J., Bisson, W. H., Coleman, D. J., et al. (2018). LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4179–E4188.PubMedPubMedCentral
21.
go back to reference Wang, Z., Gao, S., Han, D., Han, W., Li, M., & Cai, C. (2019). LSD1 activates PI3K/AKT signaling through regulating p85 expression in prostate cancer cells. Frontiers in Oncology, 9, 721.PubMedPubMedCentralCrossRef Wang, Z., Gao, S., Han, D., Han, W., Li, M., & Cai, C. (2019). LSD1 activates PI3K/AKT signaling through regulating p85 expression in prostate cancer cells. Frontiers in Oncology, 9, 721.PubMedPubMedCentralCrossRef
22.
go back to reference Gupta, S., Weston, A., Bearrs, J., Thode, T., Neiss, A., Soldi, R., & Sharma, S. (2016). Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells. Prostate Cancer and Prostatic Diseases, 19(4), 349–357.PubMedPubMedCentralCrossRef Gupta, S., Weston, A., Bearrs, J., Thode, T., Neiss, A., Soldi, R., & Sharma, S. (2016). Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells. Prostate Cancer and Prostatic Diseases, 19(4), 349–357.PubMedPubMedCentralCrossRef
23.
go back to reference Coleman, D. J., Sampson, D. A., Sehrawat, A., Kumaraswamy, A., Sun, D., Wang, Y., Schwartzman, J., Urrutia, J., Lee, A. R., Coleman, I. M., et al. (2020). Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 22(6), 253–262.PubMedPubMedCentralCrossRef Coleman, D. J., Sampson, D. A., Sehrawat, A., Kumaraswamy, A., Sun, D., Wang, Y., Schwartzman, J., Urrutia, J., Lee, A. R., Coleman, I. M., et al. (2020). Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 22(6), 253–262.PubMedPubMedCentralCrossRef
24.
go back to reference Cai, C., He, H. H., Chen, S., Coleman, I., Wang, H., Fang, Z., Nelson, P. S., Liu, X. S., Brown, M., & Balk, S. P. (2011). Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 20(4), 457–471.PubMedPubMedCentralCrossRef Cai, C., He, H. H., Chen, S., Coleman, I., Wang, H., Fang, Z., Nelson, P. S., Liu, X. S., Brown, M., & Balk, S. P. (2011). Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 20(4), 457–471.PubMedPubMedCentralCrossRef
25.
go back to reference Cortez, V., Mann, M., Tekmal, S., Suzuki, T., Miyata, N., Rodriguez-Aguayo, C., Lopez-Berestein, G., Sood, A. K., & Vadlamudi, R. K. (2012). Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Research, 14(4), R108.PubMedPubMedCentralCrossRef Cortez, V., Mann, M., Tekmal, S., Suzuki, T., Miyata, N., Rodriguez-Aguayo, C., Lopez-Berestein, G., Sood, A. K., & Vadlamudi, R. K. (2012). Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Research, 14(4), R108.PubMedPubMedCentralCrossRef
26.
go back to reference Bennani-Baiti, I. M. (2012). Integration of ERalpha-PELP1-HER2 signaling by LSD1 (KDM1A/AOF2) offers combinatorial therapeutic opportunities to circumventing hormone resistance in breast cancer. Breast Cancer Research, 14(5), 112.PubMedPubMedCentralCrossRef Bennani-Baiti, I. M. (2012). Integration of ERalpha-PELP1-HER2 signaling by LSD1 (KDM1A/AOF2) offers combinatorial therapeutic opportunities to circumventing hormone resistance in breast cancer. Breast Cancer Research, 14(5), 112.PubMedPubMedCentralCrossRef
27.
go back to reference Lim, S., Janzer, A., Becker, A., Zimmer, A., Schule, R., Buettner, R., & Kirfel, J. (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31(3), 512–520.PubMedCrossRef Lim, S., Janzer, A., Becker, A., Zimmer, A., Schule, R., Buettner, R., & Kirfel, J. (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31(3), 512–520.PubMedCrossRef
28.
go back to reference Pollock, J. A., Larrea, M. D., Jasper, J. S., McDonnell, D. P., & McCafferty, D. G. (2012). Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chemical Biology, 7(7), 1221–1231.PubMedPubMedCentralCrossRef Pollock, J. A., Larrea, M. D., Jasper, J. S., McDonnell, D. P., & McCafferty, D. G. (2012). Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chemical Biology, 7(7), 1221–1231.PubMedPubMedCentralCrossRef
29.
go back to reference Kim, J., Park, U. H., Moon, M., Um, S. J., & Kim, E. J. (2013). Negative regulation of ERalpha by a novel protein CAC1 through association with histone demethylase LSD1. FEBS Letters, 587(1), 17–22.PubMedCrossRef Kim, J., Park, U. H., Moon, M., Um, S. J., & Kim, E. J. (2013). Negative regulation of ERalpha by a novel protein CAC1 through association with histone demethylase LSD1. FEBS Letters, 587(1), 17–22.PubMedCrossRef
30.
go back to reference Grimaldi, P., Pucci, M., Di Siena, S., Di Giacomo, D., Pirazzi, V., Geremia, R., & Maccarrone, M. (2012). The faah gene is the first direct target of estrogen in the testis: Role of histone demethylase LSD1. Cellular and Molecular Life Sciences, 69(24), 4177–4190.PubMedPubMedCentralCrossRef Grimaldi, P., Pucci, M., Di Siena, S., Di Giacomo, D., Pirazzi, V., Geremia, R., & Maccarrone, M. (2012). The faah gene is the first direct target of estrogen in the testis: Role of histone demethylase LSD1. Cellular and Molecular Life Sciences, 69(24), 4177–4190.PubMedPubMedCentralCrossRef
31.
go back to reference Cao, C., Vasilatos, S. N., Bhargava, R., Fine, J. L., Oesterreich, S., Davidson, N. E., & Huang, Y. (2017). Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene, 36(1), 133–145.PubMedCrossRef Cao, C., Vasilatos, S. N., Bhargava, R., Fine, J. L., Oesterreich, S., Davidson, N. E., & Huang, Y. (2017). Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene, 36(1), 133–145.PubMedCrossRef
32.
go back to reference Vasilatos, S. N., Katz, T. A., Oesterreich, S., Wan, Y., Davidson, N. E., & Huang, Y. (2013). Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis, 34(6), 1196–1207.PubMedPubMedCentralCrossRef Vasilatos, S. N., Katz, T. A., Oesterreich, S., Wan, Y., Davidson, N. E., & Huang, Y. (2013). Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis, 34(6), 1196–1207.PubMedPubMedCentralCrossRef
33.
go back to reference Zhou, M., Venkata, P. P., Viswanadhapalli, S., Palacios, B., Alejo, S., Chen, Y., He, Y., Pratap, U. P., Liu, J., Zou, Y., et al. (2021). KDM1A inhibition is effective in reducing stemness and treating triple negative breast cancer. Breast Cancer Research and Treatment, 185(2), 343–357.PubMedCrossRef Zhou, M., Venkata, P. P., Viswanadhapalli, S., Palacios, B., Alejo, S., Chen, Y., He, Y., Pratap, U. P., Liu, J., Zou, Y., et al. (2021). KDM1A inhibition is effective in reducing stemness and treating triple negative breast cancer. Breast Cancer Research and Treatment, 185(2), 343–357.PubMedCrossRef
34.
go back to reference Hu, X., Xiang, D., Xie, Y., Tao, L., Zhang, Y., Jin, Y., Pinello, L., Wan, Y., Yuan, G. C., & Li, Z. (2019). LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene, 38(44), 7017–7034.PubMedPubMedCentralCrossRef Hu, X., Xiang, D., Xie, Y., Tao, L., Zhang, Y., Jin, Y., Pinello, L., Wan, Y., Yuan, G. C., & Li, Z. (2019). LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene, 38(44), 7017–7034.PubMedPubMedCentralCrossRef
35.
go back to reference Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell, 138(4), 660–672.PubMedCrossRef Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell, 138(4), 660–672.PubMedCrossRef
36.
go back to reference Malagraba, G., Yarmohammadi, M., Javed, A., Barcelo, C., & Rubio-Tomas, T. (2022). The Role of LSD1 and LSD2 in Cancers of the Gastrointestinal System: An Update. Biomolecules, 12(3), 462.PubMedPubMedCentralCrossRef Malagraba, G., Yarmohammadi, M., Javed, A., Barcelo, C., & Rubio-Tomas, T. (2022). The Role of LSD1 and LSD2 in Cancers of the Gastrointestinal System: An Update. Biomolecules, 12(3), 462.PubMedPubMedCentralCrossRef
37.
go back to reference Magerl, C., Ellinger, J., Braunschweig, T., Kremmer, E., Koch, L. K., Holler, T., Buttner, R., Luscher, B., & Gutgemann, I. (2010). H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Human Pathology, 41(2), 181–189.PubMedCrossRef Magerl, C., Ellinger, J., Braunschweig, T., Kremmer, E., Koch, L. K., Holler, T., Buttner, R., Luscher, B., & Gutgemann, I. (2010). H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Human Pathology, 41(2), 181–189.PubMedCrossRef
38.
go back to reference Xu, T. P., Wang, W. Y., Ma, P., Shuai, Y., Zhao, K., Wang, Y. F., Li, W., Xia, R., Chen, W. M., Zhang, E. B., et al. (2018). Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene, 37(36), 5020–5036.PubMedCrossRef Xu, T. P., Wang, W. Y., Ma, P., Shuai, Y., Zhao, K., Wang, Y. F., Li, W., Xia, R., Chen, W. M., Zhang, E. B., et al. (2018). Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene, 37(36), 5020–5036.PubMedCrossRef
39.
go back to reference Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016). LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Research, 76(21), 6299–6310.PubMedCrossRef Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016). LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Research, 76(21), 6299–6310.PubMedCrossRef
40.
go back to reference Ding, J., Xie, M., Lian, Y., Zhu, Y., Peng, P., Wang, J., Wang, L., & Wang, K. (2017). Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis, 6(1), e288.PubMedPubMedCentralCrossRef Ding, J., Xie, M., Lian, Y., Zhu, Y., Peng, P., Wang, J., Wang, L., & Wang, K. (2017). Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis, 6(1), e288.PubMedPubMedCentralCrossRef
41.
go back to reference Wang, Y., Sun, L., Luo, Y., & He, S. (2019). Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathology, Research and Practice, 215(5), 1054–1060.PubMedCrossRef Wang, Y., Sun, L., Luo, Y., & He, S. (2019). Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathology, Research and Practice, 215(5), 1054–1060.PubMedCrossRef
42.
go back to reference Cai, S., Wang, J., Zeng, W., Cheng, X., Liu, L., & Li, W. (2020). Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY), 12(14), 14990–15001.PubMedCrossRef Cai, S., Wang, J., Zeng, W., Cheng, X., Liu, L., & Li, W. (2020). Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY), 12(14), 14990–15001.PubMedCrossRef
43.
go back to reference Huang, Y., Yin, Y., & Sun, M. (2018). Targeting LSD2 in breast cancer. Aging (Albany NY), 10(1), 11–12.PubMedCrossRef Huang, Y., Yin, Y., & Sun, M. (2018). Targeting LSD2 in breast cancer. Aging (Albany NY), 10(1), 11–12.PubMedCrossRef
44.
go back to reference Chen, J. Y., Luo, C. W., Lai, Y. S., Wu, C. C., & Hung, W. C. (2017). Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogenesis, 6(8), e369.PubMedPubMedCentralCrossRef Chen, J. Y., Luo, C. W., Lai, Y. S., Wu, C. C., & Hung, W. C. (2017). Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogenesis, 6(8), e369.PubMedPubMedCentralCrossRef
45.
go back to reference Zhao, Y., Chen, X., Jiang, J., Wan, X., Wang, Y., & Xu, P. (2020). Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866(10), 165856.PubMedCrossRef Zhao, Y., Chen, X., Jiang, J., Wan, X., Wang, Y., & Xu, P. (2020). Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866(10), 165856.PubMedCrossRef
46.
go back to reference Kong, Y., Zou, S., Yang, F., Xu, X., Bu, W., Jia, J., & Liu, Z. (2016). RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. Cancer Letters, 381(1), 138–148.PubMedCrossRef Kong, Y., Zou, S., Yang, F., Xu, X., Bu, W., Jia, J., & Liu, Z. (2016). RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. Cancer Letters, 381(1), 138–148.PubMedCrossRef
47.
go back to reference Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A., & Copeland, N. G. (2006). Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO Journal, 25(14), 3422–3431.PubMedPubMedCentralCrossRef Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A., & Copeland, N. G. (2006). Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO Journal, 25(14), 3422–3431.PubMedPubMedCentralCrossRef
48.
go back to reference Pfau, R., Tzatsos, A., Kampranis, S. C., Serebrennikova, O. B., Bear, S. E., & Tsichlis, P. N. (2008). Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1907–1912.PubMedPubMedCentralCrossRef Pfau, R., Tzatsos, A., Kampranis, S. C., Serebrennikova, O. B., Bear, S. E., & Tsichlis, P. N. (2008). Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1907–1912.PubMedPubMedCentralCrossRef
49.
go back to reference Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R., & Pagano, M. (2007). JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 450(7167), 309–313.PubMedCrossRef Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R., & Pagano, M. (2007). JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 450(7167), 309–313.PubMedCrossRef
50.
go back to reference Frescas, D., Guardavaccaro, D., Kuchay, S. M., Kato, H., Poleshko, A., Basrur, V., Elenitoba-Johnson, K. S., Katz, R. A., & Pagano, M. (2008). KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 7(22), 3539–3547.PubMedCrossRef Frescas, D., Guardavaccaro, D., Kuchay, S. M., Kato, H., Poleshko, A., Basrur, V., Elenitoba-Johnson, K. S., Katz, R. A., & Pagano, M. (2008). KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 7(22), 3539–3547.PubMedCrossRef
51.
go back to reference Pedersen, M. T., & Helin, K. (2010). Histone demethylases in development and disease. Trends in Cell Biology, 20(11), 662–671.PubMedCrossRef Pedersen, M. T., & Helin, K. (2010). Histone demethylases in development and disease. Trends in Cell Biology, 20(11), 662–671.PubMedCrossRef
52.
go back to reference Ueda, T., Nagamachi, A., Takubo, K., Yamasaki, N., Matsui, H., Kanai, A., Nakata, Y., Ikeda, K., Konuma, T., Oda, H., et al. (2015). Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood, 125(22), 3437–3446.PubMedPubMedCentralCrossRef Ueda, T., Nagamachi, A., Takubo, K., Yamasaki, N., Matsui, H., Kanai, A., Nakata, Y., Ikeda, K., Konuma, T., Oda, H., et al. (2015). Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood, 125(22), 3437–3446.PubMedPubMedCentralCrossRef
53.
go back to reference He, J., Nguyen, A. T., & Zhang, Y. (2011). KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood, 117(14), 3869–3880.PubMedPubMedCentralCrossRef He, J., Nguyen, A. T., & Zhang, Y. (2011). KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood, 117(14), 3869–3880.PubMedPubMedCentralCrossRef
54.
go back to reference Zhao, X., Wang, X., Li, Q., Chen, W., Zhang, N., Kong, Y., Lv, J., Cao, L., Lin, D., Xu, G., et al. (2018). FBXL10 contributes to the development of diffuse large B-cell lymphoma by epigenetically enhancing ERK1/2 signaling pathway. Cell Death & Disease, 9(2), 46.CrossRef Zhao, X., Wang, X., Li, Q., Chen, W., Zhang, N., Kong, Y., Lv, J., Cao, L., Lin, D., Xu, G., et al. (2018). FBXL10 contributes to the development of diffuse large B-cell lymphoma by epigenetically enhancing ERK1/2 signaling pathway. Cell Death & Disease, 9(2), 46.CrossRef
55.
go back to reference Tzatsos, A., Paskaleva, P., Lymperi, S., Contino, G., Stoykova, S., Chen, Z., Wong, K. K., & Bardeesy, N. (2011). Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. Journal of Biological Chemistry, 286(38), 33061–33069.PubMedPubMedCentralCrossRef Tzatsos, A., Paskaleva, P., Lymperi, S., Contino, G., Stoykova, S., Chen, Z., Wong, K. K., & Bardeesy, N. (2011). Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. Journal of Biological Chemistry, 286(38), 33061–33069.PubMedPubMedCentralCrossRef
56.
go back to reference Yan, M., Yang, X., Shen, R., Wu, C., Wang, H., Ye, Q., Yang, P., Zhang, L., Chen, M., Wan, B., et al. (2018). miR-146b promotes cell proliferation and increases chemosensitivity, but attenuates cell migration and invasion via FBXL10 in ovarian cancer. Cell Death & Disease, 9(11), 1123.CrossRef Yan, M., Yang, X., Shen, R., Wu, C., Wang, H., Ye, Q., Yang, P., Zhang, L., Chen, M., Wan, B., et al. (2018). miR-146b promotes cell proliferation and increases chemosensitivity, but attenuates cell migration and invasion via FBXL10 in ovarian cancer. Cell Death & Disease, 9(11), 1123.CrossRef
57.
go back to reference Koyama-Nasu, R., David, G., & Tanese, N. (2007). The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nature Cell Biology, 9(9), 1074–1080.PubMedCrossRef Koyama-Nasu, R., David, G., & Tanese, N. (2007). The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nature Cell Biology, 9(9), 1074–1080.PubMedCrossRef
58.
go back to reference Polytarchou, C., Pfau, R., Hatziapostolou, M., & Tsichlis, P. N. (2008). The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress. Molecular and Cellular Biology, 28(24), 7451–7464.PubMedPubMedCentralCrossRef Polytarchou, C., Pfau, R., Hatziapostolou, M., & Tsichlis, P. N. (2008). The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress. Molecular and Cellular Biology, 28(24), 7451–7464.PubMedPubMedCentralCrossRef
59.
go back to reference Han, X. R., Zha, Z., Yuan, H. X., Feng, X., Xia, Y. K., Lei, Q. Y., Guan, K. L., & Xiong, Y. (2016). KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene, 35(32), 4179–4190.PubMedPubMedCentralCrossRef Han, X. R., Zha, Z., Yuan, H. X., Feng, X., Xia, Y. K., Lei, Q. Y., Guan, K. L., & Xiong, Y. (2016). KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene, 35(32), 4179–4190.PubMedPubMedCentralCrossRef
60.
go back to reference Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V., & Staller, P. (2008). The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. Journal of Biological Chemistry, 283(52), 36542–36552.PubMedPubMedCentralCrossRef Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V., & Staller, P. (2008). The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. Journal of Biological Chemistry, 283(52), 36542–36552.PubMedPubMedCentralCrossRef
61.
go back to reference Krieg, A. J., Rankin, E. B., Chan, D., Razorenova, O., Fernandez, S., & Giaccia, A. J. (2010). Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Molecular and Cellular Biology, 30(1), 344–353.PubMedCrossRef Krieg, A. J., Rankin, E. B., Chan, D., Razorenova, O., Fernandez, S., & Giaccia, A. J. (2010). Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Molecular and Cellular Biology, 30(1), 344–353.PubMedCrossRef
62.
go back to reference Pollard, P. J., Loenarz, C., Mole, D. R., McDonough, M. A., Gleadle, J. M., Schofield, C. J., & Ratcliffe, P. J. (2008). Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. The Biochemical Journal, 416(3), 387–394.PubMedCrossRef Pollard, P. J., Loenarz, C., Mole, D. R., McDonough, M. A., Gleadle, J. M., Schofield, C. J., & Ratcliffe, P. J. (2008). Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. The Biochemical Journal, 416(3), 387–394.PubMedCrossRef
63.
go back to reference Wan, W., Peng, K., Li, M., Qin, L., Tong, Z., Yan, J., Shen, B., & Yu, C. (2017). Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene, 36(27), 3868–3877.PubMedCrossRef Wan, W., Peng, K., Li, M., Qin, L., Tong, Z., Yan, J., Shen, B., & Yu, C. (2017). Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene, 36(27), 3868–3877.PubMedCrossRef
64.
go back to reference Mimura, I., Nangaku, M., Kanki, Y., Tsutsumi, S., Inoue, T., Kohro, T., Yamamoto, S., Fujita, T., Shimamura, T., Suehiro, J., et al. (2012). Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Molecular and Cellular Biology, 32(15), 3018–3032.PubMedPubMedCentralCrossRef Mimura, I., Nangaku, M., Kanki, Y., Tsutsumi, S., Inoue, T., Kohro, T., Yamamoto, S., Fujita, T., Shimamura, T., Suehiro, J., et al. (2012). Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Molecular and Cellular Biology, 32(15), 3018–3032.PubMedPubMedCentralCrossRef
65.
go back to reference Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., & Zhang, Y. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125(3), 483–495.PubMedCrossRef Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., & Zhang, Y. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125(3), 483–495.PubMedCrossRef
66.
go back to reference Xu, S., Fan, L., Jeon, H. Y., Zhang, F., Cui, X., Mickle, M. B., Peng, G., Hussain, A., Fazli, L., Gleave, M. E., et al. (2020). p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Research, 80(15), 3074–3087.PubMedPubMedCentralCrossRef Xu, S., Fan, L., Jeon, H. Y., Zhang, F., Cui, X., Mickle, M. B., Peng, G., Hussain, A., Fazli, L., Gleave, M. E., et al. (2020). p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Research, 80(15), 3074–3087.PubMedPubMedCentralCrossRef
67.
go back to reference Fan, L., Zhang, F., Xu, S., Cui, X., Hussain, A., Fazli, L., Gleave, M., Dong, X., & Qi, J. (2018). Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A, 115(20), E4584–E4593.PubMedPubMedCentralCrossRef Fan, L., Zhang, F., Xu, S., Cui, X., Hussain, A., Fazli, L., Gleave, M., Dong, X., & Qi, J. (2018). Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A, 115(20), E4584–E4593.PubMedPubMedCentralCrossRef
68.
go back to reference Tang, D. E., Dai, Y., Fan, L. L., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Histone demethylase JMJD1A promotes tumor progression via activating snail in prostate cancer. Molecular Cancer Research, 18(5), 698–708.PubMedCrossRef Tang, D. E., Dai, Y., Fan, L. L., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Histone demethylase JMJD1A promotes tumor progression via activating snail in prostate cancer. Molecular Cancer Research, 18(5), 698–708.PubMedCrossRef
69.
go back to reference Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11(4), 214.CrossRef Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11(4), 214.CrossRef
70.
go back to reference Kim, J. Y., Kim, K. B., Eom, G. H., Choe, N., Kee, H. J., Son, H. J., Oh, S. T., Kim, D. W., Pak, J. H., Baek, H. J., et al. (2012). KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Molecular and Cellular Biology, 32(14), 2917–2933.PubMedPubMedCentralCrossRef Kim, J. Y., Kim, K. B., Eom, G. H., Choe, N., Kee, H. J., Son, H. J., Oh, S. T., Kim, D. W., Pak, J. H., Baek, H. J., et al. (2012). KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Molecular and Cellular Biology, 32(14), 2917–2933.PubMedPubMedCentralCrossRef
71.
go back to reference Nakamura, S., Tan, L., Nagata, Y., Takemura, T., Asahina, A., Yokota, D., Yagyu, T., Shibata, K., Fujisawa, S., & Ohnishi, K. (2013). JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia. Molecular Carcinogenesis, 52(1), 57–69.PubMedCrossRef Nakamura, S., Tan, L., Nagata, Y., Takemura, T., Asahina, A., Yokota, D., Yagyu, T., Shibata, K., Fujisawa, S., & Ohnishi, K. (2013). JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia. Molecular Carcinogenesis, 52(1), 57–69.PubMedCrossRef
72.
go back to reference Hu, Z., Gomes, I., Horrigan, S. K., Kravarusic, J., Mar, B., Arbieva, Z., Chyna, B., Fulton, N., Edassery, S., Raza, A., et al. (2001). A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene, 20(47), 6946–6954.PubMedCrossRef Hu, Z., Gomes, I., Horrigan, S. K., Kravarusic, J., Mar, B., Arbieva, Z., Chyna, B., Fulton, N., Edassery, S., Raza, A., et al. (2001). A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene, 20(47), 6946–6954.PubMedCrossRef
73.
go back to reference Sui, Y., Gu, R., & Janknecht, R. (2021). Crucial functions of the JMJD1/KDM3 epigenetic regulators in cancer. Molecular Cancer Research, 19(1), 3–13.PubMedCrossRef Sui, Y., Gu, R., & Janknecht, R. (2021). Crucial functions of the JMJD1/KDM3 epigenetic regulators in cancer. Molecular Cancer Research, 19(1), 3–13.PubMedCrossRef
74.
go back to reference Saavedra, F., Gurard-Levin, Z. A., Rojas-Villalobos, C., Vassias, I., Quatrini, R., Almouzni, G., & Loyola, A. (2020). JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics & Chromatin, 13(1), 6.CrossRef Saavedra, F., Gurard-Levin, Z. A., Rojas-Villalobos, C., Vassias, I., Quatrini, R., Almouzni, G., & Loyola, A. (2020). JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics & Chromatin, 13(1), 6.CrossRef
75.
go back to reference Peeken, J. C., Jutzi, J. S., Wehrle, J., Koellerer, C., Staehle, H. F., Becker, H., Schoenwandt, E., Seeger, T. S., Schanne, D. H., Gothwal, M., et al. (2018). Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood, 131(18), 2065–2073.PubMedPubMedCentralCrossRef Peeken, J. C., Jutzi, J. S., Wehrle, J., Koellerer, C., Staehle, H. F., Becker, H., Schoenwandt, E., Seeger, T. S., Schanne, D. H., Gothwal, M., et al. (2018). Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood, 131(18), 2065–2073.PubMedPubMedCentralCrossRef
76.
go back to reference Izaguirre-Carbonell, J., Christiansen, L., Burns, R., Schmitz, J., Li, C., Mokry, R. L., Bluemn, T., Zheng, Y., Shen, J., Carlson, K. S., et al. (2019). Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia. Blood Advances, 3(9), 1499–1511.PubMedPubMedCentralCrossRef Izaguirre-Carbonell, J., Christiansen, L., Burns, R., Schmitz, J., Li, C., Mokry, R. L., Bluemn, T., Zheng, Y., Shen, J., Carlson, K. S., et al. (2019). Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia. Blood Advances, 3(9), 1499–1511.PubMedPubMedCentralCrossRef
77.
go back to reference Zhu, N., Chen, M., Eng, R., DeJong, J., Sinha, A. U., Rahnamay, N. F., Koche, R., Al-Shahrour, F., Minehart, J. C., Chen, C. W., et al. (2016). MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. The Journal of Clinical Investigation, 126(3), 997–1011.PubMedPubMedCentralCrossRef Zhu, N., Chen, M., Eng, R., DeJong, J., Sinha, A. U., Rahnamay, N. F., Koche, R., Al-Shahrour, F., Minehart, J. C., Chen, C. W., et al. (2016). MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. The Journal of Clinical Investigation, 126(3), 997–1011.PubMedPubMedCentralCrossRef
78.
go back to reference Lynch, J. R., Salik, B., Connerty, P., Vick, B., Leung, H., Pijning, A., Jeremias, I., Spiekermann, K., Trahair, T., Liu, T., et al. (2019). JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia, 33(6), 1400–1410.PubMedCrossRef Lynch, J. R., Salik, B., Connerty, P., Vick, B., Leung, H., Pijning, A., Jeremias, I., Spiekermann, K., Trahair, T., Liu, T., et al. (2019). JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia, 33(6), 1400–1410.PubMedCrossRef
79.
go back to reference Chen, M., Zhu, N., Liu, X., Laurent, B., Tang, Z., Eng, R., Shi, Y., Armstrong, S. A., & Roeder, R. G. (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes & Development, 29(20), 2123–2139.CrossRef Chen, M., Zhu, N., Liu, X., Laurent, B., Tang, Z., Eng, R., Shi, Y., Armstrong, S. A., & Roeder, R. G. (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes & Development, 29(20), 2123–2139.CrossRef
80.
go back to reference Schimek, V., Bjorn, N., Pelle, L., Svedberg, A., & Green, H. (2021). JMJD1C knockdown affects myeloid cell lines proliferation, viability, and gemcitabine/carboplatin-sensitivity. Pharmacogenetics and Genomics, 31(3), 60–67.PubMedCrossRef Schimek, V., Bjorn, N., Pelle, L., Svedberg, A., & Green, H. (2021). JMJD1C knockdown affects myeloid cell lines proliferation, viability, and gemcitabine/carboplatin-sensitivity. Pharmacogenetics and Genomics, 31(3), 60–67.PubMedCrossRef
81.
go back to reference Xu, X., Wang, L., Hu, L., Dirks, W. G., Zhao, Y., Wei, Z., Chen, D., Li, Z., Wang, Z., Han, Y., et al. (2020). Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. International Journal of Cancer, 146(2), 400–412.PubMedCrossRef Xu, X., Wang, L., Hu, L., Dirks, W. G., Zhao, Y., Wei, Z., Chen, D., Li, Z., Wang, Z., Han, Y., et al. (2020). Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. International Journal of Cancer, 146(2), 400–412.PubMedCrossRef
82.
go back to reference Black, J. C., Allen, A., Van Rechem, C., Forbes, E., Longworth, M., Tschop, K., Rinehart, C., Quiton, J., Walsh, R., Smallwood, A., et al. (2010). Conserved antagonism between JMJD2A/KDM4A and HP1gamma during cell cycle progression. Molecular Cell, 40(5), 736–748.PubMedCrossRef Black, J. C., Allen, A., Van Rechem, C., Forbes, E., Longworth, M., Tschop, K., Rinehart, C., Quiton, J., Walsh, R., Smallwood, A., et al. (2010). Conserved antagonism between JMJD2A/KDM4A and HP1gamma during cell cycle progression. Molecular Cell, 40(5), 736–748.PubMedCrossRef
83.
go back to reference Kim, T. D., Shin, S., Berry, W. L., Oh, S., & Janknecht, R. (2012). The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. Journal of Cellular Biochemistry, 113(4), 1368–1376.PubMedCrossRef Kim, T. D., Shin, S., Berry, W. L., Oh, S., & Janknecht, R. (2012). The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. Journal of Cellular Biochemistry, 113(4), 1368–1376.PubMedCrossRef
84.
go back to reference Gray, S. G., Iglesias, A. H., Lizcano, F., Villanueva, R., Camelo, S., Jingu, H., Teh, B. T., Koibuchi, N., Chin, W. W., Kokkotou, E., et al. (2005). Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. Journal of Biological Chemistry, 280(31), 28507–28518.PubMedCrossRef Gray, S. G., Iglesias, A. H., Lizcano, F., Villanueva, R., Camelo, S., Jingu, H., Teh, B. T., Koibuchi, N., Chin, W. W., Kokkotou, E., et al. (2005). Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. Journal of Biological Chemistry, 280(31), 28507–28518.PubMedCrossRef
85.
go back to reference Li, B. X., Zhang, M. C., Luo, C. L., Yang, P., Li, H., Xu, H. M., Xu, H. F., Shen, Y. W., Xue, A. M., & Zhao, Z. Q. (2011). Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. Journal of Experimental & Clinical Cancer Research, 30, 90.CrossRef Li, B. X., Zhang, M. C., Luo, C. L., Yang, P., Li, H., Xu, H. M., Xu, H. F., Shen, Y. W., Xue, A. M., & Zhao, Z. Q. (2011). Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. Journal of Experimental & Clinical Cancer Research, 30, 90.CrossRef
86.
go back to reference Berry, W. L., Shin, S., Lightfoot, S. A., & Janknecht, R. (2012). Oncogenic features of the JMJD2A histone demethylase in breast cancer. International Journal of Oncology, 41(5), 1701–1706.PubMedCrossRef Berry, W. L., Shin, S., Lightfoot, S. A., & Janknecht, R. (2012). Oncogenic features of the JMJD2A histone demethylase in breast cancer. International Journal of Oncology, 41(5), 1701–1706.PubMedCrossRef
87.
go back to reference Zhang, J., Li, Q., Zhang, S., Xu, Q., & Wang, T. (2016). Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Experimental Cell Research, 349(1), 77–84.PubMedCrossRef Zhang, J., Li, Q., Zhang, S., Xu, Q., & Wang, T. (2016). Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Experimental Cell Research, 349(1), 77–84.PubMedCrossRef
88.
go back to reference Cui, S. Z., Lei, Z. Y., Guan, T. P., Fan, L. L., Li, Y. Q., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Science, 111(5), 1567–1581.PubMedPubMedCentralCrossRef Cui, S. Z., Lei, Z. Y., Guan, T. P., Fan, L. L., Li, Y. Q., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Science, 111(5), 1567–1581.PubMedPubMedCentralCrossRef
89.
go back to reference Kim, J. G., Yi, J. M., Park, S. J., Kim, J. S., Son, T. G., Yang, K., Yoo, M. A., & Heo, K. (2012). Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. Biochimica et Biophysica Acta, 1819(11–12), 1200–1207.PubMedCrossRef Kim, J. G., Yi, J. M., Park, S. J., Kim, J. S., Son, T. G., Yang, K., Yoo, M. A., & Heo, K. (2012). Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. Biochimica et Biophysica Acta, 1819(11–12), 1200–1207.PubMedCrossRef
90.
go back to reference Fu, L., Chen, L., Yang, J., Ye, T., Chen, Y., & Fang, J. (2012). HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis, 33(9), 1664–1673.PubMedCrossRef Fu, L., Chen, L., Yang, J., Ye, T., Chen, Y., & Fang, J. (2012). HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis, 33(9), 1664–1673.PubMedCrossRef
91.
go back to reference Yang, J., Jubb, A. M., Pike, L., Buffa, F. M., Turley, H., Baban, D., Leek, R., Gatter, K. C., Ragoussis, J., & Harris, A. L. (2010). The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Research, 70(16), 6456–6466.PubMedPubMedCentralCrossRef Yang, J., Jubb, A. M., Pike, L., Buffa, F. M., Turley, H., Baban, D., Leek, R., Gatter, K. C., Ragoussis, J., & Harris, A. L. (2010). The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Research, 70(16), 6456–6466.PubMedPubMedCentralCrossRef
92.
go back to reference Shi, L., Sun, L., Li, Q., Liang, J., Yu, W., Yi, X., Yang, X., Li, Y., Han, X., Zhang, Y., et al. (2011). Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7541–7546.PubMedPubMedCentralCrossRef Shi, L., Sun, L., Li, Q., Liang, J., Yu, W., Yi, X., Yang, X., Li, Y., Han, X., Zhang, Y., et al. (2011). Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7541–7546.PubMedPubMedCentralCrossRef
93.
go back to reference Kawazu, M., Saso, K., Tong, K. I., McQuire, T., Goto, K., Son, D. O., Wakeham, A., Miyagishi, M., Mak, T. W., & Okada, H. (2011). Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS ONE, 6(3), e17830.PubMedPubMedCentralCrossRef Kawazu, M., Saso, K., Tong, K. I., McQuire, T., Goto, K., Son, D. O., Wakeham, A., Miyagishi, M., Mak, T. W., & Okada, H. (2011). Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS ONE, 6(3), e17830.PubMedPubMedCentralCrossRef
94.
go back to reference Hui, Z., Yiling, C., Wenting, Y., XuQun, H., ChuanYi, Z., & Hui, L. (2015). miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERalpha-positive breast cancer. FEBS Letters, 589(7), 812–821.PubMedCrossRef Hui, Z., Yiling, C., Wenting, Y., XuQun, H., ChuanYi, Z., & Hui, L. (2015). miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERalpha-positive breast cancer. FEBS Letters, 589(7), 812–821.PubMedCrossRef
95.
go back to reference Castellini, L., Moon, E. J., Razorenova, O. V., Krieg, A. J., von Eyben, R., & Giaccia, A. J. (2017). KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Research, 45(7), 3674–3692.PubMedPubMedCentral Castellini, L., Moon, E. J., Razorenova, O. V., Krieg, A. J., von Eyben, R., & Giaccia, A. J. (2017). KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Research, 45(7), 3674–3692.PubMedPubMedCentral
96.
go back to reference Zheng, H., Chen, L., Pledger, W. J., Fang, J., & Chen, J. (2013). p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene, 33(6), 734–744.PubMedPubMedCentralCrossRef Zheng, H., Chen, L., Pledger, W. J., Fang, J., & Chen, J. (2013). p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene, 33(6), 734–744.PubMedPubMedCentralCrossRef
97.
go back to reference Duan, L., Perez, R. E., Lai, X., Chen, L., & Maki, C. G. (2019). The histone demethylase JMJD2B is critical for p53-mediated autophagy and survival in Nutlin-treated cancer cells. Journal of Biological Chemistry, 294(23), 9186–9197.PubMedPubMedCentralCrossRef Duan, L., Perez, R. E., Lai, X., Chen, L., & Maki, C. G. (2019). The histone demethylase JMJD2B is critical for p53-mediated autophagy and survival in Nutlin-treated cancer cells. Journal of Biological Chemistry, 294(23), 9186–9197.PubMedPubMedCentralCrossRef
98.
go back to reference Liu, L., Yu, T., Jin, Y., Mai, W., Zhou, J., & Zhao, C. (2021). MicroRNA-15a carried by mesenchymal stem cell-derived extracellular vesicles inhibits the immune evasion of colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1 Axis. Frontiers in Cell and Developmental Biology, 9, 629893.PubMedPubMedCentralCrossRef Liu, L., Yu, T., Jin, Y., Mai, W., Zhou, J., & Zhao, C. (2021). MicroRNA-15a carried by mesenchymal stem cell-derived extracellular vesicles inhibits the immune evasion of colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1 Axis. Frontiers in Cell and Developmental Biology, 9, 629893.PubMedPubMedCentralCrossRef
99.
go back to reference Tang, D. E., Dai, Y., He, J. X., Lin, L. W., Leng, Q. X., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. The Journal of Pathology, 252(2), 101–113.PubMedCrossRef Tang, D. E., Dai, Y., He, J. X., Lin, L. W., Leng, Q. X., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. The Journal of Pathology, 252(2), 101–113.PubMedCrossRef
100.
go back to reference Duan, L., Chen, Z., Lu, J., Liang, Y., Wang, M., Roggero, C. M., Zhang, Q. J., Gao, J., Fang, Y., Cao, J., et al. (2019). Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 47(22), 11623–11636.PubMedPubMedCentral Duan, L., Chen, Z., Lu, J., Liang, Y., Wang, M., Roggero, C. M., Zhang, Q. J., Gao, J., Fang, Y., Cao, J., et al. (2019). Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 47(22), 11623–11636.PubMedPubMedCentral
101.
go back to reference Sha, J., Han, Q., Chi, C., Zhu, Y., Pan, J., Dong, B., Huang, Y., Xia, W., & Xue, W. (2020). Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. Journal of Cellular Physiology, 235(3), 2129–2138.PubMedCrossRef Sha, J., Han, Q., Chi, C., Zhu, Y., Pan, J., Dong, B., Huang, Y., Xia, W., & Xue, W. (2020). Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. Journal of Cellular Physiology, 235(3), 2129–2138.PubMedCrossRef
102.
go back to reference Margareto, J., Leis, O., Larrarte, E., Pomposo, I. C., Garibi, J. M., & Lafuente, J. V. (2009). DNA copy number variation and gene expression analyses reveal the implication of specific oncogenes and genes in GBM. Cancer Investigation, 27(5), 541–548.PubMedCrossRef Margareto, J., Leis, O., Larrarte, E., Pomposo, I. C., Garibi, J. M., & Lafuente, J. V. (2009). DNA copy number variation and gene expression analyses reveal the implication of specific oncogenes and genes in GBM. Cancer Investigation, 27(5), 541–548.PubMedCrossRef
103.
go back to reference Ehrbrecht, A., Muller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., Actor, B., Mincheva, A., Pietsch, T., Lichter, P., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: Identification of novel amplified genes and separate evaluation of the different histological components. The Journal of Pathology, 208(4), 554–563.PubMedCrossRef Ehrbrecht, A., Muller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., Actor, B., Mincheva, A., Pietsch, T., Lichter, P., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: Identification of novel amplified genes and separate evaluation of the different histological components. The Journal of Pathology, 208(4), 554–563.PubMedCrossRef
104.
go back to reference Italiano, A., Attias, R., Aurias, A., Perot, G., Burel-Vandenbos, F., Otto, J., Venissac, N., & Pedeutour, F. (2006). Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genetics and Cytogenetics, 167(2), 122–130.PubMedCrossRef Italiano, A., Attias, R., Aurias, A., Perot, G., Burel-Vandenbos, F., Otto, J., Venissac, N., & Pedeutour, F. (2006). Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genetics and Cytogenetics, 167(2), 122–130.PubMedCrossRef
105.
go back to reference Helias, C., Struski, S., Gervais, C., Leymarie, V., Mauvieux, L., Herbrecht, R., & Lessard, M. (2008). Polycythemia vera transforming to acute myeloid leukemia and complex abnormalities including 9p homogeneously staining region with amplification of MLLT3, JMJD2C, JAK2, and SMARCA2. Cancer Genetics and Cytogenetics, 180(1), 51–55.PubMedCrossRef Helias, C., Struski, S., Gervais, C., Leymarie, V., Mauvieux, L., Herbrecht, R., & Lessard, M. (2008). Polycythemia vera transforming to acute myeloid leukemia and complex abnormalities including 9p homogeneously staining region with amplification of MLLT3, JMJD2C, JAK2, and SMARCA2. Cancer Genetics and Cytogenetics, 180(1), 51–55.PubMedCrossRef
106.
go back to reference Nacheva, E. P., Brazma, D., Virgili, A., Howard-Reeves, J., Chanalaris, A., Gancheva, K., Apostolova, M., Valganon, M., Mazzullo, H., & Grace, C. (2010). Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics, 11, 41.PubMedPubMedCentralCrossRef Nacheva, E. P., Brazma, D., Virgili, A., Howard-Reeves, J., Chanalaris, A., Gancheva, K., Apostolova, M., Valganon, M., Mazzullo, H., & Grace, C. (2010). Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics, 11, 41.PubMedPubMedCentralCrossRef
107.
go back to reference Vinatzer, U., Gollinger, M., Mullauer, L., Raderer, M., Chott, A., & Streubel, B. (2008). Mucosa-associated lymphoid tissue lymphoma: Novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clinical Cancer Research, 14(20), 6426–6431.PubMedCrossRef Vinatzer, U., Gollinger, M., Mullauer, L., Raderer, M., Chott, A., & Streubel, B. (2008). Mucosa-associated lymphoid tissue lymphoma: Novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clinical Cancer Research, 14(20), 6426–6431.PubMedCrossRef
108.
go back to reference Liu, G., Bollig-Fischer, A., Kreike, B., van de Vijver, M. J., Abrams, J., Ethier, S. P., & Yang, Z. Q. (2009). Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 28(50), 4491–4500.PubMedPubMedCentralCrossRef Liu, G., Bollig-Fischer, A., Kreike, B., van de Vijver, M. J., Abrams, J., Ethier, S. P., & Yang, Z. Q. (2009). Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 28(50), 4491–4500.PubMedPubMedCentralCrossRef
109.
go back to reference Berdel, B., Nieminen, K., Soini, Y., Tengstrom, M., Malinen, M., Kosma, V. M., Palvimo, J., & Mannermaa, A. (2012). Histone demethylase GASC1—A potential prognostic and predictive marker in invasive breast cancer. BMC Cancer, 12(1), 516.PubMedPubMedCentralCrossRef Berdel, B., Nieminen, K., Soini, Y., Tengstrom, M., Malinen, M., Kosma, V. M., Palvimo, J., & Mannermaa, A. (2012). Histone demethylase GASC1—A potential prognostic and predictive marker in invasive breast cancer. BMC Cancer, 12(1), 516.PubMedPubMedCentralCrossRef
110.
go back to reference Han, W., Jung, E. M., Cho, J., Lee, J. W., Hwang, K. T., Yang, S. J., Kang, J. J., Bae, J. Y., Jeon, Y. K., Park, I. A., et al. (2008). DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes, Chromosomes & Cancer, 47(6), 490–499.CrossRef Han, W., Jung, E. M., Cho, J., Lee, J. W., Hwang, K. T., Yang, S. J., Kang, J. J., Bae, J. Y., Jeon, Y. K., Park, I. A., et al. (2008). DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes, Chromosomes & Cancer, 47(6), 490–499.CrossRef
111.
go back to reference Wu, J., Liu, S., Liu, G., Dombkowski, A., Abrams, J., Martin-Trevino, R., Wicha, M. S., Ethier, S. P., & Yang, Z. Q. (2012). Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 31(3), 333–341.PubMedCrossRef Wu, J., Liu, S., Liu, G., Dombkowski, A., Abrams, J., Martin-Trevino, R., Wicha, M. S., Ethier, S. P., & Yang, Z. Q. (2012). Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 31(3), 333–341.PubMedCrossRef
112.
go back to reference Rui, L., Emre, N. C., Kruhlak, M. J., Chung, H. J., Steidl, C., Slack, G., Wright, G. W., Lenz, G., Ngo, V. N., Shaffer, A. L., et al. (2010). Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell, 18(6), 590–605.PubMedPubMedCentralCrossRef Rui, L., Emre, N. C., Kruhlak, M. J., Chung, H. J., Steidl, C., Slack, G., Wright, G. W., Lenz, G., Ngo, V. N., Shaffer, A. L., et al. (2010). Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell, 18(6), 590–605.PubMedPubMedCentralCrossRef
113.
go back to reference Peng, K., Zhuo, M., Li, M., Chen, Q., Mo, P., & Yu, C. (2020). Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression. Oncogene, 39(47), 7076–7091.PubMedCrossRef Peng, K., Zhuo, M., Li, M., Chen, Q., Mo, P., & Yu, C. (2020). Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression. Oncogene, 39(47), 7076–7091.PubMedCrossRef
114.
go back to reference Deng, Y., Li, M., Zhuo, M., Guo, P., Chen, Q., Mo, P., Li, W., & Yu, C. (2021). Histone demethylase JMJD2D promotes the self-renewal of liver cancer stem-like cells by enhancing EpCAM and Sox9 expression. Journal of Biological Chemistry, 296, 100121. Deng, Y., Li, M., Zhuo, M., Guo, P., Chen, Q., Mo, P., Li, W., & Yu, C. (2021). Histone demethylase JMJD2D promotes the self-renewal of liver cancer stem-like cells by enhancing EpCAM and Sox9 expression. Journal of Biological Chemistry, 296, 100121.
115.
go back to reference Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of Hematology & Oncology, 14(1), 30.CrossRef Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of Hematology & Oncology, 14(1), 30.CrossRef
116.
go back to reference Yang, G. J., Wu, J., Miao, L., Zhu, M. H., Zhou, Q. J., Lu, X. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). Pharmacological inhibition of KDM5A for cancer treatment. European Journal of Medicinal Chemistry, 226, 113855.PubMedCrossRef Yang, G. J., Wu, J., Miao, L., Zhu, M. H., Zhou, Q. J., Lu, X. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). Pharmacological inhibition of KDM5A for cancer treatment. European Journal of Medicinal Chemistry, 226, 113855.PubMedCrossRef
117.
go back to reference Wang, G. G., Song, J., Wang, Z., Dormann, H. L., Casadio, F., Li, H., Luo, J. L., Patel, D. J., & Allis, C. D. (2009). Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature, 459(7248), 847–851.PubMedPubMedCentralCrossRef Wang, G. G., Song, J., Wang, Z., Dormann, H. L., Casadio, F., Li, H., Luo, J. L., Patel, D. J., & Allis, C. D. (2009). Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature, 459(7248), 847–851.PubMedPubMedCentralCrossRef
118.
go back to reference Zeng, J., Ge, Z., Wang, L., Li, Q., Wang, N., Bjorkholm, M., Jia, J., & Xu, D. (2010). The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology, 138(3), 981–992.PubMedCrossRef Zeng, J., Ge, Z., Wang, L., Li, Q., Wang, N., Bjorkholm, M., Jia, J., & Xu, D. (2010). The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology, 138(3), 981–992.PubMedCrossRef
119.
go back to reference Peng, D., Lin, B., Xie, M., Zhang, P., Guo, Q., Li, Q., Gu, Q., Yang, S., & Sen, L. (2021). Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov, 7(1), 9.PubMedPubMedCentralCrossRef Peng, D., Lin, B., Xie, M., Zhang, P., Guo, Q., Li, Q., Gu, Q., Yang, S., & Sen, L. (2021). Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov, 7(1), 9.PubMedPubMedCentralCrossRef
120.
go back to reference Cardin, S., Bilodeau, M., Roussy, M., Aubert, L., Milan, T., Jouan, L., Rouette, A., Laramee, L., Gendron, P., Duchaine, J., et al. (2019). Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Advances, 3(21), 3307–3321.PubMedPubMedCentralCrossRef Cardin, S., Bilodeau, M., Roussy, M., Aubert, L., Milan, T., Jouan, L., Rouette, A., Laramee, L., Gendron, P., Duchaine, J., et al. (2019). Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Advances, 3(21), 3307–3321.PubMedPubMedCentralCrossRef
121.
go back to reference van Zutven, L. J., Onen, E., Velthuizen, S. C., van Drunen, E., von Bergh, A. R., van den Heuvel-Eibrink, M. M., Veronese, A., Mecucci, C., Negrini, M., de Greef, G. E., et al. (2006). Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes, Chromosomes & Cancer, 45(5), 437–446.CrossRef van Zutven, L. J., Onen, E., Velthuizen, S. C., van Drunen, E., von Bergh, A. R., van den Heuvel-Eibrink, M. M., Veronese, A., Mecucci, C., Negrini, M., de Greef, G. E., et al. (2006). Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes, Chromosomes & Cancer, 45(5), 437–446.CrossRef
122.
go back to reference Xia, X., Lemieux, M. E., Li, W., Carroll, J. S., Brown, M., Liu, X. S., & Kung, A. L. (2009). Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4260–4265.PubMedPubMedCentralCrossRef Xia, X., Lemieux, M. E., Li, W., Carroll, J. S., Brown, M., Liu, X. S., & Kung, A. L. (2009). Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4260–4265.PubMedPubMedCentralCrossRef
123.
go back to reference Ma, Y. S., Wu, T. M., Qian, B., Liu, Y. S., Ding, H., Fan, M. M., Liu, J. B., Yu, F., Wang, H. M., Shi, Y., et al. (2021). KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. Journal of Cellular and Molecular Medicine, 25(8), 4040–4052.PubMedPubMedCentralCrossRef Ma, Y. S., Wu, T. M., Qian, B., Liu, Y. S., Ding, H., Fan, M. M., Liu, J. B., Yu, F., Wang, H. M., Shi, Y., et al. (2021). KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. Journal of Cellular and Molecular Medicine, 25(8), 4040–4052.PubMedPubMedCentralCrossRef
124.
go back to reference Zhou, X., Sun, H., Chen, H., Zavadil, J., Kluz, T., Arita, A., & Costa, M. (2010). Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Research, 70(10), 4214–4221.PubMedPubMedCentralCrossRef Zhou, X., Sun, H., Chen, H., Zavadil, J., Kluz, T., Arita, A., & Costa, M. (2010). Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Research, 70(10), 4214–4221.PubMedPubMedCentralCrossRef
125.
go back to reference Xhabija, B., & Kidder, B. L. (2019). KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Seminars in Cancer Biology, 57, 79–85.PubMedCrossRef Xhabija, B., & Kidder, B. L. (2019). KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Seminars in Cancer Biology, 57, 79–85.PubMedCrossRef
126.
go back to reference Xiang, Y., Zhu, Z., Han, G., Ye, X., Xu, B., Peng, Z., Ma, Y., Yu, Y., Lin, H., Chen, A. P., et al. (2007). JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19226–19231.PubMedPubMedCentralCrossRef Xiang, Y., Zhu, Z., Han, G., Ye, X., Xu, B., Peng, Z., Ma, Y., Yu, Y., Lin, H., Chen, A. P., et al. (2007). JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19226–19231.PubMedPubMedCentralCrossRef
127.
go back to reference Barrett, A., Santangelo, S., Tan, K., Catchpole, S., Roberts, K., Spencer-Dene, B., Hall, D., Scibetta, A., Burchell, J., Verdin, E., et al. (2007). Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. International Journal of Cancer, 121(2), 265–275.PubMedCrossRef Barrett, A., Santangelo, S., Tan, K., Catchpole, S., Roberts, K., Spencer-Dene, B., Hall, D., Scibetta, A., Burchell, J., Verdin, E., et al. (2007). Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. International Journal of Cancer, 121(2), 265–275.PubMedCrossRef
128.
go back to reference Li, G., Kanagasabai, T., Lu, W., Zou, M. R., Zhang, S. M., Celada, S. I., Izban, M. G., Liu, Q., Lu, T., Ballard, B. R., et al. (2020). KDM5B is essential for the hyperactivation of PI3K/AKT signaling in prostate tumorigenesis. Cancer Research, 80(21), 4633–4643.PubMedPubMedCentralCrossRef Li, G., Kanagasabai, T., Lu, W., Zou, M. R., Zhang, S. M., Celada, S. I., Izban, M. G., Liu, Q., Lu, T., Ballard, B. R., et al. (2020). KDM5B is essential for the hyperactivation of PI3K/AKT signaling in prostate tumorigenesis. Cancer Research, 80(21), 4633–4643.PubMedPubMedCentralCrossRef
129.
go back to reference Mitra, D., Das, P. M., Huynh, F. C., & Jones, F. E. (2011). Jumonji/ARID1 B (JARID1B) protein promotes breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. Journal of Biological Chemistry, 286(47), 40531–40535.PubMedPubMedCentralCrossRef Mitra, D., Das, P. M., Huynh, F. C., & Jones, F. E. (2011). Jumonji/ARID1 B (JARID1B) protein promotes breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. Journal of Biological Chemistry, 286(47), 40531–40535.PubMedPubMedCentralCrossRef
130.
go back to reference Catchpole, S., Spencer-Dene, B., Hall, D., Santangelo, S., Rosewell, I., Guenatri, M., Beatson, R., Scibetta, A. G., Burchell, J. M., & Taylor-Papadimitriou, J. (2011). PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. International Journal of Oncology, 38(5), 1267–1277.PubMed Catchpole, S., Spencer-Dene, B., Hall, D., Santangelo, S., Rosewell, I., Guenatri, M., Beatson, R., Scibetta, A. G., Burchell, J. M., & Taylor-Papadimitriou, J. (2011). PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. International Journal of Oncology, 38(5), 1267–1277.PubMed
131.
go back to reference Wang, J., Wu, X., & Shan, L. (2018). JARID1B modulates breast cancer cell apoptosis by regulating p53 expression. International Journal of Clinical and Experimental Pathology, 11(9), 4529–4536.PubMedPubMedCentral Wang, J., Wu, X., & Shan, L. (2018). JARID1B modulates breast cancer cell apoptosis by regulating p53 expression. International Journal of Clinical and Experimental Pathology, 11(9), 4529–4536.PubMedPubMedCentral
132.
go back to reference Scibetta, A. G., Santangelo, S., Coleman, J., Hall, D., Chaplin, T., Copier, J., Catchpole, S., Burchell, J., & Taylor-Papadimitriou, J. (2007). Functional analysis of the transcription repressor PLU-1/JARID1B. Molecular and Cellular Biology, 27(20), 7220–7235.PubMedPubMedCentralCrossRef Scibetta, A. G., Santangelo, S., Coleman, J., Hall, D., Chaplin, T., Copier, J., Catchpole, S., Burchell, J., & Taylor-Papadimitriou, J. (2007). Functional analysis of the transcription repressor PLU-1/JARID1B. Molecular and Cellular Biology, 27(20), 7220–7235.PubMedPubMedCentralCrossRef
133.
go back to reference Yamane, K., Tateishi, K., Klose, R. J., Fang, J., Fabrizio, L. A., Erdjument-Bromage, H., Taylor-Papadimitriou, J., Tempst, P., & Zhang, Y. (2007). PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Molecular Cell, 25(6), 801–812.PubMedCrossRef Yamane, K., Tateishi, K., Klose, R. J., Fang, J., Fabrizio, L. A., Erdjument-Bromage, H., Taylor-Papadimitriou, J., Tempst, P., & Zhang, Y. (2007). PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Molecular Cell, 25(6), 801–812.PubMedCrossRef
134.
go back to reference Nisio, E. D., Licursi, V., Mannironi, C., Buglioni, V., Paiardini, A., Robusti, G., Noberini, R., Bonaldi, T., & Negri, R. (2023). A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 trimethylation and gene expression. Cancer Gene Therapy, 30, 822–832.PubMedPubMedCentralCrossRef Nisio, E. D., Licursi, V., Mannironi, C., Buglioni, V., Paiardini, A., Robusti, G., Noberini, R., Bonaldi, T., & Negri, R. (2023). A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 trimethylation and gene expression. Cancer Gene Therapy, 30, 822–832.PubMedPubMedCentralCrossRef
135.
go back to reference Zhang, Z. G., Zhang, H. S., Sun, H. L., Liu, H. Y., Liu, M. Y., & Zhou, Z. (2019). KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Experimental Cell Research, 379(2), 182–190.PubMedCrossRef Zhang, Z. G., Zhang, H. S., Sun, H. L., Liu, H. Y., Liu, M. Y., & Zhou, Z. (2019). KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Experimental Cell Research, 379(2), 182–190.PubMedCrossRef
136.
go back to reference Li, Q., Shi, L., Gui, B., Yu, W., Wang, J., Zhang, D., Han, X., Yao, Z., & Shang, Y. (2011). Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Research, 71(21), 6899–6908.PubMedCrossRef Li, Q., Shi, L., Gui, B., Yu, W., Wang, J., Zhang, D., Han, X., Yao, Z., & Shang, Y. (2011). Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Research, 71(21), 6899–6908.PubMedCrossRef
137.
go back to reference Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., Basu, D., Gimotty, P., Vogt, T., & Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594.PubMedPubMedCentralCrossRef Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., Basu, D., Gimotty, P., Vogt, T., & Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594.PubMedPubMedCentralCrossRef
138.
go back to reference Vogel, F. C. E., Bordag, N., Zugner, E., Trajkovic-Arsic, M., Chauvistre, H., Shannan, B., Varaljai, R., Horn, S., Magnes, C., Thomas Siveke, J., et al. (2019). Targeting the H3K4 demethylase KDM5B reprograms the metabolome and phenotype of melanoma cells. Journal of Investigative Dermatology, 139(12), 2506–2516.PubMedCrossRef Vogel, F. C. E., Bordag, N., Zugner, E., Trajkovic-Arsic, M., Chauvistre, H., Shannan, B., Varaljai, R., Horn, S., Magnes, C., Thomas Siveke, J., et al. (2019). Targeting the H3K4 demethylase KDM5B reprograms the metabolome and phenotype of melanoma cells. Journal of Investigative Dermatology, 139(12), 2506–2516.PubMedCrossRef
139.
go back to reference Liu, X., Zhang, S. M., McGeary, M. K., Krykbaeva, I., Lai, L., Jansen, D. J., Kales, S. C., Simeonov, A., Hall, M. D., Kelly, D. P., et al. (2019). KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations. Molecular Cancer Therapeutics, 18(3), 706–717.PubMedCrossRef Liu, X., Zhang, S. M., McGeary, M. K., Krykbaeva, I., Lai, L., Jansen, D. J., Kales, S. C., Simeonov, A., Hall, M. D., Kelly, D. P., et al. (2019). KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations. Molecular Cancer Therapeutics, 18(3), 706–717.PubMedCrossRef
140.
go back to reference Hayami, S., Yoshimatsu, M., Veerakumarasivam, A., Unoki, M., Iwai, Y., Tsunoda, T., Field, H. I., Kelly, J. D., Neal, D. E., Yamaue, H., et al. (2010). Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: Involvement in the proliferation of cancer cells through the E2F/RB pathway. Molecular Cancer, 9, 59.PubMedPubMedCentralCrossRef Hayami, S., Yoshimatsu, M., Veerakumarasivam, A., Unoki, M., Iwai, Y., Tsunoda, T., Field, H. I., Kelly, J. D., Neal, D. E., Yamaue, H., et al. (2010). Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: Involvement in the proliferation of cancer cells through the E2F/RB pathway. Molecular Cancer, 9, 59.PubMedPubMedCentralCrossRef
141.
go back to reference Nijwening, J. H., Geutjes, E. J., Bernards, R., & Beijersbergen, R. L. (2011). The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS ONE, 6(9), e25235.PubMedPubMedCentralCrossRef Nijwening, J. H., Geutjes, E. J., Bernards, R., & Beijersbergen, R. L. (2011). The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS ONE, 6(9), e25235.PubMedPubMedCentralCrossRef
142.
go back to reference Benevolenskaya, E. V., Murray, H. L., Branton, P., Young, R. A., & Kaelin, W. G., Jr. (2005). Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Molecular Cell, 18(6), 623–635.PubMedCrossRef Benevolenskaya, E. V., Murray, H. L., Branton, P., Young, R. A., & Kaelin, W. G., Jr. (2005). Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Molecular Cell, 18(6), 623–635.PubMedCrossRef
143.
go back to reference Huang, Y., Zou, Y., Zheng, R., & Ma, X. (2019). MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. European Journal of Haematology, 103(3), 215–224.PubMedCrossRef Huang, Y., Zou, Y., Zheng, R., & Ma, X. (2019). MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. European Journal of Haematology, 103(3), 215–224.PubMedCrossRef
144.
go back to reference Guo, J. C., Liu, Z., Yang, Y. J., Guo, M., Zhang, J. Q., & Zheng, J. F. (2021). KDM5B promotes self-renewal of hepatocellular carcinoma cells through the microRNA-448-mediated YTHDF3/ITGA6 axis. Journal of Cellular and Molecular Medicine, 25(13), 5949–5962.PubMedPubMedCentralCrossRef Guo, J. C., Liu, Z., Yang, Y. J., Guo, M., Zhang, J. Q., & Zheng, J. F. (2021). KDM5B promotes self-renewal of hepatocellular carcinoma cells through the microRNA-448-mediated YTHDF3/ITGA6 axis. Journal of Cellular and Molecular Medicine, 25(13), 5949–5962.PubMedPubMedCentralCrossRef
145.
go back to reference McBrayer, S. K., Olenchock, B. A., DiNatale, G. J., Shi, D. D., Khanal, J., Jennings, R. B., Novak, J. S., Oser, M. G., Robbins, A. K., Modiste, R., et al. (2018). Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proceedings of the National Academy of Sciences of the United States of America, 115(16), E3741–E3748.PubMedPubMedCentral McBrayer, S. K., Olenchock, B. A., DiNatale, G. J., Shi, D. D., Khanal, J., Jennings, R. B., Novak, J. S., Oser, M. G., Robbins, A. K., Modiste, R., et al. (2018). Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proceedings of the National Academy of Sciences of the United States of America, 115(16), E3741–E3748.PubMedPubMedCentral
146.
go back to reference Pu, Y., Xiang, J., & Zhang, J. (2020). KDM5B-mediated microRNA-448 up-regulation restrains papillary thyroid cancer cell progression and slows down tumor growth via TGIF1 repression. Life Sciences, 250, 117519.PubMedCrossRef Pu, Y., Xiang, J., & Zhang, J. (2020). KDM5B-mediated microRNA-448 up-regulation restrains papillary thyroid cancer cell progression and slows down tumor growth via TGIF1 repression. Life Sciences, 250, 117519.PubMedCrossRef
147.
go back to reference Zhou, Y., An, Q., Guo, R. X., Qiao, Y. H., Li, L. X., Zhang, X. Y., & Zhao, X. L. (2017). miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life Sciences, 171, 9–15.PubMedCrossRef Zhou, Y., An, Q., Guo, R. X., Qiao, Y. H., Li, L. X., Zhang, X. Y., & Zhao, X. L. (2017). miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life Sciences, 171, 9–15.PubMedCrossRef
148.
go back to reference Xu, L. M., Yu, H., Yuan, Y. J., Zhang, J., Ma, Y., Cao, X. C., Wang, J., Zhao, L. J., & Wang, P. (2020). overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1alpha-suppression mediated methylation of PTEN. Frontiers in Cell and Developmental Biology, 8, 553733.PubMedPubMedCentralCrossRef Xu, L. M., Yu, H., Yuan, Y. J., Zhang, J., Ma, Y., Cao, X. C., Wang, J., Zhao, L. J., & Wang, P. (2020). overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1alpha-suppression mediated methylation of PTEN. Frontiers in Cell and Developmental Biology, 8, 553733.PubMedPubMedCentralCrossRef
149.
go back to reference Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463(7279), 360–363.PubMedPubMedCentralCrossRef Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463(7279), 360–363.PubMedPubMedCentralCrossRef
150.
go back to reference Liao, L., Liu, Z. Z., Langbein, L., Cai, W., Cho, E. A., Na, J., Niu, X., Jiang, W., Zhong, Z., Cai, W. L., et al. (2018). Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. Elife, 7, e37925.PubMedPubMedCentralCrossRef Liao, L., Liu, Z. Z., Langbein, L., Cai, W., Cho, E. A., Na, J., Niu, X., Jiang, W., Zhong, Z., Cai, W. L., et al. (2018). Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. Elife, 7, e37925.PubMedPubMedCentralCrossRef
151.
go back to reference Niu, X., Zhang, T., Liao, L., Zhou, L., Lindner, D. J., Zhou, M., Rini, B., Yan, Q., & Yang, H. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene, 31(6), 776–786.PubMedCrossRef Niu, X., Zhang, T., Liao, L., Zhou, L., Lindner, D. J., Zhou, M., Rini, B., Yan, Q., & Yang, H. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene, 31(6), 776–786.PubMedCrossRef
152.
go back to reference Gao, X., Jegede, O., Gray, C., Catalano, P. J., Novak, J., Kwiatkowski, D. J., McKay, R. R., George, D. J., Choueiri, T. K., McDermott, D. F., et al. (2018). Comprehensive genomic profiling of metastatic tumors in a phase 2 biomarker study of everolimus in advanced renal cell carcinoma. Clinical Genitourinary Cancer, 16(5), 341–348.PubMedPubMedCentralCrossRef Gao, X., Jegede, O., Gray, C., Catalano, P. J., Novak, J., Kwiatkowski, D. J., McKay, R. R., George, D. J., Choueiri, T. K., McDermott, D. F., et al. (2018). Comprehensive genomic profiling of metastatic tumors in a phase 2 biomarker study of everolimus in advanced renal cell carcinoma. Clinical Genitourinary Cancer, 16(5), 341–348.PubMedPubMedCentralCrossRef
153.
go back to reference Perinchery, G., Sasaki, M., Angan, A., Kumar, V., Carroll, P., & Dahiya, R. (2000). Deletion of Y-chromosome specific genes in human prostate cancer. Journal of Urology, 163(4), 1339–1342.PubMedCrossRef Perinchery, G., Sasaki, M., Angan, A., Kumar, V., Carroll, P., & Dahiya, R. (2000). Deletion of Y-chromosome specific genes in human prostate cancer. Journal of Urology, 163(4), 1339–1342.PubMedCrossRef
154.
go back to reference Gupta, S., Halabi, S., Kemeny, G., Anand, M., Giannakakou, P., Nanus, D. M., George, D. J., Gregory, S. G., & Armstrong, A. J. (2021). Circulating tumor cell genomic evolution and hormone therapy outcomes in men with metastatic castration-resistant prostate cancer. Molecular Cancer Research, 19(6), 1040–1050.PubMedCrossRef Gupta, S., Halabi, S., Kemeny, G., Anand, M., Giannakakou, P., Nanus, D. M., George, D. J., Gregory, S. G., & Armstrong, A. J. (2021). Circulating tumor cell genomic evolution and hormone therapy outcomes in men with metastatic castration-resistant prostate cancer. Molecular Cancer Research, 19(6), 1040–1050.PubMedCrossRef
155.
go back to reference Li, N., Dhar, S. S., Chen, T. Y., Kan, P. Y., Wei, Y., Kim, J. H., Chan, C. H., Lin, H. K., Hung, M. C., & Lee, M. G. (2016). JARID1D Is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Research, 76(4), 831–843.PubMedPubMedCentralCrossRef Li, N., Dhar, S. S., Chen, T. Y., Kan, P. Y., Wei, Y., Kim, J. H., Chan, C. H., Lin, H. K., Hung, M. C., & Lee, M. G. (2016). JARID1D Is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Research, 76(4), 831–843.PubMedPubMedCentralCrossRef
156.
go back to reference Komura, K., Jeong, S. H., Hinohara, K., Qu, F., Wang, X., Hiraki, M., Azuma, H., Lee, G. S., Kantoff, P. W., & Sweeney, C. J. (2016). Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proceedings of the National Academy of Sciences of the United States of America, 113(22), 6259–6264.PubMedPubMedCentralCrossRef Komura, K., Jeong, S. H., Hinohara, K., Qu, F., Wang, X., Hiraki, M., Azuma, H., Lee, G. S., Kantoff, P. W., & Sweeney, C. J. (2016). Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proceedings of the National Academy of Sciences of the United States of America, 113(22), 6259–6264.PubMedPubMedCentralCrossRef
157.
go back to reference Komura, K., Yoshikawa, Y., Shimamura, T., Chakraborty, G., Gerke, T. A., Hinohara, K., Chadalavada, K., Jeong, S. H., Armenia, J., Du, S. Y., et al. (2018). ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. The Journal of Clinical Investigation, 128(7), 2979–2995.PubMedPubMedCentralCrossRef Komura, K., Yoshikawa, Y., Shimamura, T., Chakraborty, G., Gerke, T. A., Hinohara, K., Chadalavada, K., Jeong, S. H., Armenia, J., Du, S. Y., et al. (2018). ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. The Journal of Clinical Investigation, 128(7), 2979–2995.PubMedPubMedCentralCrossRef
158.
go back to reference Hurst, C. D., Alder, O., Platt, F. M., Droop, A., Stead, L. F., Burns, J. E., Burghel, G. J., Jain, S., Klimczak, L. J., Lindsay, H., et al. (2017). Genomic subtypes of non-invasive bladder cancer with distinct metabolic Profile and female gender bias in KDM6A mutation frequency. Cancer Cell, 32(5), 701–715.PubMedPubMedCentralCrossRef Hurst, C. D., Alder, O., Platt, F. M., Droop, A., Stead, L. F., Burns, J. E., Burghel, G. J., Jain, S., Klimczak, L. J., Lindsay, H., et al. (2017). Genomic subtypes of non-invasive bladder cancer with distinct metabolic Profile and female gender bias in KDM6A mutation frequency. Cancer Cell, 32(5), 701–715.PubMedPubMedCentralCrossRef
159.
go back to reference Kaneko, S., & Li, X. (2018). X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Science Advances, 4(6), eaar5598.PubMedPubMedCentralCrossRef Kaneko, S., & Li, X. (2018). X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Science Advances, 4(6), eaar5598.PubMedPubMedCentralCrossRef
160.
go back to reference Kim, G. J., Kim, D. H., Min, K. W., Chae, S. W., Kim, S. H., Son, B. K., Moon, K. M., & Kim, Y. H. (2020). Expression of UTX indicates poor prognosis in patients with luminal breast cancer and is associated with MMP-11 expression. Applied Immunohistochemistry & Molecular Morphology, 28(7), 544–550.CrossRef Kim, G. J., Kim, D. H., Min, K. W., Chae, S. W., Kim, S. H., Son, B. K., Moon, K. M., & Kim, Y. H. (2020). Expression of UTX indicates poor prognosis in patients with luminal breast cancer and is associated with MMP-11 expression. Applied Immunohistochemistry & Molecular Morphology, 28(7), 544–550.CrossRef
161.
go back to reference Benedetti, R., Dell’Aversana, C., De Marchi, T., Rotili, D., Liu, N. Q., Novakovic, B., Boccella, S., Di Maro, S., Cosconati, S., Baldi, A., et al. (2019). Inhibition of histone demethylases LSD1 and UTX regulates ERalpha signaling in breast cancer. Cancers (Basel), 11(12), 2027.PubMedCrossRef Benedetti, R., Dell’Aversana, C., De Marchi, T., Rotili, D., Liu, N. Q., Novakovic, B., Boccella, S., Di Maro, S., Cosconati, S., Baldi, A., et al. (2019). Inhibition of histone demethylases LSD1 and UTX regulates ERalpha signaling in breast cancer. Cancers (Basel), 11(12), 2027.PubMedCrossRef
162.
go back to reference Lu, H., Xie, Y., Tran, L., Lan, J., Yang, Y., Murugan, N. L., Wang, R., Wang, Y. J., & Semenza, G. L. (2020). Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. The Journal of Clinical Investigation, 130(9), 4607–4623.PubMedPubMedCentralCrossRef Lu, H., Xie, Y., Tran, L., Lan, J., Yang, Y., Murugan, N. L., Wang, R., Wang, Y. J., & Semenza, G. L. (2020). Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. The Journal of Clinical Investigation, 130(9), 4607–4623.PubMedPubMedCentralCrossRef
163.
go back to reference Nickerson, M. L., Dancik, G. M., Im, K. M., Edwards, M. G., Turan, S., Brown, J., Ruiz-Rodriguez, C., Owens, C., Costello, J. C., Guo, G., et al. (2014). Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clinical Cancer Research, 20(18), 4935–4948.PubMedPubMedCentralCrossRef Nickerson, M. L., Dancik, G. M., Im, K. M., Edwards, M. G., Turan, S., Brown, J., Ruiz-Rodriguez, C., Owens, C., Costello, J. C., Guo, G., et al. (2014). Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clinical Cancer Research, 20(18), 4935–4948.PubMedPubMedCentralCrossRef
164.
go back to reference Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., Gao, S., Wu, R., Chen, C., Li, X., Zhou, L., et al. (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genetics, 43(9), 875–878.PubMedPubMedCentralCrossRef Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., Gao, S., Wu, R., Chen, C., Li, X., Zhou, L., et al. (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genetics, 43(9), 875–878.PubMedPubMedCentralCrossRef
165.
go back to reference Ler, L. D., Ghosh, S., Chai, X., Thike, A. A., Heng, H. L., Siew, E. Y., Dey, S., Koh, L. K., Lim, J. Q., Lim, W. K., et al. (2017). Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Science Translational Medicine, 9(378), eaai8312.PubMedCrossRef Ler, L. D., Ghosh, S., Chai, X., Thike, A. A., Heng, H. L., Siew, E. Y., Dey, S., Koh, L. K., Lim, J. Q., Lim, W. K., et al. (2017). Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Science Translational Medicine, 9(378), eaai8312.PubMedCrossRef
166.
go back to reference Kobatake, K., Ikeda, K. I., Nakata, Y., Yamasaki, N., Ueda, T., Kanai, A., Sentani, K., Sera, Y., Hayashi, T., Koizumi, M., et al. (2020). Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clinical Cancer Research, 26(8), 2065–2079.PubMedCrossRef Kobatake, K., Ikeda, K. I., Nakata, Y., Yamasaki, N., Ueda, T., Kanai, A., Sentani, K., Sera, Y., Hayashi, T., Koizumi, M., et al. (2020). Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clinical Cancer Research, 26(8), 2065–2079.PubMedCrossRef
167.
go back to reference Barrows, D., Feng, L., Carroll, T. S., & Allis, C. D. (2020). Loss of UTX/KDM6A and the activation of FGFR3 converge to regulate differentiation gene-expression programs in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25732–25741.PubMedPubMedCentralCrossRef Barrows, D., Feng, L., Carroll, T. S., & Allis, C. D. (2020). Loss of UTX/KDM6A and the activation of FGFR3 converge to regulate differentiation gene-expression programs in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25732–25741.PubMedPubMedCentralCrossRef
168.
go back to reference Andricovich, J., Perkail, S., Kai, Y., Casasanta, N., Peng, W., & Tzatsos, A. (2018). Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell, 33(3), 512–526.PubMedPubMedCentralCrossRef Andricovich, J., Perkail, S., Kai, Y., Casasanta, N., Peng, W., & Tzatsos, A. (2018). Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell, 33(3), 512–526.PubMedPubMedCentralCrossRef
169.
go back to reference Watanabe, S., Shimada, S., Akiyama, Y., Ishikawa, Y., Ogura, T., Ogawa, K., Ono, H., Mitsunori, Y., Ban, D., Kudo, A., et al. (2019). Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. International Journal of Cancer, 145(1), 192–205.PubMedCrossRef Watanabe, S., Shimada, S., Akiyama, Y., Ishikawa, Y., Ogura, T., Ogawa, K., Ono, H., Mitsunori, Y., Ban, D., Kudo, A., et al. (2019). Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. International Journal of Cancer, 145(1), 192–205.PubMedCrossRef
170.
go back to reference Kalisz, M., Bernardo, E., Beucher, A., Maestro, M. A., Del Pozo, N., Millan, I., Haeberle, L., Schlensog, M., Safi, S. A., Knoefel, W. T., et al. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO Journal, 39(9), e102808.PubMedPubMedCentralCrossRef Kalisz, M., Bernardo, E., Beucher, A., Maestro, M. A., Del Pozo, N., Millan, I., Haeberle, L., Schlensog, M., Safi, S. A., Knoefel, W. T., et al. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO Journal, 39(9), e102808.PubMedPubMedCentralCrossRef
171.
go back to reference Barthel, S., Schneider, G., & Saur, D. (2020). Blocking the road to de-differentiation: HNF1A/KDM6A complex safeguards epithelial integrity in pancreatic cancer. EMBO Journal, 39(9), e104759.PubMedPubMedCentralCrossRef Barthel, S., Schneider, G., & Saur, D. (2020). Blocking the road to de-differentiation: HNF1A/KDM6A complex safeguards epithelial integrity in pancreatic cancer. EMBO Journal, 39(9), e104759.PubMedPubMedCentralCrossRef
172.
go back to reference Kim, J. H., Sharma, A., Dhar, S. S., Lee, S. H., Gu, B., Chan, C. H., Lin, H. K., & Lee, M. G. (2014). UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Research, 74(6), 1705–1717.PubMedPubMedCentralCrossRef Kim, J. H., Sharma, A., Dhar, S. S., Lee, S. H., Gu, B., Chan, C. H., Lin, H. K., & Lee, M. G. (2014). UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Research, 74(6), 1705–1717.PubMedPubMedCentralCrossRef
173.
go back to reference Hinz, S., Weikert, S., Magheli, A., Hoffmann, M., Engers, R., Miller, K., & Kempkensteffen, C. (2009). Expression profile of the polycomb group protein enhancer of Zeste homologue 2 and its prognostic relevance in renal cell carcinoma. Journal of Urology, 182(6), 2920–2925.PubMedCrossRef Hinz, S., Weikert, S., Magheli, A., Hoffmann, M., Engers, R., Miller, K., & Kempkensteffen, C. (2009). Expression profile of the polycomb group protein enhancer of Zeste homologue 2 and its prognostic relevance in renal cell carcinoma. Journal of Urology, 182(6), 2920–2925.PubMedCrossRef
174.
go back to reference Kato, H., Asamitsu, K., Sun, W., Kitajima, S., Yoshizawa-Sugata, N., Okamoto, T., Masai, H., & Poellinger, L. (2020). Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene, 39(16), 3322–3335.PubMedCrossRef Kato, H., Asamitsu, K., Sun, W., Kitajima, S., Yoshizawa-Sugata, N., Okamoto, T., Masai, H., & Poellinger, L. (2020). Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene, 39(16), 3322–3335.PubMedCrossRef
175.
go back to reference Zha, L., Cao, Q., Cui, X., Li, F., Liang, H., Xue, B., & Shi, H. (2016). Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Medical Oncology, 33(3), 21.PubMedCrossRef Zha, L., Cao, Q., Cui, X., Li, F., Liang, H., Xue, B., & Shi, H. (2016). Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Medical Oncology, 33(3), 21.PubMedCrossRef
176.
go back to reference Tang, X., Cai, W., Cheng, J., Lu, P., Ma, S., Chen, C., Chen, Y., Sun, Y., Wang, C., Hu, P., et al. (2019). The histone H3 lysine-27 demethylase UTX plays a critical role in colorectal cancer cell proliferation. Cancer Cell International, 19, 144.PubMedPubMedCentralCrossRef Tang, X., Cai, W., Cheng, J., Lu, P., Ma, S., Chen, C., Chen, Y., Sun, Y., Wang, C., Hu, P., et al. (2019). The histone H3 lysine-27 demethylase UTX plays a critical role in colorectal cancer cell proliferation. Cancer Cell International, 19, 144.PubMedPubMedCentralCrossRef
177.
go back to reference Chen, X., Yang, Z., Feng, J., Duan, T., Pan, T., Yan, L., Jin, T., Xiang, Y., Zhang, M., Chen, P., et al. (2021). Combination of lysine-specific demethylase 6A (KDM6A) and mismatch repair (MMR) status is a potential prognostic factor in colorectal cancer. Cancer Medicine, 10(1), 317–324.PubMedCrossRef Chen, X., Yang, Z., Feng, J., Duan, T., Pan, T., Yan, L., Jin, T., Xiang, Y., Zhang, M., Chen, P., et al. (2021). Combination of lysine-specific demethylase 6A (KDM6A) and mismatch repair (MMR) status is a potential prognostic factor in colorectal cancer. Cancer Medicine, 10(1), 317–324.PubMedCrossRef
178.
go back to reference Terashima, M., Ishimura, A., Wanna-Udom, S., & Suzuki, T. (2017). Epigenetic regulation of epithelial-mesenchymal transition by KDM6A histone demethylase in lung cancer cells. Biochemical and Biophysical Research Communications, 490(4), 1407–1413.PubMedCrossRef Terashima, M., Ishimura, A., Wanna-Udom, S., & Suzuki, T. (2017). Epigenetic regulation of epithelial-mesenchymal transition by KDM6A histone demethylase in lung cancer cells. Biochemical and Biophysical Research Communications, 490(4), 1407–1413.PubMedCrossRef
179.
go back to reference Mar, B. G., Bullinger, L., Basu, E., Schlis, K., Silverman, L. B., Dohner, K., & Armstrong, S. A. (2012). Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia, 26(8), 1881–1883.PubMedPubMedCentralCrossRef Mar, B. G., Bullinger, L., Basu, E., Schlis, K., Silverman, L. B., Dohner, K., & Armstrong, S. A. (2012). Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia, 26(8), 1881–1883.PubMedPubMedCentralCrossRef
180.
go back to reference Wang, J. K., Tsai, M. C., Poulin, G., Adler, A. S., Chen, S., Liu, H., Shi, Y., & Chang, H. Y. (2010). The histone demethylase UTX enables RB-dependent cell fate control. Genes & Development, 24(4), 327–332.CrossRef Wang, J. K., Tsai, M. C., Poulin, G., Adler, A. S., Chen, S., Liu, H., Shi, Y., & Chang, H. Y. (2010). The histone demethylase UTX enables RB-dependent cell fate control. Genes & Development, 24(4), 327–332.CrossRef
181.
go back to reference Tsai, M. C., Wang, J. K., & Chang, H. Y. (2010). Tumor suppression by the histone demethylase UTX. Cell Cycle, 9(11), 2043–2044.PubMedCrossRef Tsai, M. C., Wang, J. K., & Chang, H. Y. (2010). Tumor suppression by the histone demethylase UTX. Cell Cycle, 9(11), 2043–2044.PubMedCrossRef
182.
go back to reference Terashima, M., Ishimura, A., Yoshida, M., Suzuki, Y., Sugano, S., & Suzuki, T. (2010). The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase. Biochemical and Biophysical Research Communications, 399(2), 238–244.PubMedCrossRef Terashima, M., Ishimura, A., Yoshida, M., Suzuki, Y., Sugano, S., & Suzuki, T. (2010). The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase. Biochemical and Biophysical Research Communications, 399(2), 238–244.PubMedCrossRef
183.
go back to reference Agger, K., Cloos, P. A., Rudkjaer, L., Williams, K., Andersen, G., Christensen, J., & Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes & Development, 23(10), 1171–1176.CrossRef Agger, K., Cloos, P. A., Rudkjaer, L., Williams, K., Andersen, G., Christensen, J., & Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes & Development, 23(10), 1171–1176.CrossRef
184.
go back to reference Barradas, M., Anderton, E., Acosta, J. C., Li, S., Banito, A., Rodriguez-Niedenfuhr, M., Maertens, G., Banck, M., Zhou, M. M., Walsh, M. J., et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes & Development, 23(10), 1177–1182.CrossRef Barradas, M., Anderton, E., Acosta, J. C., Li, S., Banito, A., Rodriguez-Niedenfuhr, M., Maertens, G., Banck, M., Zhou, M. M., Walsh, M. J., et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes & Development, 23(10), 1177–1182.CrossRef
185.
go back to reference Martinelli, P., Bonetti, P., Sironi, C., Pruneri, G., Fumagalli, C., Raviele, P. R., Volorio, S., Pileri, S., Chiarle, R., McDuff, F. K., et al. (2011). The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway. Blood, 117(24), 6617–6626.PubMedCrossRef Martinelli, P., Bonetti, P., Sironi, C., Pruneri, G., Fumagalli, C., Raviele, P. R., Volorio, S., Pileri, S., Chiarle, R., McDuff, F. K., et al. (2011). The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway. Blood, 117(24), 6617–6626.PubMedCrossRef
186.
go back to reference Lin, T. Y., Cheng, Y. C., Yang, H. C., Lin, W. C., Wang, C. C., Lai, P. L., & Shieh, S. Y. (2012). Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene, 31(27), 3287–3297.PubMedCrossRef Lin, T. Y., Cheng, Y. C., Yang, H. C., Lin, W. C., Wang, C. C., Lai, P. L., & Shieh, S. Y. (2012). Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene, 31(27), 3287–3297.PubMedCrossRef
187.
go back to reference Ene, C. I., Edwards, L., Riddick, G., Baysan, M., Woolard, K., Kotliarova, S., Lai, C., Belova, G., Cam, M., Walling, J., et al. (2012). Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS ONE, 7(12), e51407.PubMedPubMedCentralCrossRef Ene, C. I., Edwards, L., Riddick, G., Baysan, M., Woolard, K., Kotliarova, S., Lai, C., Belova, G., Cam, M., Walling, J., et al. (2012). Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS ONE, 7(12), e51407.PubMedPubMedCentralCrossRef
188.
go back to reference Pereira, F., Barbachano, A., Silva, J., Bonilla, F., Campbell, M. J., Munoz, A., & Larriba, M. J. (2011). KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 20(23), 4655–4665.PubMedCrossRef Pereira, F., Barbachano, A., Silva, J., Bonilla, F., Campbell, M. J., Munoz, A., & Larriba, M. J. (2011). KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 20(23), 4655–4665.PubMedCrossRef
189.
go back to reference Yang, J., Wang, X., Huang, B., Liu, R., Xiong, H., Ye, F., Zeng, C., Fu, X., & Li, L. (2021). An IFN-gamma/STAT1/JMJD3 axis induces ZEB1 expression and promotes aggressiveness in lung adenocarcinoma. Molecular Cancer Research, 19(7), 1234–1246.PubMedCrossRef Yang, J., Wang, X., Huang, B., Liu, R., Xiong, H., Ye, F., Zeng, C., Fu, X., & Li, L. (2021). An IFN-gamma/STAT1/JMJD3 axis induces ZEB1 expression and promotes aggressiveness in lung adenocarcinoma. Molecular Cancer Research, 19(7), 1234–1246.PubMedCrossRef
190.
go back to reference Lee, S. H., Kim, O., Kim, H. J., Hwangbo, C., & Lee, J. H. (2021). Epigenetic regulation of TGF-beta-induced EMT by JMJD3/KDM6B histone H3K27 demethylase. Oncogenesis, 10(2), 17.PubMedPubMedCentralCrossRef Lee, S. H., Kim, O., Kim, H. J., Hwangbo, C., & Lee, J. H. (2021). Epigenetic regulation of TGF-beta-induced EMT by JMJD3/KDM6B histone H3K27 demethylase. Oncogenesis, 10(2), 17.PubMedPubMedCentralCrossRef
191.
go back to reference Tricarico, R., Nicolas, E., Hall, M. J., & Golemis, E. A. (2020). X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clinical Cancer Research, 26(21), 5567–5578.PubMedPubMedCentralCrossRef Tricarico, R., Nicolas, E., Hall, M. J., & Golemis, E. A. (2020). X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clinical Cancer Research, 26(21), 5567–5578.PubMedPubMedCentralCrossRef
192.
go back to reference Ahn, J., Kim, K. H., Park, S., Ahn, Y. H., Kim, H. Y., Yoon, H., Lee, J. H., Bang, D., & Lee, D. H. (2016). Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget, 7(39), 63252–63260.PubMedPubMedCentralCrossRef Ahn, J., Kim, K. H., Park, S., Ahn, Y. H., Kim, H. Y., Yoon, H., Lee, J. H., Bang, D., & Lee, D. H. (2016). Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget, 7(39), 63252–63260.PubMedPubMedCentralCrossRef
193.
go back to reference Laaser, I., Theis, F. J., de Angelis, M. H., Kolb, H. J., & Adamski, J. (2011). Huge splicing frequency in human Y chromosomal UTY gene. OMICS: A Journal of Integrative Biology, 15(3), 141–154.PubMedCrossRef Laaser, I., Theis, F. J., de Angelis, M. H., Kolb, H. J., & Adamski, J. (2011). Huge splicing frequency in human Y chromosomal UTY gene. OMICS: A Journal of Integrative Biology, 15(3), 141–154.PubMedCrossRef
194.
go back to reference Dutta, A., Le Magnen, C., Mitrofanova, A., Ouyang, X., Califano, A., & Abate-Shen, C. (2016). Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science, 352(6293), 1576–1580.PubMedPubMedCentralCrossRef Dutta, A., Le Magnen, C., Mitrofanova, A., Ouyang, X., Califano, A., & Abate-Shen, C. (2016). Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science, 352(6293), 1576–1580.PubMedPubMedCentralCrossRef
195.
go back to reference Ivanov, R., Hol, S., Aarts, T., Hagenbeek, A., Slager, E. H., & Ebeling, S. (2005). UTY-specific TCR-transfer generates potential graft-versus-leukaemia effector T cells. British Journal of Haematology, 129(3), 392–402.PubMedCrossRef Ivanov, R., Hol, S., Aarts, T., Hagenbeek, A., Slager, E. H., & Ebeling, S. (2005). UTY-specific TCR-transfer generates potential graft-versus-leukaemia effector T cells. British Journal of Haematology, 129(3), 392–402.PubMedCrossRef
196.
go back to reference Bund, D., Buhmann, R., Gokmen, F., Zorn, J., Kolb, H. J., & Schmetzer Helga, M. (2012). Minor-histocompatibility-antigen UTY as target for graft-versus-leukemia and graft-versus-haematopoiesis in the canine-model. Scandinavian Journal of Immunology, 77(1), 39–53.CrossRef Bund, D., Buhmann, R., Gokmen, F., Zorn, J., Kolb, H. J., & Schmetzer Helga, M. (2012). Minor-histocompatibility-antigen UTY as target for graft-versus-leukemia and graft-versus-haematopoiesis in the canine-model. Scandinavian Journal of Immunology, 77(1), 39–53.CrossRef
197.
go back to reference Lee, K. H., Hong, S., Kang, M., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2018). Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. International Journal of Cancer, 143(11), 2849–2861.PubMedCrossRef Lee, K. H., Hong, S., Kang, M., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2018). Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. International Journal of Cancer, 143(11), 2849–2861.PubMedCrossRef
198.
go back to reference Lee, K. H., Kim, B. C., Jeong, S. H., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2020). Histone demethylase kdm7a regulates androgen receptor activity, and its chemical inhibitor TC-E 5002 overcomes cisplatin-resistance in bladder cancer cells. International journal of molecular sciences, 21(16), 5658.PubMedPubMedCentralCrossRef Lee, K. H., Kim, B. C., Jeong, S. H., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2020). Histone demethylase kdm7a regulates androgen receptor activity, and its chemical inhibitor TC-E 5002 overcomes cisplatin-resistance in bladder cancer cells. International journal of molecular sciences, 21(16), 5658.PubMedPubMedCentralCrossRef
199.
go back to reference Meng, Z., Liu, Y., Wang, J., Fan, H., Fang, H., Li, S., Yuan, L., Liu, C., Peng, Y., Zhao, W., et al. (2020). Histone demethylase KDM7A is required for stem cell maintenance and apoptosis inhibition in breast cancer. Journal of Cellular Physiology, 235(2), 932–943.PubMedCrossRef Meng, Z., Liu, Y., Wang, J., Fan, H., Fang, H., Li, S., Yuan, L., Liu, C., Peng, Y., Zhao, W., et al. (2020). Histone demethylase KDM7A is required for stem cell maintenance and apoptosis inhibition in breast cancer. Journal of Cellular Physiology, 235(2), 932–943.PubMedCrossRef
200.
go back to reference Li, W., Yang, X., Shi, C., & Zhou, Z. (2020). Hsa_circ_002178 Promotes the growth and migration of breast cancer cells and maintains cancer stem-like cell properties through regulating miR-1258/KDM7A Axis. Cell Transplantation, 29, 963689720960174.PubMedCrossRef Li, W., Yang, X., Shi, C., & Zhou, Z. (2020). Hsa_circ_002178 Promotes the growth and migration of breast cancer cells and maintains cancer stem-like cell properties through regulating miR-1258/KDM7A Axis. Cell Transplantation, 29, 963689720960174.PubMedCrossRef
201.
go back to reference Liu, Q., Borcherding, N., Shao, P., Cao, H., Zhang, W., & Qi, H. H. (2019). Identification of novel TGF-beta regulated genes with pro-migratory roles. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1865(12), 165537.PubMedCrossRef Liu, Q., Borcherding, N., Shao, P., Cao, H., Zhang, W., & Qi, H. H. (2019). Identification of novel TGF-beta regulated genes with pro-migratory roles. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1865(12), 165537.PubMedCrossRef
202.
go back to reference Bjorkman, M., Ostling, P., Harma, V., Virtanen, J., Mpindi, J. P., Rantala, J., Mirtti, T., Vesterinen, T., Lundin, M., Sankila, A., et al. (2011). Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 31(29), 3444–3456.PubMedCrossRef Bjorkman, M., Ostling, P., Harma, V., Virtanen, J., Mpindi, J. P., Rantala, J., Mirtti, T., Vesterinen, T., Lundin, M., Sankila, A., et al. (2011). Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 31(29), 3444–3456.PubMedCrossRef
203.
go back to reference Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., Calhoun-Davis, T., Li, H., Palapattu, G. S., Pang, S., et al. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556–569.PubMedPubMedCentralCrossRef Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., Calhoun-Davis, T., Li, H., Palapattu, G. S., Pang, S., et al. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556–569.PubMedPubMedCentralCrossRef
204.
go back to reference Qiu, J., Shi, G., Jia, Y., Li, J., Wu, M., Dong, S., & Wong, J. (2010). The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Research, 20(8), 908–918.PubMedCrossRef Qiu, J., Shi, G., Jia, Y., Li, J., Wu, M., Dong, S., & Wong, J. (2010). The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Research, 20(8), 908–918.PubMedCrossRef
205.
go back to reference Liu, Q., Pang, J., Wang, L. A., Huang, Z., Xu, J., Yang, X., Xie, Q., Huang, Y., Tang, T., Tong, D., et al. (2021). Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. The Journal of Pathology, 253(1), 106–118.PubMedCrossRef Liu, Q., Pang, J., Wang, L. A., Huang, Z., Xu, J., Yang, X., Xie, Q., Huang, Y., Tang, T., Tong, D., et al. (2021). Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. The Journal of Pathology, 253(1), 106–118.PubMedCrossRef
206.
go back to reference Tong, D., Liu, Q., Liu, G., Yuan, W., Wang, L., Guo, Y., Lan, W., Zhang, D., Dong, S., Wang, Y., et al. (2016). The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis, 5(12), e283.PubMedPubMedCentralCrossRef Tong, D., Liu, Q., Liu, G., Yuan, W., Wang, L., Guo, Y., Lan, W., Zhang, D., Dong, S., Wang, Y., et al. (2016). The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis, 5(12), e283.PubMedPubMedCentralCrossRef
207.
go back to reference Maina, P. K., Shao, P., Jia, X., Liu, Q., Umesalma, S., Marin, M., Long, D., Jr., Concepcion-Roman, S., & Qi, H. H. (2017). Histone demethylase PHF8 regulates hypoxia signaling through HIF1alpha and H3K4me3. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1860(9), 1002–1012.PubMedCrossRef Maina, P. K., Shao, P., Jia, X., Liu, Q., Umesalma, S., Marin, M., Long, D., Jr., Concepcion-Roman, S., & Qi, H. H. (2017). Histone demethylase PHF8 regulates hypoxia signaling through HIF1alpha and H3K4me3. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1860(9), 1002–1012.PubMedCrossRef
208.
go back to reference Maina, P. K., Shao, P., Liu, Q., Fazli, L., Tyler, S., Nasir, M., Dong, X., & Qi, H. H. (2016). c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget, 7(46), 75585–75602.PubMedPubMedCentralCrossRef Maina, P. K., Shao, P., Liu, Q., Fazli, L., Tyler, S., Nasir, M., Dong, X., & Qi, H. H. (2016). c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget, 7(46), 75585–75602.PubMedPubMedCentralCrossRef
209.
go back to reference Liu, Q., Borcherding, N. C., Shao, P., Maina, P. K., Zhang, W., & Qi, H. H. (2020). Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. eBioMedicine, 51, 102612.PubMedPubMedCentralCrossRef Liu, Q., Borcherding, N. C., Shao, P., Maina, P. K., Zhang, W., & Qi, H. H. (2020). Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. eBioMedicine, 51, 102612.PubMedPubMedCentralCrossRef
210.
go back to reference Shao, P., Liu, Q., Maina, P. K., Cui, J., Bair, T. B., Li, T., Umesalma, S., Zhang, W., & Qi, H. H. (2017). Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Research, 45(4), 1687–1702.PubMedCrossRef Shao, P., Liu, Q., Maina, P. K., Cui, J., Bair, T. B., Li, T., Umesalma, S., Zhang, W., & Qi, H. H. (2017). Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Research, 45(4), 1687–1702.PubMedCrossRef
211.
go back to reference Wang, Q., Ma, S., Song, N., Li, X., Liu, L., Yang, S., Ding, X., Shan, L., Zhou, X., Su, D., et al. (2016). Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. The Journal of Clinical Investigation, 126(6), 2205–2220.PubMedPubMedCentralCrossRef Wang, Q., Ma, S., Song, N., Li, X., Liu, L., Yang, S., Ding, X., Shan, L., Zhou, X., Su, D., et al. (2016). Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. The Journal of Clinical Investigation, 126(6), 2205–2220.PubMedPubMedCentralCrossRef
212.
213.
go back to reference Zhou, W., Gong, L., Wu, Q., Xing, C., Wei, B., Chen, T., Zhou, Y., Yin, S., Jiang, B., Xie, H., et al. (2018). PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 215.CrossRef Zhou, W., Gong, L., Wu, Q., Xing, C., Wei, B., Chen, T., Zhou, Y., Yin, S., Jiang, B., Xie, H., et al. (2018). PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 215.CrossRef
214.
go back to reference Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S., & Panda, C. K. (2008). Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer, 7, 84.PubMedPubMedCentralCrossRef Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S., & Panda, C. K. (2008). Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer, 7, 84.PubMedPubMedCentralCrossRef
215.
go back to reference Ghosh, A., Ghosh, S., Maiti, G. P., Mukherjee, S., Mukherjee, N., Chakraborty, J., Roy, A., Roychoudhury, S., & Panda, C. K. (2011). Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck. Annals of surgical oncology, 19, 528–538.CrossRef Ghosh, A., Ghosh, S., Maiti, G. P., Mukherjee, S., Mukherjee, N., Chakraborty, J., Roy, A., Roychoudhury, S., & Panda, C. K. (2011). Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck. Annals of surgical oncology, 19, 528–538.CrossRef
216.
go back to reference Lee, K. H., Park, J. W., Sung, H. S., Choi, Y. J., Kim, W. H., Lee, H. S., Chung, H. J., Shin, H. W., Cho, C. H., Kim, T. Y., et al. (2015). PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene, 34(22), 2897–2909.PubMedCrossRef Lee, K. H., Park, J. W., Sung, H. S., Choi, Y. J., Kim, W. H., Lee, H. S., Chung, H. J., Shin, H. W., Cho, C. H., Kim, T. Y., et al. (2015). PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene, 34(22), 2897–2909.PubMedCrossRef
217.
go back to reference Fu, Y., Liu, M., Li, F., Qian, L., Zhang, P., Lv, F., Cheng, W., & Hou, R. (2019). MiR-221 promotes hepatocellular carcinoma cells migration via targeting PHF2. BioMed Research International, 2019, 4371405.PubMedPubMedCentralCrossRef Fu, Y., Liu, M., Li, F., Qian, L., Zhang, P., Lv, F., Cheng, W., & Hou, R. (2019). MiR-221 promotes hepatocellular carcinoma cells migration via targeting PHF2. BioMed Research International, 2019, 4371405.PubMedPubMedCentralCrossRef
218.
go back to reference Liu, Y., Chen, T., Guo, M., Li, Y., Zhang, Q., Tan, G., Yu, L., & Tan, Y. (2021). FOXA2-interacting FOXP2 prevents epithelial-mesenchymal transition of breast cancer cells by stimulating E-cadherin and PHF2 transcription. Frontiers in Oncology, 11, 605025.PubMedPubMedCentralCrossRef Liu, Y., Chen, T., Guo, M., Li, Y., Zhang, Q., Tan, G., Yu, L., & Tan, Y. (2021). FOXA2-interacting FOXP2 prevents epithelial-mesenchymal transition of breast cancer cells by stimulating E-cadherin and PHF2 transcription. Frontiers in Oncology, 11, 605025.PubMedPubMedCentralCrossRef
219.
go back to reference McCann, T. S., Parrish, J. K., Hsieh, J., Sechler, M., Sobral, L. M., Self, C., Jones, K. L., Goodspeed, A., Costello, J. C., & Jedlicka, P. (2020). KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma. Oncotarget, 11(43), 3818–3831.PubMedPubMedCentralCrossRef McCann, T. S., Parrish, J. K., Hsieh, J., Sechler, M., Sobral, L. M., Self, C., Jones, K. L., Goodspeed, A., Costello, J. C., & Jedlicka, P. (2020). KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma. Oncotarget, 11(43), 3818–3831.PubMedPubMedCentralCrossRef
220.
go back to reference Zhao, Z., Sun, C., Li, F., Han, J., Li, X., & Song, Z. (2015). Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. International Journal of Clinical and Experimental Pathology, 8(9), 10325–10334.PubMedPubMedCentral Zhao, Z., Sun, C., Li, F., Han, J., Li, X., & Song, Z. (2015). Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. International Journal of Clinical and Experimental Pathology, 8(9), 10325–10334.PubMedPubMedCentral
221.
go back to reference Yang, C. Y., Tsao, C. H., Hsieh, C. C., Lin, C. K., Lin, C. S., Li, Y. H., Chang, W. C., Cheng, J. C., Lin, G. J., Sytwu, H. K., et al. (2020). Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS ONE, 15(7), e0236101.PubMedPubMedCentralCrossRef Yang, C. Y., Tsao, C. H., Hsieh, C. C., Lin, C. K., Lin, C. S., Li, Y. H., Chang, W. C., Cheng, J. C., Lin, G. J., Sytwu, H. K., et al. (2020). Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS ONE, 15(7), e0236101.PubMedPubMedCentralCrossRef
222.
go back to reference Yao, Y., Zhou, W. Y., & He, R. X. (2019). Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-kappaB pathway. Biomedicine & Pharmacotherapy, 109, 1994–2004.CrossRef Yao, Y., Zhou, W. Y., & He, R. X. (2019). Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-kappaB pathway. Biomedicine & Pharmacotherapy, 109, 1994–2004.CrossRef
223.
go back to reference Hsia, D. A., Tepper, C. G., Pochampalli, M. R., Hsia, E. Y., Izumiya, C., Huerta, S. B., Wright, M. E., Chen, H. W., Kung, H. J., & Izumiya, Y. (2010). KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9671–9676.PubMedPubMedCentralCrossRef Hsia, D. A., Tepper, C. G., Pochampalli, M. R., Hsia, E. Y., Izumiya, C., Huerta, S. B., Wright, M. E., Chen, H. W., Kung, H. J., & Izumiya, Y. (2010). KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9671–9676.PubMedPubMedCentralCrossRef
224.
go back to reference Zhang, R., Huang, Q., Li, Y., & Song, Y. (2015). JMJD5 is a potential oncogene for colon carcinogenesis. International Journal of Clinical and Experimental Pathology, 8(6), 6482–6489.PubMedPubMedCentral Zhang, R., Huang, Q., Li, Y., & Song, Y. (2015). JMJD5 is a potential oncogene for colon carcinogenesis. International Journal of Clinical and Experimental Pathology, 8(6), 6482–6489.PubMedPubMedCentral
225.
go back to reference Huang, X., Zhang, S., Qi, H., Wang, Z., Chen, H. W., Shao, J., & Shen, J. (2015). JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta, 1853(10 Pt A), 2286–2295.PubMedCrossRef Huang, X., Zhang, S., Qi, H., Wang, Z., Chen, H. W., Shao, J., & Shen, J. (2015). JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta, 1853(10 Pt A), 2286–2295.PubMedCrossRef
226.
go back to reference Wu, J., He, Z., Yang, X. M., Li, K. L., Wang, D. L., & Sun, F. L. (2017). RCCD1 depletion attenuates TGF-beta-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. Cancer Letters, 400, 18–29.PubMedCrossRef Wu, J., He, Z., Yang, X. M., Li, K. L., Wang, D. L., & Sun, F. L. (2017). RCCD1 depletion attenuates TGF-beta-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. Cancer Letters, 400, 18–29.PubMedCrossRef
227.
go back to reference Wang, H. J., Hsieh, Y. J., Cheng, W. C., Lin, C. P., Lin, Y. S., Yang, S. F., Chen, C. C., Izumiya, Y., Yu, J. S., Kung, H. J., et al. (2014). JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 279–284.PubMedCrossRef Wang, H. J., Hsieh, Y. J., Cheng, W. C., Lin, C. P., Lin, Y. S., Yang, S. F., Chen, C. C., Izumiya, Y., Yu, J. S., Kung, H. J., et al. (2014). JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 279–284.PubMedCrossRef
228.
go back to reference Wang, H. J., Pochampalli, M., Wang, L. Y., Zou, J. X., Li, P. S., Hsu, S. C., Wang, B. J., Huang, S. H., Yang, P., Yang, J. C., et al. (2019). KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene, 38(1), 17–32.PubMedCrossRef Wang, H. J., Pochampalli, M., Wang, L. Y., Zou, J. X., Li, P. S., Hsu, S. C., Wang, B. J., Huang, S. H., Yang, P., Yang, J. C., et al. (2019). KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene, 38(1), 17–32.PubMedCrossRef
229.
go back to reference Wang, Z., Wang, C., Huang, X., Shen, Y., Shen, J., & Ying, K. (2012). Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochimica et Biophysica Acta, 1824(4), 692–700.PubMedCrossRef Wang, Z., Wang, C., Huang, X., Shen, Y., Shen, J., & Ying, K. (2012). Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochimica et Biophysica Acta, 1824(4), 692–700.PubMedCrossRef
230.
go back to reference Vangimalla, S. S., Ganesan, M., Kharbanda, K. K., & Osna, N. A. (2017). Bifunctional enzyme JMJD6 contributes to multiple disease pathogenesis: New twist on the old story. Biomolecules, 7(2), 41.PubMedPubMedCentralCrossRef Vangimalla, S. S., Ganesan, M., Kharbanda, K. K., & Osna, N. A. (2017). Bifunctional enzyme JMJD6 contributes to multiple disease pathogenesis: New twist on the old story. Biomolecules, 7(2), 41.PubMedPubMedCentralCrossRef
231.
go back to reference Hong, X., Zang, J., White, J., Wang, C., Pan, C. H., Zhao, R., Murphy, R. C., Dai, S., Henson, P., Kappler, J. W., et al. (2010). Interaction of JMJD6 with single-stranded RNA. Proc Natl Acad Sci U S A, 107(33), 14568–14572.PubMedPubMedCentralCrossRef Hong, X., Zang, J., White, J., Wang, C., Pan, C. H., Zhao, R., Murphy, R. C., Dai, S., Henson, P., Kappler, J. W., et al. (2010). Interaction of JMJD6 with single-stranded RNA. Proc Natl Acad Sci U S A, 107(33), 14568–14572.PubMedPubMedCentralCrossRef
232.
go back to reference Heim, A., Grimm, C., Muller, U., Haussler, S., Mackeen, M. M., Merl, J., Hauck, S. M., Kessler, B. M., Schofield, C. J., Wolf, A., et al. (2014). Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Research, 42(12), 7833–7850.PubMedPubMedCentralCrossRef Heim, A., Grimm, C., Muller, U., Haussler, S., Mackeen, M. M., Merl, J., Hauck, S. M., Kessler, B. M., Schofield, C. J., Wolf, A., et al. (2014). Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Research, 42(12), 7833–7850.PubMedPubMedCentralCrossRef
233.
234.
go back to reference Paschalis, A., Welti, J., Neeb, A. J., Yuan, W., Figueiredo, I., Pereira, R., Ferreira, A., Riisnaes, R., Rodrigues, D. N., Jimenez-Vacas, J. M., et al. (2021). JMJD6 is a druggable oxygenase that regulates AR-V7 expression in prostate cancer. Cancer Research, 81(4), 1087–1100.PubMedPubMedCentralCrossRef Paschalis, A., Welti, J., Neeb, A. J., Yuan, W., Figueiredo, I., Pereira, R., Ferreira, A., Riisnaes, R., Rodrigues, D. N., Jimenez-Vacas, J. M., et al. (2021). JMJD6 is a druggable oxygenase that regulates AR-V7 expression in prostate cancer. Cancer Research, 81(4), 1087–1100.PubMedPubMedCentralCrossRef
235.
go back to reference Lee, Y. F., Miller, L. D., Chan, X. B., Black, M. A., Pang, B., Ong, C. W., Salto-Tellez, M., Liu, E. T., & Desai, K. V. (2012). JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Research, 14(3), R85.PubMedPubMedCentralCrossRef Lee, Y. F., Miller, L. D., Chan, X. B., Black, M. A., Pang, B., Ong, C. W., Salto-Tellez, M., Liu, E. T., & Desai, K. V. (2012). JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Research, 14(3), R85.PubMedPubMedCentralCrossRef
236.
go back to reference Rahman, S., Sowa, M. E., Ottinger, M., Smith, J. A., Shi, Y., Harper, J. W., & Howley, P. M. (2011). The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Molecular and Cellular Biology, 31(13), 2641–2652.PubMedPubMedCentralCrossRef Rahman, S., Sowa, M. E., Ottinger, M., Smith, J. A., Shi, Y., Harper, J. W., & Howley, P. M. (2011). The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Molecular and Cellular Biology, 31(13), 2641–2652.PubMedPubMedCentralCrossRef
237.
go back to reference Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.PubMedCrossRef Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.PubMedCrossRef
238.
go back to reference Song, Y. Q., Yang, G. J., Ma, D. L., Wang, W. H., & Leung, C. H. (2023). The role and prospect of lysine-specific demethylases in cancer chemoresistance. Medicinal Research Reviews, 43(5), 1438–1469.PubMedCrossRef Song, Y. Q., Yang, G. J., Ma, D. L., Wang, W. H., & Leung, C. H. (2023). The role and prospect of lysine-specific demethylases in cancer chemoresistance. Medicinal Research Reviews, 43(5), 1438–1469.PubMedCrossRef
239.
go back to reference Wirawan, A., Tajima, K., Takahashi, F., Mitsuishi, Y., Winardi, W., Hidayat, M., Hayakawa, D., Matsumoto, N., Izumi, K., Asao, T., et al. (2022). A novel therapeutic strategy targeting the mesenchymal phenotype of malignant pleural mesothelioma by suppressing LSD1. Molecular Cancer Research, 20(1), 127–138.PubMedCrossRef Wirawan, A., Tajima, K., Takahashi, F., Mitsuishi, Y., Winardi, W., Hidayat, M., Hayakawa, D., Matsumoto, N., Izumi, K., Asao, T., et al. (2022). A novel therapeutic strategy targeting the mesenchymal phenotype of malignant pleural mesothelioma by suppressing LSD1. Molecular Cancer Research, 20(1), 127–138.PubMedCrossRef
240.
go back to reference Verigos, J., Karakaidos, P., Kordias, D., Papoudou-Bai, A., Evangelou, Z., Harissis, H. V., Klinakis, A., & Magklara, A. (2019). The histone demethylase LSD1/KappaDM1A mediates chemoresistance in breast cancer via regulation of a stem cell program. Cancers (Basel), 11(10), 1585.PubMedCrossRef Verigos, J., Karakaidos, P., Kordias, D., Papoudou-Bai, A., Evangelou, Z., Harissis, H. V., Klinakis, A., & Magklara, A. (2019). The histone demethylase LSD1/KappaDM1A mediates chemoresistance in breast cancer via regulation of a stem cell program. Cancers (Basel), 11(10), 1585.PubMedCrossRef
241.
go back to reference Peng, W., Zhang, H., Tan, S., Li, Y., Zhou, Y., Wang, L., Liu, C., Li, Q., Cen, X., Yang, S., et al. (2020). Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Therapeutic Advances in Medical Oncology, 12, 1758835920937428.PubMedPubMedCentralCrossRef Peng, W., Zhang, H., Tan, S., Li, Y., Zhou, Y., Wang, L., Liu, C., Li, Q., Cen, X., Yang, S., et al. (2020). Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Therapeutic Advances in Medical Oncology, 12, 1758835920937428.PubMedPubMedCentralCrossRef
242.
go back to reference Li, Y., Tao, L., Zuo, Z., Zhou, Y., Qian, X., Lin, Y., Jie, H., Liu, C., Li, Z., Zhang, H., et al. (2019). ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Letters, 454, 179–190.PubMedCrossRef Li, Y., Tao, L., Zuo, Z., Zhou, Y., Qian, X., Lin, Y., Jie, H., Liu, C., Li, Z., Zhang, H., et al. (2019). ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Letters, 454, 179–190.PubMedCrossRef
243.
go back to reference Augert, A., Eastwood, E., Ibrahim, A. H., Wu, N., Grunblatt, E., Basom, R., Liggitt, D., Eaton, K. D., Martins, R., Poirier, J. T., et al. (2019). Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Science Signaling, 12(567), eaau2922.PubMedPubMedCentralCrossRef Augert, A., Eastwood, E., Ibrahim, A. H., Wu, N., Grunblatt, E., Basom, R., Liggitt, D., Eaton, K. D., Martins, R., Poirier, J. T., et al. (2019). Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Science Signaling, 12(567), eaau2922.PubMedPubMedCentralCrossRef
244.
go back to reference Ekstrom, T. L., Pathoulas, N. M., Huehls, A. M., Kanakkanthara, A., & Karnitz, L. M. (2021). VLX600 disrupts homologous recombination and synergizes with PARP inhibitors and cisplatin by inhibiting histone lysine demethylases. Molecular Cancer Therapeutics, 20(9), 1561–1571.PubMedPubMedCentralCrossRef Ekstrom, T. L., Pathoulas, N. M., Huehls, A. M., Kanakkanthara, A., & Karnitz, L. M. (2021). VLX600 disrupts homologous recombination and synergizes with PARP inhibitors and cisplatin by inhibiting histone lysine demethylases. Molecular Cancer Therapeutics, 20(9), 1561–1571.PubMedPubMedCentralCrossRef
245.
go back to reference Bayo, J., Tran, T. A., Wang, L., Pena-Llopis, S., Das, A. K., & Martinez, E. D. (2018). Jumonji inhibitors overcome radioresistance in cancer through changes in H3K4 methylation at double-strand breaks. Cell Reports, 25(4), 1040–1050.PubMedCrossRef Bayo, J., Tran, T. A., Wang, L., Pena-Llopis, S., Das, A. K., & Martinez, E. D. (2018). Jumonji inhibitors overcome radioresistance in cancer through changes in H3K4 methylation at double-strand breaks. Cell Reports, 25(4), 1040–1050.PubMedCrossRef
246.
go back to reference Macedo-Silva, C., Miranda-Goncalves, V., Lameirinhas, A., Lencart, J., Pereira, A., Lobo, J., Guimaraes, R., Martins, A. T., Henrique, R., Bravo, I., et al. (2020). JmjC-KDMs KDM3A and KDM6B modulate radioresistance under hypoxic conditions in esophageal squamous cell carcinoma. Cell Death & Disease, 11(12), 1068.CrossRef Macedo-Silva, C., Miranda-Goncalves, V., Lameirinhas, A., Lencart, J., Pereira, A., Lobo, J., Guimaraes, R., Martins, A. T., Henrique, R., Bravo, I., et al. (2020). JmjC-KDMs KDM3A and KDM6B modulate radioresistance under hypoxic conditions in esophageal squamous cell carcinoma. Cell Death & Disease, 11(12), 1068.CrossRef
247.
go back to reference Wu, L. W., Zhou, D. M., Zhang, Z. Y., Zhang, J. K., Zhu, H. J., Lin, N. M., & Zhang, C. (2019). Suppression of LSD1 enhances the cytotoxic and apoptotic effects of regorafenib in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 512(4), 852–858.PubMedCrossRef Wu, L. W., Zhou, D. M., Zhang, Z. Y., Zhang, J. K., Zhu, H. J., Lin, N. M., & Zhang, C. (2019). Suppression of LSD1 enhances the cytotoxic and apoptotic effects of regorafenib in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 512(4), 852–858.PubMedCrossRef
248.
go back to reference Jostes, S., Nettersheim, D., & Schorle, H. (2019). Epigenetic drugs and their molecular targets in testicular germ cell tumours. Nature Reviews. Urology, 16(4), 245–259.PubMedCrossRef Jostes, S., Nettersheim, D., & Schorle, H. (2019). Epigenetic drugs and their molecular targets in testicular germ cell tumours. Nature Reviews. Urology, 16(4), 245–259.PubMedCrossRef
249.
go back to reference Li, Z., Qin, T., Zhao, X., Zhang, X., Zhao, T., Yang, N., Miao, J., Ma, J., & Zhang, Z. (2021). Discovery of quinazoline derivatives as a novel class of potent and in vivo efficacious LSD1 inhibitors by drug repurposing. European Journal of Medicinal Chemistry, 225, 113778.PubMedCrossRef Li, Z., Qin, T., Zhao, X., Zhang, X., Zhao, T., Yang, N., Miao, J., Ma, J., & Zhang, Z. (2021). Discovery of quinazoline derivatives as a novel class of potent and in vivo efficacious LSD1 inhibitors by drug repurposing. European Journal of Medicinal Chemistry, 225, 113778.PubMedCrossRef
250.
go back to reference Zheng, Y., Ma, Y., Cao, H., Yan, L., Gu, Y., Ren, X., Jiao, X., Wan, S., & Shao, F. (2021). Identification of fenoldopam as a novel LSD1 inhibitor to abrogate the proliferation of renal cell carcinoma using drug repurposing strategy. Bioorganic Chemistry, 108, 104561.PubMedCrossRef Zheng, Y., Ma, Y., Cao, H., Yan, L., Gu, Y., Ren, X., Jiao, X., Wan, S., & Shao, F. (2021). Identification of fenoldopam as a novel LSD1 inhibitor to abrogate the proliferation of renal cell carcinoma using drug repurposing strategy. Bioorganic Chemistry, 108, 104561.PubMedCrossRef
251.
go back to reference Li, Z. R., Suo, F. Z., Hu, B., Guo, Y. J., Fu, D. J., Yu, B., Zheng, Y. C., & Liu, H. M. (2019). Identification of osimertinib (AZD9291) as a lysine specific demethylase 1 inhibitor. Bioorganic Chemistry, 84, 164–169.PubMedCrossRef Li, Z. R., Suo, F. Z., Hu, B., Guo, Y. J., Fu, D. J., Yu, B., Zheng, Y. C., & Liu, H. M. (2019). Identification of osimertinib (AZD9291) as a lysine specific demethylase 1 inhibitor. Bioorganic Chemistry, 84, 164–169.PubMedCrossRef
252.
go back to reference Kleszcz, R., Skalski, M., Krajka-Kuzniak, V., & Paluszczak, J. (2021). The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. European Journal of Pharmaceutical Sciences, 166, 105961.PubMedCrossRef Kleszcz, R., Skalski, M., Krajka-Kuzniak, V., & Paluszczak, J. (2021). The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. European Journal of Pharmaceutical Sciences, 166, 105961.PubMedCrossRef
253.
go back to reference Milzman, J., Sheng, W., & Levy, D. (2021). Modeling LSD1-Mediated Tumor Stagnation. Bulletin of Mathematical Biology, 83(2), 15.PubMedCrossRef Milzman, J., Sheng, W., & Levy, D. (2021). Modeling LSD1-Mediated Tumor Stagnation. Bulletin of Mathematical Biology, 83(2), 15.PubMedCrossRef
254.
go back to reference Soldi, R., Ghosh Halder, T., Weston, A., Thode, T., Drenner, K., Lewis, R., Kaadige, M. R., Srivastava, S., Daniel Ampanattu, S., Rodriguez Del Villar, R., et al. (2020). The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS ONE, 15(7), e0235705.PubMedPubMedCentralCrossRef Soldi, R., Ghosh Halder, T., Weston, A., Thode, T., Drenner, K., Lewis, R., Kaadige, M. R., Srivastava, S., Daniel Ampanattu, S., Rodriguez Del Villar, R., et al. (2020). The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS ONE, 15(7), e0235705.PubMedPubMedCentralCrossRef
255.
go back to reference Carter, D. M., Specker, E., Malecki, P. H., Przygodda, J., Dudaniec, K., Weiss, M. S., Heinemann, U., Nazare, M., & Gohlke, U. (2021). Enhanced properties of a benzimidazole benzylpyrazole lysine demethylase inhibitor: Mechanism-of-action, binding site analysis, and activity in cellular models of prostate cancer. Journal of Medicinal Chemistry, 64(19), 14266–14282.PubMedCrossRef Carter, D. M., Specker, E., Malecki, P. H., Przygodda, J., Dudaniec, K., Weiss, M. S., Heinemann, U., Nazare, M., & Gohlke, U. (2021). Enhanced properties of a benzimidazole benzylpyrazole lysine demethylase inhibitor: Mechanism-of-action, binding site analysis, and activity in cellular models of prostate cancer. Journal of Medicinal Chemistry, 64(19), 14266–14282.PubMedCrossRef
256.
go back to reference Kanouni, T., Severin, C., Cho, R. W., Yuen, N. Y., Xu, J., Shi, L., Lai, C., Del Rosario, J. R., Stansfield, R. K., Lawton, L. N., et al. (2020). Discovery of CC-90011: A potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). Journal of Medicinal Chemistry, 63(23), 14522–14529.PubMedCrossRef Kanouni, T., Severin, C., Cho, R. W., Yuen, N. Y., Xu, J., Shi, L., Lai, C., Del Rosario, J. R., Stansfield, R. K., Lawton, L. N., et al. (2020). Discovery of CC-90011: A potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). Journal of Medicinal Chemistry, 63(23), 14522–14529.PubMedCrossRef
257.
go back to reference Hollebecque, A., Salvagni, S., Plummer, R., Isambert, N., Niccoli, P., Capdevila, J., Curigliano, G., Moreno, V., Martin-Romano, P., Baudin, E., et al. (2021). Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma. Clinical Cancer Research, 27(2), 438–446.PubMedCrossRef Hollebecque, A., Salvagni, S., Plummer, R., Isambert, N., Niccoli, P., Capdevila, J., Curigliano, G., Moreno, V., Martin-Romano, P., Baudin, E., et al. (2021). Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma. Clinical Cancer Research, 27(2), 438–446.PubMedCrossRef
258.
go back to reference Tayari, M. M., Santos, H. G. D., Kwon, D., Bradley, T. J., Thomassen, A., Chen, C., Dinh, Y., Perez, A., Zelent, A., Morey, L., et al. (2021). Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clinical Cancer Research, 27(7), 1893–1903.PubMedPubMedCentralCrossRef Tayari, M. M., Santos, H. G. D., Kwon, D., Bradley, T. J., Thomassen, A., Chen, C., Dinh, Y., Perez, A., Zelent, A., Morey, L., et al. (2021). Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clinical Cancer Research, 27(7), 1893–1903.PubMedPubMedCentralCrossRef
259.
go back to reference Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). The LSD1 Inhibitor Iadademstat is active in acute myeloid leukemia. Cancer Discovery, 10(12), OF4.CrossRef Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). The LSD1 Inhibitor Iadademstat is active in acute myeloid leukemia. Cancer Discovery, 10(12), OF4.CrossRef
260.
go back to reference Kurmasheva, R. T., Erickson, S. W., Han, R., Teicher, B. A., Smith, M. A., Roth, M., Gorlick, R., & Houghton, P. J. (2021). In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatric Blood & Cancer, 68(11), e29304.CrossRef Kurmasheva, R. T., Erickson, S. W., Han, R., Teicher, B. A., Smith, M. A., Roth, M., Gorlick, R., & Houghton, P. J. (2021). In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatric Blood & Cancer, 68(11), e29304.CrossRef
261.
go back to reference Johnston, G., Ramsey, H. E., Liu, Q., Wang, J., Stengel, K. R., Sampathi, S., Acharya, P., Arrate, M., Stubbs, M. C., Burn, T., et al. (2020). Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia. Gene, 752, 144758.PubMedPubMedCentralCrossRef Johnston, G., Ramsey, H. E., Liu, Q., Wang, J., Stengel, K. R., Sampathi, S., Acharya, P., Arrate, M., Stubbs, M. C., Burn, T., et al. (2020). Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia. Gene, 752, 144758.PubMedPubMedCentralCrossRef
262.
go back to reference Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). First-in-human phase I study of Iadademstat (ORY-1001): A first-in-class lysine-specific histone demethylase 1A inhibitor, in relapsed or refractory acute myeloid leukemia. Journal of Clinical Oncology, 38(36), 4260–4273.PubMedPubMedCentralCrossRef Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). First-in-human phase I study of Iadademstat (ORY-1001): A first-in-class lysine-specific histone demethylase 1A inhibitor, in relapsed or refractory acute myeloid leukemia. Journal of Clinical Oncology, 38(36), 4260–4273.PubMedPubMedCentralCrossRef
263.
go back to reference Yang, G. J., Wang, W., Mok, S. W. F., Wu, C., Law, B. Y. K., Miao, X. M., Wu, K. J., Zhong, H. J., Wong, C. Y., Wong, V. K. W., et al. (2018). Selective inhibition of lysine-specific demethylase 5A (KDM5A) Using a Rhodium(III) complex for triple-negative breast cancer therapy. Angewandte Chemie (International ed. in English), 57(40), 13091–13095.PubMedCrossRef Yang, G. J., Wang, W., Mok, S. W. F., Wu, C., Law, B. Y. K., Miao, X. M., Wu, K. J., Zhong, H. J., Wong, C. Y., Wong, V. K. W., et al. (2018). Selective inhibition of lysine-specific demethylase 5A (KDM5A) Using a Rhodium(III) complex for triple-negative breast cancer therapy. Angewandte Chemie (International ed. in English), 57(40), 13091–13095.PubMedCrossRef
264.
go back to reference Shin, S., & Janknecht, R. (2007). Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 359(3), 742–746.PubMedCrossRef Shin, S., & Janknecht, R. (2007). Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 359(3), 742–746.PubMedCrossRef
265.
go back to reference Kim, T. D., Oh, S., Shin, S., & Janknecht, R. (2012). Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS ONE, 7(4), e34618.PubMedPubMedCentralCrossRef Kim, T. D., Oh, S., Shin, S., & Janknecht, R. (2012). Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS ONE, 7(4), e34618.PubMedPubMedCentralCrossRef
266.
go back to reference Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of hematology & oncology, 14(1), 1–18.CrossRef Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of hematology & oncology, 14(1), 1–18.CrossRef
267.
go back to reference Dai, B., Huang, H., Guan, F., Zhu, G. T., Xiao, Z. Y., Mao, B. B., Su, H. Y., & Hu, Z. Q. (2018). Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomedicine & Pharmacotherapy, 99, 72–80.CrossRef Dai, B., Huang, H., Guan, F., Zhu, G. T., Xiao, Z. Y., Mao, B. B., Su, H. Y., & Hu, Z. Q. (2018). Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomedicine & Pharmacotherapy, 99, 72–80.CrossRef
268.
go back to reference Sase, H., Nakanishi, Y., Aida, S., Horiguchi-Takei, K., Akiyama, N., Fujii, T., Sakata, K., Mio, T., Aoki, M., & Ishii, N. (2018). Acquired JHDM1D-BRAF fusion confers resistance to FGFR inhibition in FGFR2-amplified gastric cancer. Molecular Cancer Therapeutics, 17(10), 2217–2225.PubMedCrossRef Sase, H., Nakanishi, Y., Aida, S., Horiguchi-Takei, K., Akiyama, N., Fujii, T., Sakata, K., Mio, T., Aoki, M., & Ishii, N. (2018). Acquired JHDM1D-BRAF fusion confers resistance to FGFR inhibition in FGFR2-amplified gastric cancer. Molecular Cancer Therapeutics, 17(10), 2217–2225.PubMedCrossRef
269.
go back to reference Cheng, Y., Wang, Y., Li, J., Chang, I., & Wang, C. Y. (2017). A novel read-through transcript JMJD7-PLA2G4B regulates head and neck squamous cell carcinoma cell proliferation and survival. Oncotarget, 8(2), 1972–1982.PubMedCrossRef Cheng, Y., Wang, Y., Li, J., Chang, I., & Wang, C. Y. (2017). A novel read-through transcript JMJD7-PLA2G4B regulates head and neck squamous cell carcinoma cell proliferation and survival. Oncotarget, 8(2), 1972–1982.PubMedCrossRef
270.
go back to reference Bodmer, D., Schepens, M., Eleveld, M. J., & Schoenmakers, E. F. (2003). Geurts van Kessel A: Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t(2;3)(q35;q21). Genes, Chromosomes & Cancer, 38(2), 107–116.CrossRef Bodmer, D., Schepens, M., Eleveld, M. J., & Schoenmakers, E. F. (2003). Geurts van Kessel A: Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t(2;3)(q35;q21). Genes, Chromosomes & Cancer, 38(2), 107–116.CrossRef
271.
go back to reference Chang, S., Yim, S., & Park, H. (2019). The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: Crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Experimental & Molecular Medicine, 51(6), 1–17.CrossRef Chang, S., Yim, S., & Park, H. (2019). The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: Crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Experimental & Molecular Medicine, 51(6), 1–17.CrossRef
272.
go back to reference Rondinelli, B., Schwerer, H., Antonini, E., Gaviraghi, M., Lupi, A., Frenquelli, M., Cittaro, D., Segalla, S., Lemaitre, J. M., & Tonon, G. (2015). H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Research, 43(5), 2560–2574.PubMedPubMedCentralCrossRef Rondinelli, B., Schwerer, H., Antonini, E., Gaviraghi, M., Lupi, A., Frenquelli, M., Cittaro, D., Segalla, S., Lemaitre, J. M., & Tonon, G. (2015). H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Research, 43(5), 2560–2574.PubMedPubMedCentralCrossRef
273.
go back to reference Wang, N., Ma, T., & Yu, B. (2023). Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduction and Targeted Therapy, 8(1), 69.PubMedPubMedCentralCrossRef Wang, N., Ma, T., & Yu, B. (2023). Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduction and Targeted Therapy, 8(1), 69.PubMedPubMedCentralCrossRef
274.
go back to reference Petty, W. J., & Paz-Ares, L. (2023). Emerging strategies for the treatment of small cell lung cancer: A review. Jama Oncology, 9(3), 419–429.PubMedCrossRef Petty, W. J., & Paz-Ares, L. (2023). Emerging strategies for the treatment of small cell lung cancer: A review. Jama Oncology, 9(3), 419–429.PubMedCrossRef
Metadata
Title
The emerging roles of histone demethylases in cancers
Authors
Dali Tong
Ying Tang
Peng Zhong
Publication date
16-01-2024
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2024
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10160-9

Other articles of this Issue 2/2024

Cancer and Metastasis Reviews 2/2024 Go to the issue