Skip to main content
Top

18-12-2024 | Breast Cancer | REVIEW ARTICLE

Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles

Authors: Faris Anad Muhammad, Farag M. A. Altalbawy, Viralkumar Mandaliya, Shelesh Krishna Saraswat, M. M. Rekha, Damanjeet Aulakh, Mamata Chahar, Morug Salih Mahdi, Mohammed Adil Jaber, Merwa Alhadrawi

Published in: Clinical and Translational Oncology

Login to get access

Abstract

Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors. ECM can block different drugs such as chemotherapy and immunotherapy drugs from entering the tumor stroma. Furthermore, the stromal elements, such as cancer-associated fibroblasts (CAFs), immune cells, and blood vessels, have crucial impacts on tumor development and therapeutic resistance. Recently, promising outcomes have been achieved in using nanotechnology for delivering drugs to tumor stroma and crossing ECM in breast malignancies. Nanoparticles have various benefits for targeting the breast tumor stroma, such as improved permeability and retention, extended circulation time, and the ability to actively target the area. This review covers the latest developments in nanoparticle therapies that focus on breast tumor ECM and stroma. We will explore different approaches using nanoparticles to target the delivery of anticancer drugs like chemotherapy, small molecule drugs, various antitumor products, and other specific synthetic therapeutic agents to the breast tumor stroma. Furthermore, we will investigate the utilization of nanoparticles in altering the stromal elements, such as reprogramming CAFs and immune cells, and also remodeling ECM.
Literature
1.
go back to reference Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524–41.PubMedCrossRef Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524–41.PubMedCrossRef
2.
go back to reference Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast. 2022;66:15–23.PubMedPubMedCentralCrossRef Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast. 2022;66:15–23.PubMedPubMedCentralCrossRef
3.
go back to reference Trayes KP, Cokenakes SE. Breast cancer treatment. Am Fam Phys. 2021;104(2):171–8. Trayes KP, Cokenakes SE. Breast cancer treatment. Am Fam Phys. 2021;104(2):171–8.
5.
go back to reference Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer (London). 2020;12:211–29. Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer (London). 2020;12:211–29.
8.
go back to reference Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D in vitro model (R) evolution: unveiling tumor–stroma interactions. Trends Cancer. 2021;7(3):249–64.PubMedCrossRef Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D in vitro model (R) evolution: unveiling tumor–stroma interactions. Trends Cancer. 2021;7(3):249–64.PubMedCrossRef
9.
go back to reference Vangangelt KM, Green AR, Heemskerk IM, Cohen D, Van Pelt GW, Sobral-Leite M, et al. The prognostic value of the tumor–stroma ratio is most discriminative in patients with grade III or triple-negative breast cancer. Int J Cancer. 2020;146(8):2296–304.PubMedPubMedCentralCrossRef Vangangelt KM, Green AR, Heemskerk IM, Cohen D, Van Pelt GW, Sobral-Leite M, et al. The prognostic value of the tumor–stroma ratio is most discriminative in patients with grade III or triple-negative breast cancer. Int J Cancer. 2020;146(8):2296–304.PubMedPubMedCentralCrossRef
10.
go back to reference Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B. 2021;11(8):2265–85.PubMedPubMedCentralCrossRef Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B. 2021;11(8):2265–85.PubMedPubMedCentralCrossRef
11.
go back to reference Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Faisal AN, et al. Nanoparticle-based targeting of pancreatic tumor stroma and extracellular matrix: a promising approach for improved treatment. J Drug Deliv Sci Technol. 2024;99:105938.CrossRef Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Faisal AN, et al. Nanoparticle-based targeting of pancreatic tumor stroma and extracellular matrix: a promising approach for improved treatment. J Drug Deliv Sci Technol. 2024;99:105938.CrossRef
12.
go back to reference Li J-X, Huang Q-Y, Zhang J-Y, Du J-Z. Engineering nanoparticles to tackle tumor barriers. J Mater Chem B. 2020;8(31):6686–96.PubMedCrossRef Li J-X, Huang Q-Y, Zhang J-Y, Du J-Z. Engineering nanoparticles to tackle tumor barriers. J Mater Chem B. 2020;8(31):6686–96.PubMedCrossRef
13.
go back to reference Lv L, Shi Y, Wu J, Li G. Nanosized drug delivery systems for breast cancer stem cell targeting. Int J Nanomed. 2021;16:1487–508.CrossRef Lv L, Shi Y, Wu J, Li G. Nanosized drug delivery systems for breast cancer stem cell targeting. Int J Nanomed. 2021;16:1487–508.CrossRef
14.
go back to reference Schettini F, Giuliano M, De Placido S, Arpino G. Nab-paclitaxel for the treatment of triple-negative breast cancer: rationale, clinical data and future perspectives. Cancer Treat Rev. 2016;50:129–41.PubMedCrossRef Schettini F, Giuliano M, De Placido S, Arpino G. Nab-paclitaxel for the treatment of triple-negative breast cancer: rationale, clinical data and future perspectives. Cancer Treat Rev. 2016;50:129–41.PubMedCrossRef
16.
go back to reference Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22(1):48.PubMedPubMedCentralCrossRef Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22(1):48.PubMedPubMedCentralCrossRef
17.
go back to reference Danenberg E, Bardwell H, Zanotelli VR, Provenzano E, Chin S-F, Rueda OM, et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat Genet. 2022;54(5):660–9.PubMedPubMedCentralCrossRef Danenberg E, Bardwell H, Zanotelli VR, Provenzano E, Chin S-F, Rueda OM, et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat Genet. 2022;54(5):660–9.PubMedPubMedCentralCrossRef
19.
go back to reference Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-associated fibroblasts in the breast tumor microenvironment. J Mammary Gland Biol Neoplasia. 2021;26:135–55.PubMedCrossRef Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-associated fibroblasts in the breast tumor microenvironment. J Mammary Gland Biol Neoplasia. 2021;26:135–55.PubMedCrossRef
21.
go back to reference Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The role of adipokines in breast cancer: current evidence and perspectives. Curr Obes Rep. 2019;8:413–33.PubMedCrossRef Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The role of adipokines in breast cancer: current evidence and perspectives. Curr Obes Rep. 2019;8:413–33.PubMedCrossRef
22.
go back to reference Zhang W, Xu J, Fang H, Tang L, Chen W, Sun Q, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. FASEB J. 2018;32(1):276–88.PubMedCrossRef Zhang W, Xu J, Fang H, Tang L, Chen W, Sun Q, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. FASEB J. 2018;32(1):276–88.PubMedCrossRef
23.
go back to reference Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, et al. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res. 2020;39:1–22.CrossRef Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, et al. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res. 2020;39:1–22.CrossRef
24.
go back to reference Hung C-H, Chen F-M, Lin Y-C, Tsai M-L, Wang S-L, Chen Y-C, et al. Altered monocyte differentiation and macrophage polarization patterns in patients with breast cancer. BMC Cancer. 2018;18:1–9.CrossRef Hung C-H, Chen F-M, Lin Y-C, Tsai M-L, Wang S-L, Chen Y-C, et al. Altered monocyte differentiation and macrophage polarization patterns in patients with breast cancer. BMC Cancer. 2018;18:1–9.CrossRef
26.
go back to reference Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, et al. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: new insight to proliferation and metastasis. Life Sci. 2021;270:119006.PubMedCrossRef Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, et al. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: new insight to proliferation and metastasis. Life Sci. 2021;270:119006.PubMedCrossRef
29.
go back to reference Van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.PubMedPubMedCentralCrossRef Van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.PubMedPubMedCentralCrossRef
31.
go back to reference Gutiérrez-Melo N, Baumjohann D. T follicular helper cells in cancer. Trends Cancer. 2023;9(4):309–25.PubMedCrossRef Gutiérrez-Melo N, Baumjohann D. T follicular helper cells in cancer. Trends Cancer. 2023;9(4):309–25.PubMedCrossRef
32.
go back to reference Hajizadeh F, Maleki LA, Alexander M, Mikhailova MV, Masjedi A, Ahmadpour M, et al. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci. 2021;264:118699.PubMedCrossRef Hajizadeh F, Maleki LA, Alexander M, Mikhailova MV, Masjedi A, Ahmadpour M, et al. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci. 2021;264:118699.PubMedCrossRef
34.
go back to reference Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metas. 2019;36(3):171–98.CrossRef Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metas. 2019;36(3):171–98.CrossRef
35.
go back to reference Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart J-B, Monboisse JC. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. 2020;10:397.PubMedPubMedCentralCrossRef Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart J-B, Monboisse JC. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. 2020;10:397.PubMedPubMedCentralCrossRef
36.
go back to reference Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The role of extracellular matrix proteins in breast cancer. J Clin Med. 2022;11(5):1250.PubMedPubMedCentralCrossRef Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The role of extracellular matrix proteins in breast cancer. J Clin Med. 2022;11(5):1250.PubMedPubMedCentralCrossRef
37.
go back to reference Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288(24):6850–912.PubMedCrossRef Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288(24):6850–912.PubMedCrossRef
38.
go back to reference Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal. 2021;84:110028.PubMedCrossRef Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal. 2021;84:110028.PubMedCrossRef
39.
40.
go back to reference Tomko LA, Hill RC, Barrett A, Szulczewski JM, Conklin MW, Eliceiri KW, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci Rep. 2018;8(1):12941.PubMedPubMedCentralCrossRef Tomko LA, Hill RC, Barrett A, Szulczewski JM, Conklin MW, Eliceiri KW, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci Rep. 2018;8(1):12941.PubMedPubMedCentralCrossRef
41.
go back to reference Pratt SJ, Lee RM, Martin SS. The mechanical microenvironment in breast cancer. Cancers (Basel). 2020;12(6):1452.PubMedCrossRef Pratt SJ, Lee RM, Martin SS. The mechanical microenvironment in breast cancer. Cancers (Basel). 2020;12(6):1452.PubMedCrossRef
42.
go back to reference Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal adhesion kinase fine tunes multifaced signals toward breast cancer progression. Cancers (Basel). 2021;13(4):645.PubMedCrossRef Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal adhesion kinase fine tunes multifaced signals toward breast cancer progression. Cancers (Basel). 2021;13(4):645.PubMedCrossRef
43.
go back to reference Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res. 2018;37:1–17.CrossRef Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res. 2018;37:1–17.CrossRef
44.
go back to reference Li Y, Khuu N, Prince E, Tao H, Zhang N, Chen Z, et al. Matrix stiffness-regulated growth of breast tumor spheroids and their response to chemotherapy. Biomacromol. 2020;22(2):419–29.CrossRef Li Y, Khuu N, Prince E, Tao H, Zhang N, Chen Z, et al. Matrix stiffness-regulated growth of breast tumor spheroids and their response to chemotherapy. Biomacromol. 2020;22(2):419–29.CrossRef
45.
go back to reference Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol. 2022;45(6):1119–36.CrossRef Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol. 2022;45(6):1119–36.CrossRef
46.
go back to reference Ondeck MG, Kumar A, Placone JK, Plunkett CM, Matte BF, Wong KC, et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc Natl Acad Sci. 2019;116(9):3502–7.PubMedPubMedCentralCrossRef Ondeck MG, Kumar A, Placone JK, Plunkett CM, Matte BF, Wong KC, et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc Natl Acad Sci. 2019;116(9):3502–7.PubMedPubMedCentralCrossRef
47.
go back to reference Fattet L, Jung H-Y, Matsumoto MW, Aubol BE, Kumar A, Adams JA, et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell. 2020;54(3):302–16.PubMedPubMedCentralCrossRef Fattet L, Jung H-Y, Matsumoto MW, Aubol BE, Kumar A, Adams JA, et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell. 2020;54(3):302–16.PubMedPubMedCentralCrossRef
48.
go back to reference Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal. 2021;19(1):32.PubMedPubMedCentralCrossRef Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal. 2021;19(1):32.PubMedPubMedCentralCrossRef
50.
go back to reference Jun BH, Guo T, Libring S, Chanda MK, Paez JS, Shinde A, et al. Fibronectin-expressing mesenchymal tumor cells promote breast cancer metastasis. Cancers (Basel). 2020;12(9):2553.PubMedCrossRef Jun BH, Guo T, Libring S, Chanda MK, Paez JS, Shinde A, et al. Fibronectin-expressing mesenchymal tumor cells promote breast cancer metastasis. Cancers (Basel). 2020;12(9):2553.PubMedCrossRef
51.
go back to reference Ding Y, Liu W, Yu W, Lu S, Liu M, Kaplan DL, Wang X. Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. J Tissue Eng Regen Med. 2018;12(9):1959–71.PubMedCrossRef Ding Y, Liu W, Yu W, Lu S, Liu M, Kaplan DL, Wang X. Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. J Tissue Eng Regen Med. 2018;12(9):1959–71.PubMedCrossRef
52.
go back to reference Wang Y, Goliwas KF, Severino PE, Hough KP, Van Vessem D, Wang H, et al. Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Lab Invest. 2020;100(12):1503–16.PubMedPubMedCentralCrossRef Wang Y, Goliwas KF, Severino PE, Hough KP, Van Vessem D, Wang H, et al. Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Lab Invest. 2020;100(12):1503–16.PubMedPubMedCentralCrossRef
53.
go back to reference Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518.CrossRef Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518.CrossRef
54.
go back to reference Qi M, Zhou Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Mater Chem Front. 2019;3(10):1994–2009.CrossRef Qi M, Zhou Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Mater Chem Front. 2019;3(10):1994–2009.CrossRef
55.
go back to reference Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel). 2018;10(7):238.PubMedCrossRef Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel). 2018;10(7):238.PubMedCrossRef
57.
go back to reference Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Personalized Ther. 2019;34(1):20180032.CrossRef Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Personalized Ther. 2019;34(1):20180032.CrossRef
58.
go back to reference Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol. 2020;55:101458.CrossRef Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol. 2020;55:101458.CrossRef
60.
go back to reference Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: an overview. Int J Pharm. 2021;600:120485.PubMedCrossRef Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: an overview. Int J Pharm. 2021;600:120485.PubMedCrossRef
61.
go back to reference Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019;9(6):821.PubMedPubMedCentralCrossRef Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019;9(6):821.PubMedPubMedCentralCrossRef
62.
go back to reference Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.PubMedCrossRef Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.PubMedCrossRef
63.
go back to reference Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci. 2017;249:386–99.PubMedCrossRef Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci. 2017;249:386–99.PubMedCrossRef
64.
go back to reference Vallabani NS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. Biotech. 2018;8(6):279. Vallabani NS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. Biotech. 2018;8(6):279.
65.
go back to reference Vallabani NV, Singh S, Karakoti AS. Magnetic nanoparticles: current trends and future aspects in diagnostics and nanomedicine. Curr Drug Metab. 2019;20(6):457–72.PubMedCrossRef Vallabani NV, Singh S, Karakoti AS. Magnetic nanoparticles: current trends and future aspects in diagnostics and nanomedicine. Curr Drug Metab. 2019;20(6):457–72.PubMedCrossRef
66.
go back to reference Guo S, Song Z, Ji D-K, Reina G, Fauny J-D, Nishina Y, et al. Combined photothermal and photodynamic therapy for cancer treatment using a multifunctional graphene oxide. Pharmaceutics. 2022;14(7):1365.PubMedPubMedCentralCrossRef Guo S, Song Z, Ji D-K, Reina G, Fauny J-D, Nishina Y, et al. Combined photothermal and photodynamic therapy for cancer treatment using a multifunctional graphene oxide. Pharmaceutics. 2022;14(7):1365.PubMedPubMedCentralCrossRef
68.
go back to reference Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int J Mol Sci. 2021;23(1):22.PubMedPubMedCentralCrossRef Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int J Mol Sci. 2021;23(1):22.PubMedPubMedCentralCrossRef
69.
go back to reference Thomas CS, Kumar Mishra P, Talegaonkar S. Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des. 2015;21(42):6165–88.PubMedCrossRef Thomas CS, Kumar Mishra P, Talegaonkar S. Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des. 2015;21(42):6165–88.PubMedCrossRef
70.
go back to reference de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.CrossRef de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.CrossRef
71.
go back to reference Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–98.PubMedCrossRef Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–98.PubMedCrossRef
72.
go back to reference Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv. 2017;14(6):783–96.PubMedCrossRef Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv. 2017;14(6):783–96.PubMedCrossRef
73.
go back to reference Tanaka S, Iwamoto M, Kimura K, Matsunami N, Morishima H, Yoshidome K, et al. Phase II study of neoadjuvant anthracycline-based regimens combined with nanoparticle albumin-bound paclitaxel and trastuzumab for human epidermal growth factor receptor 2-positive operable breast cancer. Clin Breast Cancer. 2015;15(3):191–6. https://doi.org/10.1016/j.clbc.2014.12.003.CrossRefPubMed Tanaka S, Iwamoto M, Kimura K, Matsunami N, Morishima H, Yoshidome K, et al. Phase II study of neoadjuvant anthracycline-based regimens combined with nanoparticle albumin-bound paclitaxel and trastuzumab for human epidermal growth factor receptor 2-positive operable breast cancer. Clin Breast Cancer. 2015;15(3):191–6. https://​doi.​org/​10.​1016/​j.​clbc.​2014.​12.​003.CrossRefPubMed
74.
go back to reference Untch M, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, et al. NAB-paclitaxel improves disease-free survival in early breast cancer: GBG 69–GeparSepto. J Clin Oncol. 2019;37(25):2226–34.PubMedCrossRef Untch M, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, et al. NAB-paclitaxel improves disease-free survival in early breast cancer: GBG 69–GeparSepto. J Clin Oncol. 2019;37(25):2226–34.PubMedCrossRef
75.
go back to reference Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, et al. Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. 2017;3(7):969–73.PubMedPubMedCentralCrossRef Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, et al. Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. 2017;3(7):969–73.PubMedPubMedCentralCrossRef
76.
go back to reference McArthur HL, Rugo H, Nulsen B, Hawks L, Grothusen J, Melisko M, et al. A feasibility study of bevacizumab plus dose-dense doxorubicin–cyclophosphamide (AC) followed by nanoparticle albumin–bound paclitaxel in early-stage breast cancer. Clin Cancer Res. 2011;17(10):3398–407.PubMedPubMedCentralCrossRef McArthur HL, Rugo H, Nulsen B, Hawks L, Grothusen J, Melisko M, et al. A feasibility study of bevacizumab plus dose-dense doxorubicin–cyclophosphamide (AC) followed by nanoparticle albumin–bound paclitaxel in early-stage breast cancer. Clin Cancer Res. 2011;17(10):3398–407.PubMedPubMedCentralCrossRef
77.
go back to reference Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer Interdiscip Int J Am Cancer Soc. 2000;89(5):1037–47. Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer Interdiscip Int J Am Cancer Soc. 2000;89(5):1037–47.
78.
go back to reference O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.PubMedCrossRef O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.PubMedCrossRef
79.
go back to reference Sparano JA, Makhson AN, Semiglazov VF, Tjulandin SA, Balashova OI, Bondarenko IN, et al. Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol. 2009;27(27):4522–9.PubMedCrossRef Sparano JA, Makhson AN, Semiglazov VF, Tjulandin SA, Balashova OI, Bondarenko IN, et al. Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol. 2009;27(27):4522–9.PubMedCrossRef
80.
go back to reference Wang H, Li Y, Qi Y, Zhao E, Kong X, Yang C, et al. Pegylated liposomal doxorubicin, docetaxel, and trastuzumab as neoadjuvant treatment for HER2-positive breast cancer patients: a phase II and biomarker study. Front Oncol. 2022;12:909426.PubMedPubMedCentralCrossRef Wang H, Li Y, Qi Y, Zhao E, Kong X, Yang C, et al. Pegylated liposomal doxorubicin, docetaxel, and trastuzumab as neoadjuvant treatment for HER2-positive breast cancer patients: a phase II and biomarker study. Front Oncol. 2022;12:909426.PubMedPubMedCentralCrossRef
82.
go back to reference Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 2019;239:117049.PubMedCrossRef Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 2019;239:117049.PubMedCrossRef
83.
go back to reference Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M, De Francesco EM. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 2020;24(6):559–72.PubMedCrossRef Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M, De Francesco EM. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 2020;24(6):559–72.PubMedCrossRef
84.
go back to reference Jena BC, Das CK, Banerjee I, Bharadwaj D, Majumder R, Das S, et al. TGF-β1 induced autophagy in cancer associated fibroblasts during hypoxia contributes EMT and glycolysis via MCT4 upregulation. Exp Cell Res. 2022;417(1):113195.PubMedCrossRef Jena BC, Das CK, Banerjee I, Bharadwaj D, Majumder R, Das S, et al. TGF-β1 induced autophagy in cancer associated fibroblasts during hypoxia contributes EMT and glycolysis via MCT4 upregulation. Exp Cell Res. 2022;417(1):113195.PubMedCrossRef
85.
go back to reference Gialeli C, Nikitovic D, Kletsas D, Theocharis AD, Tzanakakis GN, Karamanos NN. PDGF/PDGFR signaling and targeting in cancer growth and progression: focus on tumor microenvironment and cancer-associated fibroblasts. Curr Pharm Des. 2014;20(17):2843–8.PubMedCrossRef Gialeli C, Nikitovic D, Kletsas D, Theocharis AD, Tzanakakis GN, Karamanos NN. PDGF/PDGFR signaling and targeting in cancer growth and progression: focus on tumor microenvironment and cancer-associated fibroblasts. Curr Pharm Des. 2014;20(17):2843–8.PubMedCrossRef
86.
go back to reference De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15:1–18.CrossRef De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15:1–18.CrossRef
87.
go back to reference Suh J, Kim DH, Lee YH, Jang JH, Surh YJ. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol Carcinog. 2020;59(9):1028–40.PubMedCrossRef Suh J, Kim DH, Lee YH, Jang JH, Surh YJ. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol Carcinog. 2020;59(9):1028–40.PubMedCrossRef
88.
go back to reference Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B, Najafi M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets. 2022;22(1):18–30.PubMedCrossRef Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B, Najafi M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets. 2022;22(1):18–30.PubMedCrossRef
89.
go back to reference Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, et al. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: from molecular pathways to targeting and regulation. Biomedicines. 2020;8(8):264.PubMedPubMedCentralCrossRef Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, et al. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: from molecular pathways to targeting and regulation. Biomedicines. 2020;8(8):264.PubMedPubMedCentralCrossRef
90.
go back to reference Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: what we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol. 2020;881:173226.PubMedCrossRef Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: what we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol. 2020;881:173226.PubMedCrossRef
91.
go back to reference Huang T-X, Guan X-Y, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res. 2019;9(9):1889.PubMedPubMedCentral Huang T-X, Guan X-Y, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res. 2019;9(9):1889.PubMedPubMedCentral
92.
go back to reference Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends in Cancer. 2022;8(7):527–55.PubMedCrossRef Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends in Cancer. 2022;8(7):527–55.PubMedCrossRef
94.
go back to reference Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;11(17):8322.PubMedPubMedCentralCrossRef Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;11(17):8322.PubMedPubMedCentralCrossRef
95.
go back to reference Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, et al. The application of nanoparticles targeting cancer-associated fibroblasts. Int J Nanomed. 2024;19:3333–65.CrossRef Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, et al. The application of nanoparticles targeting cancer-associated fibroblasts. Int J Nanomed. 2024;19:3333–65.CrossRef
96.
go back to reference Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110(3):724–32.PubMedCrossRef Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110(3):724–32.PubMedCrossRef
97.
go back to reference Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, et al. Core–shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology. 2020;18:1–20.CrossRef Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, et al. Core–shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology. 2020;18:1–20.CrossRef
101.
go back to reference Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angew Chem Int Ed. 2016;55(3):1050–5.CrossRef Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angew Chem Int Ed. 2016;55(3):1050–5.CrossRef
102.
103.
go back to reference Mortezaee K. Normalization in tumor ecosystem: opportunities and challenges. Cell Biol Int. 2021;45(10):2017–30.PubMedCrossRef Mortezaee K. Normalization in tumor ecosystem: opportunities and challenges. Cell Biol Int. 2021;45(10):2017–30.PubMedCrossRef
104.
105.
go back to reference Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med. 2021;27(10):1000–13.PubMedCrossRef Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med. 2021;27(10):1000–13.PubMedCrossRef
106.
go back to reference Lorusso G, Rüegg C, Kuonen F. Targeting the extra-cellular matrix—tumor cell crosstalk for anti-cancer therapy: emerging alternatives to integrin inhibitors. Front Oncol. 2020;10:1231.PubMedPubMedCentralCrossRef Lorusso G, Rüegg C, Kuonen F. Targeting the extra-cellular matrix—tumor cell crosstalk for anti-cancer therapy: emerging alternatives to integrin inhibitors. Front Oncol. 2020;10:1231.PubMedPubMedCentralCrossRef
107.
go back to reference Dunshee LC, Sullivan MO, Kiick KL. Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides. Expert Opin Drug Deliv. 2021;18(11):1723–40.PubMedPubMedCentralCrossRef Dunshee LC, Sullivan MO, Kiick KL. Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides. Expert Opin Drug Deliv. 2021;18(11):1723–40.PubMedPubMedCentralCrossRef
108.
go back to reference Goodman TT, Olive PL, Pun SH. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomed. 2007;2(2):265–74. Goodman TT, Olive PL, Pun SH. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomed. 2007;2(2):265–74.
112.
go back to reference Zhang Y, Han X, Wang K, Liu D, Ding X, Hu Z, Wang J. Co-delivery nanomicelles for potentiating TNBC immunotherapy by synergetically reshaping CAFs-mediated tumor stroma and reprogramming immunosuppressive microenvironment. Int J Nanomed. 2023;18:4329–46. https://doi.org/10.2147/ijn.S418100.CrossRef Zhang Y, Han X, Wang K, Liu D, Ding X, Hu Z, Wang J. Co-delivery nanomicelles for potentiating TNBC immunotherapy by synergetically reshaping CAFs-mediated tumor stroma and reprogramming immunosuppressive microenvironment. Int J Nanomed. 2023;18:4329–46. https://​doi.​org/​10.​2147/​ijn.​S418100.CrossRef
116.
go back to reference WalshJoseph C, KolbHartmuth C. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21:1516.CrossRef WalshJoseph C, KolbHartmuth C. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21:1516.CrossRef
117.
118.
go back to reference Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 2016;138(5):1058–66.PubMedCrossRef Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 2016;138(5):1058–66.PubMedCrossRef
119.
go back to reference Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140.PubMedPubMedCentralCrossRef Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140.PubMedPubMedCentralCrossRef
120.
go back to reference Hassan Venkatesh G, Abou Khouzam R, Shaaban Moustafa Elsayed W, Ahmed Zeinelabdin N, Terry S, Chouaib S. Tumor hypoxia: an important regulator of tumor progression or a potential modulator of tumor immunogenicity? Oncoimmunology. 2021;10(1):1974233.PubMedPubMedCentralCrossRef Hassan Venkatesh G, Abou Khouzam R, Shaaban Moustafa Elsayed W, Ahmed Zeinelabdin N, Terry S, Chouaib S. Tumor hypoxia: an important regulator of tumor progression or a potential modulator of tumor immunogenicity? Oncoimmunology. 2021;10(1):1974233.PubMedPubMedCentralCrossRef
121.
123.
go back to reference Zhang B, Huang X, Wang H, Gou S. Promoting antitumor efficacy by suppressing hypoxia via nano self-assembly of two irinotecan-based dual drug conjugates having a HIF-1α inhibitor. J Mater Chem B. 2019;7(35):5352–62.PubMedCrossRef Zhang B, Huang X, Wang H, Gou S. Promoting antitumor efficacy by suppressing hypoxia via nano self-assembly of two irinotecan-based dual drug conjugates having a HIF-1α inhibitor. J Mater Chem B. 2019;7(35):5352–62.PubMedCrossRef
124.
go back to reference Liu X, Sun J, Gu J, Weng L, Wang X, Zhu L, et al. Effective drug and shRNA delivery for synergistic treatment of triple-negative breast cancer by sequentially targeting tumor hypoxia. Chem Eng J. 2023;470:144271.CrossRef Liu X, Sun J, Gu J, Weng L, Wang X, Zhu L, et al. Effective drug and shRNA delivery for synergistic treatment of triple-negative breast cancer by sequentially targeting tumor hypoxia. Chem Eng J. 2023;470:144271.CrossRef
125.
go back to reference Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, et al. Targeting hypoxia-inducible factor-1 (HIF-1) in cancer: emerging therapeutic strategies and pathway regulation. Pharmaceuticals. 2024;17(2):195.PubMedPubMedCentralCrossRef Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, et al. Targeting hypoxia-inducible factor-1 (HIF-1) in cancer: emerging therapeutic strategies and pathway regulation. Pharmaceuticals. 2024;17(2):195.PubMedPubMedCentralCrossRef
126.
go back to reference Venturelli L, Nappini S, Bulfoni M, Gianfranceschi G, Dal Zilio S, Coceano G, et al. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Sci Rep. 2016;6(1):21629.PubMedPubMedCentralCrossRef Venturelli L, Nappini S, Bulfoni M, Gianfranceschi G, Dal Zilio S, Coceano G, et al. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Sci Rep. 2016;6(1):21629.PubMedPubMedCentralCrossRef
127.
go back to reference Saadh MJ, Mustafa MA, Qassem LY, Ghadir GK, Alaraj M, Alubiady MHS, et al. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: a review. J Drug Deliv Sci Technol. 2024;96:105660.CrossRef Saadh MJ, Mustafa MA, Qassem LY, Ghadir GK, Alaraj M, Alubiady MHS, et al. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: a review. J Drug Deliv Sci Technol. 2024;96:105660.CrossRef
128.
go back to reference Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem. 2019;131(18):5981–5.CrossRef Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem. 2019;131(18):5981–5.CrossRef
129.
go back to reference Hao D, Meng Q, Jiang B, Lu S, Xiang X, Pei Q, et al. Hypoxia-activated PEGylated paclitaxel prodrug nanoparticles for potentiated chemotherapy. ACS Nano. 2022;16(9):14693–702.PubMedCrossRef Hao D, Meng Q, Jiang B, Lu S, Xiang X, Pei Q, et al. Hypoxia-activated PEGylated paclitaxel prodrug nanoparticles for potentiated chemotherapy. ACS Nano. 2022;16(9):14693–702.PubMedCrossRef
130.
go back to reference Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett. 2020;490:31–43.PubMedCrossRef Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett. 2020;490:31–43.PubMedCrossRef
131.
go back to reference Wang H, Li J, Wang Y, Gong X, Xu X, Wang J, et al. Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. J Control Release. 2020;319:25–45.PubMedCrossRef Wang H, Li J, Wang Y, Gong X, Xu X, Wang J, et al. Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. J Control Release. 2020;319:25–45.PubMedCrossRef
139.
go back to reference Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol. 2021;44:715–37.CrossRef Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol. 2021;44:715–37.CrossRef
140.
go back to reference Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 2023;29(1):30–9.PubMedPubMedCentralCrossRef Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 2023;29(1):30–9.PubMedPubMedCentralCrossRef
142.
go back to reference Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.PubMedCrossRef Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.PubMedCrossRef
143.
go back to reference Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, et al. Angiogenesis induction in breast cancer: a paracrine paradigm. Cell Biochem Funct. 2021;39(7):860–73.PubMedCrossRef Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, et al. Angiogenesis induction in breast cancer: a paracrine paradigm. Cell Biochem Funct. 2021;39(7):860–73.PubMedCrossRef
144.
go back to reference Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci. 2015;112(46):14325–30.PubMedPubMedCentralCrossRef Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci. 2015;112(46):14325–30.PubMedPubMedCentralCrossRef
145.
go back to reference Qin L, Wu J. Targeting anticancer immunity in oral cancer: drugs, products, and nanoparticles. Environ Res. 2023;239:116751.PubMedCrossRef Qin L, Wu J. Targeting anticancer immunity in oral cancer: drugs, products, and nanoparticles. Environ Res. 2023;239:116751.PubMedCrossRef
146.
go back to reference Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health. 2016;13(12):1182.PubMedPubMedCentralCrossRef Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health. 2016;13(12):1182.PubMedPubMedCentralCrossRef
148.
go back to reference Chen J, Sun X, Shao R, Xu Y, Gao J, Liang W. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. Int J Nanomed. 2017;12:6075–88.CrossRef Chen J, Sun X, Shao R, Xu Y, Gao J, Liang W. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. Int J Nanomed. 2017;12:6075–88.CrossRef
151.
go back to reference Zhang P-L, Hou X-X, Liu M-R, Huang F-P, Qin X-Y. Two novel chiral tetranucleate copper-based complexes: crystal structures, nanoparticles, and inhibiting angiogenesis and the growth of human breast cancer by regulating the VEGF/VEGFR2 signal pathway in vitro. Dalton Trans. 2020;49(18):6043–55. https://doi.org/10.1039/D0DT00380H.CrossRefPubMed Zhang P-L, Hou X-X, Liu M-R, Huang F-P, Qin X-Y. Two novel chiral tetranucleate copper-based complexes: crystal structures, nanoparticles, and inhibiting angiogenesis and the growth of human breast cancer by regulating the VEGF/VEGFR2 signal pathway in vitro. Dalton Trans. 2020;49(18):6043–55. https://​doi.​org/​10.​1039/​D0DT00380H.CrossRefPubMed
154.
go back to reference Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomed. 2018;13:2405–26.CrossRef Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomed. 2018;13:2405–26.CrossRef
155.
go back to reference Dong J, Yao X, Sun S, Zhong Y, Qian C, Yang D. In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform. RSC Adv. 2019;9(20):11576–84.PubMedPubMedCentralCrossRef Dong J, Yao X, Sun S, Zhong Y, Qian C, Yang D. In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform. RSC Adv. 2019;9(20):11576–84.PubMedPubMedCentralCrossRef
157.
go back to reference Mpekris F, Panagi M, Voutouri C, Martin JD, Samuel R, Takahashi S, et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv Sci. 2021;8(3):2001917.CrossRef Mpekris F, Panagi M, Voutouri C, Martin JD, Samuel R, Takahashi S, et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv Sci. 2021;8(3):2001917.CrossRef
158.
go back to reference Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, et al. Inducing vascular normalization: a promising strategy for immunotherapy. Int Immunopharmacol. 2022;112:109167.PubMedCrossRef Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, et al. Inducing vascular normalization: a promising strategy for immunotherapy. Int Immunopharmacol. 2022;112:109167.PubMedCrossRef
159.
go back to reference Xiao W, Ruan S, Yu W, Wang R, Hu C, Liu R, Gao H. Normalizing tumor vessels to increase the enzyme-induced retention and targeting of gold nanoparticle for breast cancer imaging and treatment. Mol Pharm. 2017;14(10):3489–98.PubMedCrossRef Xiao W, Ruan S, Yu W, Wang R, Hu C, Liu R, Gao H. Normalizing tumor vessels to increase the enzyme-induced retention and targeting of gold nanoparticle for breast cancer imaging and treatment. Mol Pharm. 2017;14(10):3489–98.PubMedCrossRef
160.
go back to reference Li W, Li X, Liu S, Yang W, Pan F, Yang XY, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial–mesenchymal transition inhibition. Int J Nanomed. 2017;12:3509–20.CrossRef Li W, Li X, Liu S, Yang W, Pan F, Yang XY, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial–mesenchymal transition inhibition. Int J Nanomed. 2017;12:3509–20.CrossRef
163.
go back to reference Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol. 2021;11:610303.PubMedPubMedCentralCrossRef Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol. 2021;11:610303.PubMedPubMedCentralCrossRef
164.
go back to reference Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol. 2023;14:1199273.PubMedPubMedCentralCrossRef Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol. 2023;14:1199273.PubMedPubMedCentralCrossRef
165.
go back to reference Fjørtoft MO, Huse K, Rye IH. The tumor immune microenvironment in breast cancer progression. Acta Oncol. 2024;63:33008. Fjørtoft MO, Huse K, Rye IH. The tumor immune microenvironment in breast cancer progression. Acta Oncol. 2024;63:33008.
166.
go back to reference Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol. 2021;72:76–89.PubMedCrossRef Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol. 2021;72:76–89.PubMedCrossRef
167.
go back to reference He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized nanoparticles targeting tumor-associated macrophages as cancer therapy. Pharmaceutics. 2021;13(10):1670.PubMedPubMedCentralCrossRef He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized nanoparticles targeting tumor-associated macrophages as cancer therapy. Pharmaceutics. 2021;13(10):1670.PubMedPubMedCentralCrossRef
168.
go back to reference Tuettenberg A, Steinbrink K, Schuppan D. Myeloid cells as orchestrators of the tumor microenvironment: novel targets for nanoparticular cancer therapy. Nanomedicine. 2016;11(20):2735–51.PubMedCrossRef Tuettenberg A, Steinbrink K, Schuppan D. Myeloid cells as orchestrators of the tumor microenvironment: novel targets for nanoparticular cancer therapy. Nanomedicine. 2016;11(20):2735–51.PubMedCrossRef
169.
172.
go back to reference Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target. 2022;30(4):450–62.PubMedCrossRef Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target. 2022;30(4):450–62.PubMedCrossRef
175.
go back to reference Cavalcante RS, Ishikawa U, Silva ES, Silva-Júnior AA, Araújo AA, Cruz LJ, et al. STAT3/NF-κB signalling disruption in M2 tumour-associated macrophages is a major target of PLGA nanocarriers/PD-L1 antibody immunomodulatory therapy in breast cancer. Br J Pharmacol. 2021;178(11):2284–304.PubMedCrossRef Cavalcante RS, Ishikawa U, Silva ES, Silva-Júnior AA, Araújo AA, Cruz LJ, et al. STAT3/NF-κB signalling disruption in M2 tumour-associated macrophages is a major target of PLGA nanocarriers/PD-L1 antibody immunomodulatory therapy in breast cancer. Br J Pharmacol. 2021;178(11):2284–304.PubMedCrossRef
177.
go back to reference Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei M-J, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release. 2021;340:168–87.PubMedCrossRef Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei M-J, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release. 2021;340:168–87.PubMedCrossRef
178.
go back to reference Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAA, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–33.PubMedPubMedCentralCrossRef Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAA, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–33.PubMedPubMedCentralCrossRef
179.
go back to reference Yang A, Dong X, Bai Y, Sheng S, Zhang Y, Liu T, et al. Doxorubicin/CpG self-assembled nanoparticles prodrug and dendritic cells co-laden hydrogel for cancer chemo-assisted immunotherapy. Chem Eng J. 2021;416:129192.CrossRef Yang A, Dong X, Bai Y, Sheng S, Zhang Y, Liu T, et al. Doxorubicin/CpG self-assembled nanoparticles prodrug and dendritic cells co-laden hydrogel for cancer chemo-assisted immunotherapy. Chem Eng J. 2021;416:129192.CrossRef
180.
go back to reference Zheng X, Koropatnick J, Chen D, Velenosi T, Ling H, Zhang X, et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer. 2013;132(4):967–77.PubMedCrossRef Zheng X, Koropatnick J, Chen D, Velenosi T, Ling H, Zhang X, et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer. 2013;132(4):967–77.PubMedCrossRef
182.
go back to reference Wu Y, Gu W, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine. 2019;14(8):955–67.PubMedCrossRef Wu Y, Gu W, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine. 2019;14(8):955–67.PubMedCrossRef
183.
go back to reference Camorani S, Tortorella S, Agnello L, Spanu C, d’Argenio A, Nilo R, et al. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells. Pharmaceutics. 2022;14(10):2225.PubMedPubMedCentralCrossRef Camorani S, Tortorella S, Agnello L, Spanu C, d’Argenio A, Nilo R, et al. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells. Pharmaceutics. 2022;14(10):2225.PubMedPubMedCentralCrossRef
186.
go back to reference Cheng Y, Wang C, Wang H, Zhang Z, Yang X, Dong Y, et al. Combination of an autophagy inhibitor with immunoadjuvants and an anti-PD-L1 antibody in multifunctional nanoparticles for enhanced breast cancer immunotherapy. BMC Med. 2022;20(1):411.PubMedPubMedCentralCrossRef Cheng Y, Wang C, Wang H, Zhang Z, Yang X, Dong Y, et al. Combination of an autophagy inhibitor with immunoadjuvants and an anti-PD-L1 antibody in multifunctional nanoparticles for enhanced breast cancer immunotherapy. BMC Med. 2022;20(1):411.PubMedPubMedCentralCrossRef
187.
go back to reference Liu X, Wang H, Li Z, Li J, He S, Hu C, et al. Transformable self-delivered supramolecular nanomaterials combined with anti-PD-1 antibodies alleviate tumor immunosuppression to treat breast cancer with bone metastasis. J Nanobiotechnology. 2024;22(1):566.PubMedPubMedCentralCrossRef Liu X, Wang H, Li Z, Li J, He S, Hu C, et al. Transformable self-delivered supramolecular nanomaterials combined with anti-PD-1 antibodies alleviate tumor immunosuppression to treat breast cancer with bone metastasis. J Nanobiotechnology. 2024;22(1):566.PubMedPubMedCentralCrossRef
192.
go back to reference Zhang X, Wu F, Men K, Huang R, Zhou B, Zhang R. Modified Fe3O4 magnetic nanoparticle delivery of CpG inhibits tumor growth and spontaneous pulmonary metastases to enhance immunotherapy. Nanoscale Res Lett. 2018;13:240.PubMedPubMedCentralCrossRef Zhang X, Wu F, Men K, Huang R, Zhou B, Zhang R. Modified Fe3O4 magnetic nanoparticle delivery of CpG inhibits tumor growth and spontaneous pulmonary metastases to enhance immunotherapy. Nanoscale Res Lett. 2018;13:240.PubMedPubMedCentralCrossRef
193.
go back to reference Fang Z, Wan L-Y, Chu L-Y, Zhang Y-Q, Wu J-F. ‘Smart’nanoparticles as drug delivery systems for applications in tumor therapy. Expert Opin Drug Deliv. 2015;12(12):1943–53.PubMedCrossRef Fang Z, Wan L-Y, Chu L-Y, Zhang Y-Q, Wu J-F. ‘Smart’nanoparticles as drug delivery systems for applications in tumor therapy. Expert Opin Drug Deliv. 2015;12(12):1943–53.PubMedCrossRef
195.
go back to reference Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of nanoparticles for smart drug delivery: a review. Nanomaterials. 2021;11(11):2790.PubMedPubMedCentralCrossRef Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of nanoparticles for smart drug delivery: a review. Nanomaterials. 2021;11(11):2790.PubMedPubMedCentralCrossRef
196.
go back to reference Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: a comprehensive review. Micromachines. 2022;13(10):1623.PubMedPubMedCentralCrossRef Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: a comprehensive review. Micromachines. 2022;13(10):1623.PubMedPubMedCentralCrossRef
198.
go back to reference Farhood B, Ashrafizadeh M, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE, Najafi M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 2020;250:117570.PubMedCrossRef Farhood B, Ashrafizadeh M, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE, Najafi M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 2020;250:117570.PubMedCrossRef
199.
go back to reference Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: from hallmark of cancer to target of treatment. Front Oncol. 2022;12:979154.PubMedPubMedCentralCrossRef Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: from hallmark of cancer to target of treatment. Front Oncol. 2022;12:979154.PubMedPubMedCentralCrossRef
201.
go back to reference Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69(1):358–68.PubMedCrossRef Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69(1):358–68.PubMedCrossRef
202.
go back to reference Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, et al. Proton channels and exchangers in cancer. Biochimica et Biophysica Acta (BBA) Biomembr. 2015;1848(10):2715–26.CrossRef Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, et al. Proton channels and exchangers in cancer. Biochimica et Biophysica Acta (BBA) Biomembr. 2015;1848(10):2715–26.CrossRef
203.
go back to reference Counillon L, Bouret Y, Marchiq I. Pouysségur J (2016) Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. Biochimica et Biophysica Acta (BBA) Mol Cell Res. 1863;10:2465–80. Counillon L, Bouret Y, Marchiq I. Pouysségur J (2016) Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. Biochimica et Biophysica Acta (BBA) Mol Cell Res. 1863;10:2465–80.
204.
go back to reference Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113–29.PubMedCrossRef Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113–29.PubMedCrossRef
205.
go back to reference Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. In: Seminars in cancer biology. Amsterdam: Elsevier; 2017. p. 74–89. Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. In: Seminars in cancer biology. Amsterdam: Elsevier; 2017. p. 74–89.
207.
go back to reference Duo Y, Li Y, Chen C, Liu B, Wang X, Zeng X, Chen H. DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Adv. 2017;7(63):39641–50.CrossRef Duo Y, Li Y, Chen C, Liu B, Wang X, Zeng X, Chen H. DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Adv. 2017;7(63):39641–50.CrossRef
212.
go back to reference Yuan J-D, ZhuGe D-L, Tong M-Q, Lin M-T, Xu X-F, Tang X, et al. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(1):302–13.PubMedCrossRef Yuan J-D, ZhuGe D-L, Tong M-Q, Lin M-T, Xu X-F, Tang X, et al. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(1):302–13.PubMedCrossRef
213.
go back to reference Tao J, Tan Z, Diao L, Ji Z, Zhu J, Chen W, Hu Y. Co-delivery of dihydroartemisinin and docetaxel in pH-sensitive nanoparticles for treating metastatic breast cancer via the NF-κB/MMP-2 signal pathway. RSC Adv. 2018;8(39):21735–44.PubMedPubMedCentralCrossRef Tao J, Tan Z, Diao L, Ji Z, Zhu J, Chen W, Hu Y. Co-delivery of dihydroartemisinin and docetaxel in pH-sensitive nanoparticles for treating metastatic breast cancer via the NF-κB/MMP-2 signal pathway. RSC Adv. 2018;8(39):21735–44.PubMedPubMedCentralCrossRef
215.
217.
go back to reference Yao Q, Kou L, Tu Y, Zhu L. MMP-responsive ‘smart’drug delivery and tumor targeting. Trends Pharmacol Sci. 2018;39(8):766–81.PubMedCrossRef Yao Q, Kou L, Tu Y, Zhu L. MMP-responsive ‘smart’drug delivery and tumor targeting. Trends Pharmacol Sci. 2018;39(8):766–81.PubMedCrossRef
221.
go back to reference Raman D, Foo CHJ, Clement M-V, Pervaiz S. Breast cancer: a molecular and redox snapshot. Antioxid Redox Signal. 2016;25(6):337–70.PubMedCrossRef Raman D, Foo CHJ, Clement M-V, Pervaiz S. Breast cancer: a molecular and redox snapshot. Antioxid Redox Signal. 2016;25(6):337–70.PubMedCrossRef
222.
go back to reference Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnology. 2018;16:1–16.CrossRef Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnology. 2018;16:1–16.CrossRef
223.
go back to reference Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics. 2019;12(1):26.PubMedPubMedCentralCrossRef Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics. 2019;12(1):26.PubMedPubMedCentralCrossRef
224.
go back to reference Li N, Wang Z, Zhang Y, Zhang K, Xie J, Liu Y, et al. Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(2):921–35.PubMedCrossRef Li N, Wang Z, Zhang Y, Zhang K, Xie J, Liu Y, et al. Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(2):921–35.PubMedCrossRef
225.
go back to reference Rezaei S, Kashanian S, Bahrami Y, Cruz LJ, Motiei M. Redox-sensitive and hyaluronic acid-functionalized nanoparticles for improving breast cancer treatment by cytoplasmic 17α-methyltestosterone delivery. Molecules. 2020;25(5):1181.PubMedPubMedCentralCrossRef Rezaei S, Kashanian S, Bahrami Y, Cruz LJ, Motiei M. Redox-sensitive and hyaluronic acid-functionalized nanoparticles for improving breast cancer treatment by cytoplasmic 17α-methyltestosterone delivery. Molecules. 2020;25(5):1181.PubMedPubMedCentralCrossRef
227.
go back to reference Shi J, Ren Y, Ma J, Luo X, Li J, Wu Y, et al. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core–shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnology. 2021;19(1):188.PubMedPubMedCentralCrossRef Shi J, Ren Y, Ma J, Luo X, Li J, Wu Y, et al. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core–shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnology. 2021;19(1):188.PubMedPubMedCentralCrossRef
230.
go back to reference Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56:1687–700.PubMedPubMedCentralCrossRef Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56:1687–700.PubMedPubMedCentralCrossRef
232.
go back to reference He X, Yang Y, Han Y, Cao C, Zhang Z, Li L, et al. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc Natl Acad Sci. 2023;120(1):e2209260120.PubMedCrossRef He X, Yang Y, Han Y, Cao C, Zhang Z, Li L, et al. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc Natl Acad Sci. 2023;120(1):e2209260120.PubMedCrossRef
233.
go back to reference Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9(26):8073.PubMedPubMedCentralCrossRef Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9(26):8073.PubMedPubMedCentralCrossRef
234.
go back to reference Sundaram A, Peng L, Chai L, Xie Z, Ponraj JS, Wang X, et al. Advanced nanomaterials for hypoxia tumor therapy: challenges and solutions. Nanoscale. 2020;12(42):21497–518.PubMedCrossRef Sundaram A, Peng L, Chai L, Xie Z, Ponraj JS, Wang X, et al. Advanced nanomaterials for hypoxia tumor therapy: challenges and solutions. Nanoscale. 2020;12(42):21497–518.PubMedCrossRef
235.
236.
go back to reference Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, et al. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci. 2023;11(12):4151–83.PubMedCrossRef Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, et al. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci. 2023;11(12):4151–83.PubMedCrossRef
237.
go back to reference Shegokar R, Nakach M. Large-scale manufacturing of nanoparticles—an industrial outlook. Drug delivery aspects. Amsterdam: Elsevier; 2020. p. 57–77. Shegokar R, Nakach M. Large-scale manufacturing of nanoparticles—an industrial outlook. Drug delivery aspects. Amsterdam: Elsevier; 2020. p. 57–77.
238.
239.
go back to reference Ha M, Kim J-H, You M, Li Q, Fan C, Nam J-M. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev. 2019;119(24):12208–78.PubMedCrossRef Ha M, Kim J-H, You M, Li Q, Fan C, Nam J-M. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev. 2019;119(24):12208–78.PubMedCrossRef
240.
go back to reference Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, et al. Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022;45:101512.CrossRef Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, et al. Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022;45:101512.CrossRef
241.
242.
go back to reference Muheem A, Jahangir MA, Jaiswal CP, Jafar M, Ahmad MZ, Ahmad J, Warsi MH. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders. Curr Drug Metab. 2021;22(4):263–79.PubMed Muheem A, Jahangir MA, Jaiswal CP, Jafar M, Ahmad MZ, Ahmad J, Warsi MH. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders. Curr Drug Metab. 2021;22(4):263–79.PubMed
243.
go back to reference Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, et al. Targeting the tumor core: hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol Pharm. 2020;17(8):2849–63.PubMedPubMedCentralCrossRef Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, et al. Targeting the tumor core: hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol Pharm. 2020;17(8):2849–63.PubMedPubMedCentralCrossRef
244.
go back to reference Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2019;16(10):1095–112.PubMedCrossRef Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2019;16(10):1095–112.PubMedCrossRef
Metadata
Title
Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles
Authors
Faris Anad Muhammad
Farag M. A. Altalbawy
Viralkumar Mandaliya
Shelesh Krishna Saraswat
M. M. Rekha
Damanjeet Aulakh
Mamata Chahar
Morug Salih Mahdi
Mohammed Adil Jaber
Merwa Alhadrawi
Publication date
18-12-2024
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-024-03793-x

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now
Video