Skip to main content
Top
Published in:

Open Access 01-12-2023 | Breast Cancer | Research

Studying the association between longitudinal mammographic density measurements and breast cancer risk: a joint modelling approach

Authors: Maya Illipse, Kamila Czene, Per Hall, Keith Humphreys

Published in: Breast Cancer Research | Issue 1/2023

Login to get access

Abstract

Background

Researchers have suggested that longitudinal trajectories of mammographic breast density (MD) can be used to understand changes in breast cancer (BC) risk over a woman’s lifetime. Some have suggested, based on biological arguments, that the cumulative trajectory of MD encapsulates the risk of BC across time. Others have tried to connect changes in MD to the risk of BC.

Methods

To summarize the MD–BC association, we jointly model longitudinal trajectories of MD and time to diagnosis using data from a large (\(N = 40{,}087\)) mammography cohort of Swedish women aged 40–80 years. Five hundred eighteen women were diagnosed with BC during follow-up. We fitted three joint models (JMs) with different association structures; Cumulative, current value and slope, and current value association structures.

Results

All models showed evidence of an association between MD trajectory and BC risk (\(P < 0.001\) for current value of MD, \(P < 0.001\) and \(P =0.005\) for current value and slope of MD respectively, and \(P < 0.001\) for cumulative value of MD). Models with cumulative association structure and with current value and slope association structure had better goodness of fit than a model based only on current value. The JM with current value and slope structure suggested that a decrease in MD may be associated with an increased (instantaneous) BC risk. It is possible that this is because of increased screening sensitivity rather than being related to biology.

Conclusion

We argue that a JM with a cumulative association structure may be the most appropriate/biologically relevant model in this context.
Literature
1.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.PubMedCrossRef Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.PubMedCrossRef
2.
go back to reference Palomares MR, Machia JR, Lehman CD, Daling JR, McTiernan A. Mammographic density correlation with Gail model breast cancer risk estimates and component risk factors. Cancer Epidemiol Prev Biomark. 2006;15(7):1324–30.CrossRef Palomares MR, Machia JR, Lehman CD, Daling JR, McTiernan A. Mammographic density correlation with Gail model breast cancer risk estimates and component risk factors. Cancer Epidemiol Prev Biomark. 2006;15(7):1324–30.CrossRef
3.
go back to reference Vachon CM, Van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, Pankratz VS. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007;9(6):217.PubMedPubMedCentralCrossRef Vachon CM, Van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, Pankratz VS. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007;9(6):217.PubMedPubMedCentralCrossRef
4.
go back to reference Yaghjyan L, Colditz GA, Rosner B, Tamimi RM. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to the time since the mammogram. Cancer Epidemiol Prev Biomark. 2013;22(6):1110–7.CrossRef Yaghjyan L, Colditz GA, Rosner B, Tamimi RM. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to the time since the mammogram. Cancer Epidemiol Prev Biomark. 2013;22(6):1110–7.CrossRef
5.
go back to reference Lynge E, Vejborg I, Andersen Z, von Euler-Chelpin M, Napolitano G. Mammographic density and screening sensitivity, breast cancer incidence and associated risk factors in danish breast cancer screening. J Clin Med. 2019;8(11):2021.PubMedPubMedCentralCrossRef Lynge E, Vejborg I, Andersen Z, von Euler-Chelpin M, Napolitano G. Mammographic density and screening sensitivity, breast cancer incidence and associated risk factors in danish breast cancer screening. J Clin Med. 2019;8(11):2021.PubMedPubMedCentralCrossRef
6.
go back to reference Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval-and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–7.PubMedCrossRef Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval-and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–7.PubMedCrossRef
7.
go back to reference Chiu SY-H, Duffy S, Yen AM-F, Tabár L, Smith RA, Chen H-H. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a swedish mammographic screening. Cancer Epidemiol Prev Biomark. 2010;19(5):1219–28.CrossRef Chiu SY-H, Duffy S, Yen AM-F, Tabár L, Smith RA, Chen H-H. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a swedish mammographic screening. Cancer Epidemiol Prev Biomark. 2010;19(5):1219–28.CrossRef
8.
go back to reference Kerlikowske K, Ichikawa L, Miglioretti DL, Buist DS, Vacek PM, Smith-Bindman R, Yankaskas B, Carney PA, Ballard-Barbash R. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. J Natl Cancer Inst. 2007;99(5):386–95.PubMedCrossRef Kerlikowske K, Ichikawa L, Miglioretti DL, Buist DS, Vacek PM, Smith-Bindman R, Yankaskas B, Carney PA, Ballard-Barbash R. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. J Natl Cancer Inst. 2007;99(5):386–95.PubMedCrossRef
9.
go back to reference McCormack VA, Perry NM, Vinnicombe SJ, dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127(2):452–61.PubMed McCormack VA, Perry NM, Vinnicombe SJ, dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127(2):452–61.PubMed
10.
go back to reference Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M, López-Ridaura R, Rice M, Pereira A, Garmendia ML, et al. Mammographic density and ageing: a collaborative pooled analysis of cross-sectional data from 22 countries worldwide. PLoS Med. 2017;14(6):e1002335.PubMedPubMedCentralCrossRef Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M, López-Ridaura R, Rice M, Pereira A, Garmendia ML, et al. Mammographic density and ageing: a collaborative pooled analysis of cross-sectional data from 22 countries worldwide. PLoS Med. 2017;14(6):e1002335.PubMedPubMedCentralCrossRef
11.
go back to reference Engmann NJ, Scott C, Jensen MR, Winham SJ, Ma L, Brandt KR, Mahmoudzadeh A, Whaley DH, Hruska CB, Wu F-F, et al. Longitudinal changes in volumetric breast density in healthy women across the menopausal transition. Cancer Epidemiol Prev Biomark. 2019;28(8):1324–30.CrossRef Engmann NJ, Scott C, Jensen MR, Winham SJ, Ma L, Brandt KR, Mahmoudzadeh A, Whaley DH, Hruska CB, Wu F-F, et al. Longitudinal changes in volumetric breast density in healthy women across the menopausal transition. Cancer Epidemiol Prev Biomark. 2019;28(8):1324–30.CrossRef
12.
go back to reference Maskarinec G, Pagano I, Lurie G, Kolonel LN. A longitudinal investigation of mammographic density: the multiethnic cohort. Cancer Epidemiol Prev Biomark. 2006;15(4):732–9.CrossRef Maskarinec G, Pagano I, Lurie G, Kolonel LN. A longitudinal investigation of mammographic density: the multiethnic cohort. Cancer Epidemiol Prev Biomark. 2006;15(4):732–9.CrossRef
13.
go back to reference Kelemen LE, Pankratz VS, Sellers TA, Brandt KR, Wang A, Janney C, Fredericksen ZS, Cerhan JR, Vachon CM. Age-specific trends in mammographic density: the Minnesota breast cancer family study. Am J Epidemiol. 2008;167(9):1027–36.PubMedCrossRef Kelemen LE, Pankratz VS, Sellers TA, Brandt KR, Wang A, Janney C, Fredericksen ZS, Cerhan JR, Vachon CM. Age-specific trends in mammographic density: the Minnesota breast cancer family study. Am J Epidemiol. 2008;167(9):1027–36.PubMedCrossRef
14.
go back to reference Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010;102(16):1224–37.PubMedPubMedCentralCrossRef Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010;102(16):1224–37.PubMedPubMedCentralCrossRef
15.
go back to reference McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Prev Biomark. 2006;15(6):1159–69.CrossRef McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Prev Biomark. 2006;15(6):1159–69.CrossRef
16.
go back to reference Pike MC, Krailo M, Henderson B, Casagrande J, Hoel D. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature. 1983;303(5920):767–70.PubMedCrossRef Pike MC, Krailo M, Henderson B, Casagrande J, Hoel D. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature. 1983;303(5920):767–70.PubMedCrossRef
17.
go back to reference Boyd N, Berman H, Zhu J, Martin LJ, Yaffe MJ, Chavez S, Stanisz G, Hislop G, Chiarelli AM, Minkin S, et al. The origins of breast cancer associated with mammographic density: a testable biological hypothesis. Breast Cancer Res. 2018;20(1):17.PubMedPubMedCentralCrossRef Boyd N, Berman H, Zhu J, Martin LJ, Yaffe MJ, Chavez S, Stanisz G, Hislop G, Chiarelli AM, Minkin S, et al. The origins of breast cancer associated with mammographic density: a testable biological hypothesis. Breast Cancer Res. 2018;20(1):17.PubMedPubMedCentralCrossRef
18.
go back to reference Lokate M, Stellato RK, Veldhuis WB, Peeters PH, van Gils CH. Age-related changes in mammographic density and breast cancer risk. Am J Epidemiol. 2013;178(1):101–9.PubMedCrossRef Lokate M, Stellato RK, Veldhuis WB, Peeters PH, van Gils CH. Age-related changes in mammographic density and breast cancer risk. Am J Epidemiol. 2013;178(1):101–9.PubMedCrossRef
19.
go back to reference Work M, Reimers L, Quante A, Crew K, Whiffen A, Terry M. Differences in mammographic density decline over time in breast cancer cases and women at high risk for breast cancer. Cancer Epidemiol Prev Biomark. 2013;22(3):476–476.CrossRef Work M, Reimers L, Quante A, Crew K, Whiffen A, Terry M. Differences in mammographic density decline over time in breast cancer cases and women at high risk for breast cancer. Cancer Epidemiol Prev Biomark. 2013;22(3):476–476.CrossRef
20.
go back to reference Vachon CM, Pankratz VS, Scott CG, Maloney SD, Ghosh K, Brandt KR, Milanese T, Carston MJ, Sellers TA. Longitudinal trends in mammographic percent density and breast cancer risk. Cancer Epidemiol Prev Biomark. 2007;16(5):921–8.CrossRef Vachon CM, Pankratz VS, Scott CG, Maloney SD, Ghosh K, Brandt KR, Milanese T, Carston MJ, Sellers TA. Longitudinal trends in mammographic percent density and breast cancer risk. Cancer Epidemiol Prev Biomark. 2007;16(5):921–8.CrossRef
21.
go back to reference Kim EY, Chang Y, Ahn J, Yun J-S, Park YL, Park CH, Shin H, Ryu S. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmenopausal women. Cancer. 2020;126(21):4687–96.PubMedCrossRef Kim EY, Chang Y, Ahn J, Yun J-S, Park YL, Park CH, Shin H, Ryu S. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmenopausal women. Cancer. 2020;126(21):4687–96.PubMedCrossRef
22.
go back to reference Azam S, Eriksson M, Sjölander A, Hellgren R, Gabrielson M, Czene K, Hall P. Mammographic density change and risk of breast cancer. JNCI J Natl Cancer Inst. 2020;112(4):391–9.PubMedCrossRef Azam S, Eriksson M, Sjölander A, Hellgren R, Gabrielson M, Czene K, Hall P. Mammographic density change and risk of breast cancer. JNCI J Natl Cancer Inst. 2020;112(4):391–9.PubMedCrossRef
23.
go back to reference Sartor H, Kontos D, Ullén S, Förnvik H, Förnvik D. Changes in breast density over serial mammograms: a case-control study. Eur J Radiol. 2020;127:108980.PubMedCrossRef Sartor H, Kontos D, Ullén S, Förnvik H, Förnvik D. Changes in breast density over serial mammograms: a case-control study. Eur J Radiol. 2020;127:108980.PubMedCrossRef
24.
go back to reference Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J. 2011;53(5):750–63.PubMedPubMedCentralCrossRef Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J. 2011;53(5):750–63.PubMedPubMedCentralCrossRef
25.
go back to reference Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;330–9. Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;330–9.
26.
go back to reference Rizopoulos, D.: The R package Jmbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J Stat Softw. 2016;72(i07). Rizopoulos, D.: The R package Jmbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J Stat Softw. 2016;72(i07).
27.
go back to reference Andersson TM-L, Crowther MJ, Czene K, Hall P, Humphreys K. Mammographic density reduction as a prognostic marker for postmenopausal breast cancer: results using a joint longitudinal-survival modeling approach. Am J Epidemiol. 2017;186(9):1065–73.PubMedPubMedCentralCrossRef Andersson TM-L, Crowther MJ, Czene K, Hall P, Humphreys K. Mammographic density reduction as a prognostic marker for postmenopausal breast cancer: results using a joint longitudinal-survival modeling approach. Am J Epidemiol. 2017;186(9):1065–73.PubMedPubMedCentralCrossRef
28.
go back to reference Armero C, Forné C, Rué M, Forte A, Perpiñán H, Gómez G, Baré M. Bayesian joint ordinal and survival modeling for breast cancer risk assessment. Stat Med. 2016;35(28):5267–82.PubMedPubMedCentralCrossRef Armero C, Forné C, Rué M, Forte A, Perpiñán H, Gómez G, Baré M. Bayesian joint ordinal and survival modeling for breast cancer risk assessment. Stat Med. 2016;35(28):5267–82.PubMedPubMedCentralCrossRef
29.
go back to reference Gabrielson M, Hammarström M, Borgquist S, Leifland K, Czene K, Hall P. Cohort profile: the Karolinska mammography project for risk prediction of breast cancer (KARMA). Int J Epidemiol. 2017;46(6):1740–1.PubMedPubMedCentralCrossRef Gabrielson M, Hammarström M, Borgquist S, Leifland K, Czene K, Hall P. Cohort profile: the Karolinska mammography project for risk prediction of breast cancer (KARMA). Int J Epidemiol. 2017;46(6):1740–1.PubMedPubMedCentralCrossRef
30.
go back to reference Eriksson M, Li J, Leifland K, Czene K, Hall P. A comprehensive tool for measuring mammographic density changes over time. Breast Cancer Res Treat. 2018;169(2):371–9.PubMedPubMedCentralCrossRef Eriksson M, Li J, Leifland K, Czene K, Hall P. A comprehensive tool for measuring mammographic density changes over time. Breast Cancer Res Treat. 2018;169(2):371–9.PubMedPubMedCentralCrossRef
31.
go back to reference Haars G, van Noord PA, van Gils CH, Grobbee DE, Peeters PH. Measurements of breast density: no ratio for a ratio. Cancer Epidemiol Prevent Biomark. 2005;14(11):2634–40.CrossRef Haars G, van Noord PA, van Gils CH, Grobbee DE, Peeters PH. Measurements of breast density: no ratio for a ratio. Cancer Epidemiol Prevent Biomark. 2005;14(11):2634–40.CrossRef
32.
go back to reference Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R. Boca Raton: CRC Press; 2012.CrossRef Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R. Boca Raton: CRC Press; 2012.CrossRef
33.
go back to reference Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc. 1995;90(429):27–37.CrossRef Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc. 1995;90(429):27–37.CrossRef
34.
go back to reference Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996;15(15):1663–85.PubMedCrossRef Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996;15(15):1663–85.PubMedCrossRef
35.
go back to reference Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982;963–74. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982;963–74.
36.
go back to reference Cekic S, Aichele S, Brandmaier AM, Köhncke Y, Ghisletta P. A tutorial for joint modeling of longitudinal and time-to-event data in R. 2019. Cekic S, Aichele S, Brandmaier AM, Köhncke Y, Ghisletta P. A tutorial for joint modeling of longitudinal and time-to-event data in R. 2019.
37.
go back to reference Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A. The deviance information criterion: 12 years on. J R Stat Soc Ser B Stat Methodol. 2014;87:485–93.CrossRef Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A. The deviance information criterion: 12 years on. J R Stat Soc Ser B Stat Methodol. 2014;87:485–93.CrossRef
38.
go back to reference Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006;17(10):1281–90.PubMedPubMedCentralCrossRef Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006;17(10):1281–90.PubMedPubMedCentralCrossRef
39.
go back to reference Sung H, Ren J, Li J, Pfeiffer RM, Wang Y, Guida JL, Fang Y, Shi J, Zhang K, Li N, et al. Breast cancer risk factors and mammographic density among high-risk women in Urban China. NPJ Breast Cancer. 2018;4(1):1–12.CrossRef Sung H, Ren J, Li J, Pfeiffer RM, Wang Y, Guida JL, Fang Y, Shi J, Zhang K, Li N, et al. Breast cancer risk factors and mammographic density among high-risk women in Urban China. NPJ Breast Cancer. 2018;4(1):1–12.CrossRef
40.
go back to reference Keen JD, Keen JE. How does age affect baseline screening mammography performance measures? A decision model. BMC Med Inform Decis Mak. 2008;8(1):1–16.CrossRef Keen JD, Keen JE. How does age affect baseline screening mammography performance measures? A decision model. BMC Med Inform Decis Mak. 2008;8(1):1–16.CrossRef
41.
go back to reference Buist DS, Porter PL, Lehman C, Taplin SH, White E. Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst. 2004;96(19):1432–40.PubMedCrossRef Buist DS, Porter PL, Lehman C, Taplin SH, White E. Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst. 2004;96(19):1432–40.PubMedCrossRef
42.
go back to reference Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res. 2013;319(11):1671–8.PubMedPubMedCentralCrossRef Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res. 2013;319(11):1671–8.PubMedPubMedCentralCrossRef
43.
go back to reference Paramsothy P, Harlow SD, Nan B, Greendale GA, Santoro N, Crawford SL, Gold EB, Tepper PG, Randolph JF Jr. Duration of the menopausal transition is longer in women with young age at onset: the multi-ethnic study of women’s health across the nation. Menopause (New York, NY). 2017;24(2):142.CrossRef Paramsothy P, Harlow SD, Nan B, Greendale GA, Santoro N, Crawford SL, Gold EB, Tepper PG, Randolph JF Jr. Duration of the menopausal transition is longer in women with young age at onset: the multi-ethnic study of women’s health across the nation. Menopause (New York, NY). 2017;24(2):142.CrossRef
44.
go back to reference Gasparini A, Abrams KR, Barrett JK, Major RW, Sweeting MJ, Brunskill NJ, Crowther MJ. Mixed-effects models for health care longitudinal data with an informative visiting process: a Monte Carlo simulation study. Stat Neerl. 2020;74(1):5–23.PubMed Gasparini A, Abrams KR, Barrett JK, Major RW, Sweeting MJ, Brunskill NJ, Crowther MJ. Mixed-effects models for health care longitudinal data with an informative visiting process: a Monte Carlo simulation study. Stat Neerl. 2020;74(1):5–23.PubMed
45.
go back to reference Neuhaus JM, McCulloch CE, Boylan RD. Analysis of longitudinal data from outcome-dependent visit processes: failure of proposed methods in realistic settings and potential improvements. Stat Med. 2018;37(29):4457–71.PubMedCrossRef Neuhaus JM, McCulloch CE, Boylan RD. Analysis of longitudinal data from outcome-dependent visit processes: failure of proposed methods in realistic settings and potential improvements. Stat Med. 2018;37(29):4457–71.PubMedCrossRef
46.
go back to reference Arisido MW, Antolini L, Bernasconi DP, Valsecchi MG, Rebora P. Joint model robustness compared with the time-varying covariate cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. BMC Med Res Methodol. 2019;19(1):222.PubMedPubMedCentralCrossRef Arisido MW, Antolini L, Bernasconi DP, Valsecchi MG, Rebora P. Joint model robustness compared with the time-varying covariate cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. BMC Med Res Methodol. 2019;19(1):222.PubMedPubMedCentralCrossRef
47.
go back to reference Soguel L, Durocher F, Tchernof A, Diorio C. Adiposity, breast density, and breast cancer risk: epidemiological and biological considerations. Eur J Cancer Prev. 2017;26(6):511.PubMedPubMedCentralCrossRef Soguel L, Durocher F, Tchernof A, Diorio C. Adiposity, breast density, and breast cancer risk: epidemiological and biological considerations. Eur J Cancer Prev. 2017;26(6):511.PubMedPubMedCentralCrossRef
48.
go back to reference Andrinopoulou E-R, Eilers PH, Takkenberg JJ, Rizopoulos D. Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using p-splines. Biometrics. 2018;74(2):685–93.PubMedCrossRef Andrinopoulou E-R, Eilers PH, Takkenberg JJ, Rizopoulos D. Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using p-splines. Biometrics. 2018;74(2):685–93.PubMedCrossRef
Metadata
Title
Studying the association between longitudinal mammographic density measurements and breast cancer risk: a joint modelling approach
Authors
Maya Illipse
Kamila Czene
Per Hall
Keith Humphreys
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2023
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-023-01667-8

Other articles of this Issue 1/2023

Breast Cancer Research 1/2023 Go to the issue