Skip to main content
Top
Published in:

Open Access 01-12-2024 | Breast Cancer | Research

Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer

Authors: Jiwoo Jung, Na Hui Kim, Jayeon Park, Dayeon Lim, Minji Kwon, World Gil, Suyeon Jung, Minjeong Go, Chaeeon Kim, Ye Hwang Cheong, Mee-Hyun Lee, Hee Sun Park, Yong-Bin Eom, Sin-Aye Park

Published in: Breast Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified.

Methods

Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis.

Results

The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1.

Conclusions

Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chelmow D, Pearlman MD, Young A, Bozzuto L, Dayaratna S, Jeudy M et al. Executive Summary of the Early-Onset Breast Cancer Evidence Review Conference. Obstet Gynecol. 2020;135(6):1457-78. Chelmow D, Pearlman MD, Young A, Bozzuto L, Dayaratna S, Jeudy M et al. Executive Summary of the Early-Onset Breast Cancer Evidence Review Conference. Obstet Gynecol. 2020;135(6):1457-78.
2.
go back to reference Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7(1–2):4–13.PubMedPubMedCentralCrossRef Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7(1–2):4–13.PubMedPubMedCentralCrossRef
3.
go back to reference Yanagita M. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev. 2005;16(3):309–17.PubMedCrossRef Yanagita M. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev. 2005;16(3):309–17.PubMedCrossRef
4.
5.
go back to reference Mueller KA, Tavlaki E, Schneider M, Jorbenadze R, Geisler T, Kandolf R, et al. Gremlin-1 identifies fibrosis and predicts adverse outcome in patients with heart failure undergoing endomyocardial biopsy. J Card Fail. 2013;19(10):678–84.PubMedCrossRef Mueller KA, Tavlaki E, Schneider M, Jorbenadze R, Geisler T, Kandolf R, et al. Gremlin-1 identifies fibrosis and predicts adverse outcome in patients with heart failure undergoing endomyocardial biopsy. J Card Fail. 2013;19(10):678–84.PubMedCrossRef
6.
go back to reference Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM, et al. Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Ren Physiol. 2017;312(6):F1141–57.CrossRef Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM, et al. Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Ren Physiol. 2017;312(6):F1141–57.CrossRef
7.
go back to reference Kim NH, Sung NJ, Youn HS, Park SA. Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells. Biochem Biophys Res Commun. 2020;533(4):1378–84.PubMedCrossRef Kim NH, Sung NJ, Youn HS, Park SA. Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells. Biochem Biophys Res Commun. 2020;533(4):1378–84.PubMedCrossRef
8.
go back to reference Park SA, Sung NJ, Choi BJ, Kim W, Kim SH, Surh YJ. Gremlin-1 augments the oestrogen-related receptor alpha signalling through EGFR activation: implications for the progression of breast cancer. Br J Cancer. 2020;123(6):988–99.PubMedPubMedCentralCrossRef Park SA, Sung NJ, Choi BJ, Kim W, Kim SH, Surh YJ. Gremlin-1 augments the oestrogen-related receptor alpha signalling through EGFR activation: implications for the progression of breast cancer. Br J Cancer. 2020;123(6):988–99.PubMedPubMedCentralCrossRef
9.
go back to reference Sung NJ, Kim NH, Surh YJ, Park SA. Gremlin-1 promotes metastasis of breast Cancer cells by activating STAT3-MMP13 signaling pathway. Int J Mol Sci. 2020;21(23). Sung NJ, Kim NH, Surh YJ, Park SA. Gremlin-1 promotes metastasis of breast Cancer cells by activating STAT3-MMP13 signaling pathway. Int J Mol Sci. 2020;21(23).
10.
go back to reference Park SA. Role of gremlin-1 in cancer. Biomedical Sci Lett. 2018;24(4):285–91.CrossRef Park SA. Role of gremlin-1 in cancer. Biomedical Sci Lett. 2018;24(4):285–91.CrossRef
11.
go back to reference Kawagishi-Hotta M, Hasegawa S, Igarashi T, Date Y, Ishii Y, Inoue Y, et al. Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. Regen Ther. 2019;11:324–30.PubMedPubMedCentralCrossRef Kawagishi-Hotta M, Hasegawa S, Igarashi T, Date Y, Ishii Y, Inoue Y, et al. Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. Regen Ther. 2019;11:324–30.PubMedPubMedCentralCrossRef
12.
go back to reference Kawagishi-Hotta M, Hasegawa S, Inoue Y, Hasebe Y, Arima M, Iwata Y, et al. Gremlin 2 suppresses differentiation of stem/progenitor cells in the human skin. Regen Ther. 2021;18:191–201.PubMedPubMedCentralCrossRef Kawagishi-Hotta M, Hasegawa S, Inoue Y, Hasebe Y, Arima M, Iwata Y, et al. Gremlin 2 suppresses differentiation of stem/progenitor cells in the human skin. Regen Ther. 2021;18:191–201.PubMedPubMedCentralCrossRef
13.
go back to reference Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, et al. Gremlin2 suppression increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-derived mesenchymal stem cells Via the BMP-2/Smad/Runx2 signaling pathway. J Cell Biochem. 2017;118(2):286–97.PubMedCrossRef Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, et al. Gremlin2 suppression increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-derived mesenchymal stem cells Via the BMP-2/Smad/Runx2 signaling pathway. J Cell Biochem. 2017;118(2):286–97.PubMedCrossRef
14.
go back to reference Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG, et al. BMP antagonist gremlin 2 limits inflammation after myocardial infarction. Circ Res. 2016;119(3):434–49.PubMedPubMedCentralCrossRef Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG, et al. BMP antagonist gremlin 2 limits inflammation after myocardial infarction. Circ Res. 2016;119(3):434–49.PubMedPubMedCentralCrossRef
15.
go back to reference Tsubamoto H, Sakata K, Sakane R, Inoue K, Shibahara H, Hao H, et al. Gremlin 2 is repressed in Invasive Endometrial Cancer and inhibits cell growth in Vitro. Anticancer Res. 2016;36(1):199–203.PubMed Tsubamoto H, Sakata K, Sakane R, Inoue K, Shibahara H, Hao H, et al. Gremlin 2 is repressed in Invasive Endometrial Cancer and inhibits cell growth in Vitro. Anticancer Res. 2016;36(1):199–203.PubMed
16.
go back to reference Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, et al. Cancer-associated fibroblast-secreted exosomal mir-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-beta signaling pathway. Exp Mol Med. 2020;52(11):1809–22.PubMedPubMedCentralCrossRef Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, et al. Cancer-associated fibroblast-secreted exosomal mir-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-beta signaling pathway. Exp Mol Med. 2020;52(11):1809–22.PubMedPubMedCentralCrossRef
17.
18.
go back to reference Ma G, Chen J, Wei T, Wang J, Chen W. Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology. 2021;73(4):523–37.PubMedPubMedCentralCrossRef Ma G, Chen J, Wei T, Wang J, Chen W. Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology. 2021;73(4):523–37.PubMedPubMedCentralCrossRef
19.
go back to reference Jung J, Kim NH, Kwon M, Park J, Lim D, Kim Y, et al. The inhibitory effect of Gremlin-2 on adipogenesis suppresses breast cancer cell growth and metastasis. Breast Cancer Res. 2023;25(1):128.PubMedPubMedCentralCrossRef Jung J, Kim NH, Kwon M, Park J, Lim D, Kim Y, et al. The inhibitory effect of Gremlin-2 on adipogenesis suppresses breast cancer cell growth and metastasis. Breast Cancer Res. 2023;25(1):128.PubMedPubMedCentralCrossRef
20.
go back to reference Wu Q, Tang SG, Yuan ZM. Gremlin 2 inhibits adipocyte differentiation through activation of Wnt/beta-catenin signaling. Mol Med Rep. 2015;12(4):5891–6.PubMedCrossRef Wu Q, Tang SG, Yuan ZM. Gremlin 2 inhibits adipocyte differentiation through activation of Wnt/beta-catenin signaling. Mol Med Rep. 2015;12(4):5891–6.PubMedCrossRef
22.
go back to reference Tzeng SF, de Vellis J. Id1, Id2, and Id3 gene expression in neural cells during development. Glia. 1998;24(4):372–81.PubMedCrossRef Tzeng SF, de Vellis J. Id1, Id2, and Id3 gene expression in neural cells during development. Glia. 1998;24(4):372–81.PubMedCrossRef
24.
go back to reference Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM. Id proteins in cell growth and tumorigenesis. Cancer Cell. 2003;3(6):525–30.PubMedCrossRef Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM. Id proteins in cell growth and tumorigenesis. Cancer Cell. 2003;3(6):525–30.PubMedCrossRef
25.
go back to reference Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A. 2003;100(23):13543–8.PubMedPubMedCentralCrossRef Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A. 2003;100(23):13543–8.PubMedPubMedCentralCrossRef
26.
go back to reference Swarbrick A, Roy E, Allen T, Bishop JM. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci U S A. 2008;105(14):5402–7.PubMedPubMedCentralCrossRef Swarbrick A, Roy E, Allen T, Bishop JM. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci U S A. 2008;105(14):5402–7.PubMedPubMedCentralCrossRef
27.
go back to reference Teo WS, Holliday H, Karthikeyan N, Cazet AS, Roden DL, Harvey K, et al. Id proteins promote a Cancer stem cell phenotype in mouse models of Triple negative breast Cancer via negative regulation of Robo1. Front Cell Dev Biol. 2020;8:552.PubMedPubMedCentralCrossRef Teo WS, Holliday H, Karthikeyan N, Cazet AS, Roden DL, Harvey K, et al. Id proteins promote a Cancer stem cell phenotype in mouse models of Triple negative breast Cancer via negative regulation of Robo1. Front Cell Dev Biol. 2020;8:552.PubMedPubMedCentralCrossRef
28.
go back to reference Kim M, Singh M, Lee BK, Hibbs M, Richardson K, Ellies L, et al. A MYC-ZNF148-ID1/3 regulatory axis modulating cancer stem cell traits in aggressive breast cancer. Oncogenesis. 2022;11(1):60.PubMedPubMedCentralCrossRef Kim M, Singh M, Lee BK, Hibbs M, Richardson K, Ellies L, et al. A MYC-ZNF148-ID1/3 regulatory axis modulating cancer stem cell traits in aggressive breast cancer. Oncogenesis. 2022;11(1):60.PubMedPubMedCentralCrossRef
29.
go back to reference Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA et al. ID1 and ID4 are biomarkers of Tumor aggressiveness and poor outcome in immunophenotypes of breast Cancer. Cancers (Basel). 2021;13(3). Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA et al. ID1 and ID4 are biomarkers of Tumor aggressiveness and poor outcome in immunophenotypes of breast Cancer. Cancers (Basel). 2021;13(3).
30.
go back to reference Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells. 2002;7(9):949–60.PubMedCrossRef Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells. 2002;7(9):949–60.PubMedCrossRef
32.
go back to reference Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of Tumorigenesis. Genes Cancer. 2011;2(4):466–74.PubMedPubMedCentralCrossRef Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of Tumorigenesis. Genes Cancer. 2011;2(4):466–74.PubMedPubMedCentralCrossRef
33.
go back to reference Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C et al. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel). 2020;11(7). Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C et al. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel). 2020;11(7).
34.
go back to reference MacPherson D, Sage J, Crowley D, Trumpp A, Bronson RT, Jacks T. Conditional mutation of rb causes cell cycle defects without apoptosis in the central nervous system. Mol Cell Biol. 2003;23(3):1044–53.PubMedPubMedCentralCrossRef MacPherson D, Sage J, Crowley D, Trumpp A, Bronson RT, Jacks T. Conditional mutation of rb causes cell cycle defects without apoptosis in the central nervous system. Mol Cell Biol. 2003;23(3):1044–53.PubMedPubMedCentralCrossRef
35.
go back to reference Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: GeneReviews((R)). edn. Edited by Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A. Seattle (WA). 1993. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: GeneReviews((R)). edn. Edited by Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A. Seattle (WA). 1993.
36.
go back to reference Stoppa-Lyonnet D. The biological effects and clinical implications of BRCA mutations: where do we go from here? Eur J Hum Genet. 2016;24(Suppl 1):S3–9.PubMedPubMedCentralCrossRef Stoppa-Lyonnet D. The biological effects and clinical implications of BRCA mutations: where do we go from here? Eur J Hum Genet. 2016;24(Suppl 1):S3–9.PubMedPubMedCentralCrossRef
37.
go back to reference Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology. 2009;136(2):640–51. e641.PubMedCrossRef Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology. 2009;136(2):640–51. e641.PubMedCrossRef
38.
go back to reference Qiu C, Bu X, Jiang Z. Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells. Oncol Rep. 2016;36(1):383–9.PubMedCrossRef Qiu C, Bu X, Jiang Z. Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells. Oncol Rep. 2016;36(1):383–9.PubMedCrossRef
39.
go back to reference Yan W, Wu K, Herman JG, Xu X, Yang Y, Dai G, et al. Retinoic acid-induced 2 (RAI2) is a novel tumor suppressor, and promoter region methylation of RAI2 is a poor prognostic marker in colorectal cancer. Clin Epigenetics. 2018;10:69.PubMedPubMedCentralCrossRef Yan W, Wu K, Herman JG, Xu X, Yang Y, Dai G, et al. Retinoic acid-induced 2 (RAI2) is a novel tumor suppressor, and promoter region methylation of RAI2 is a poor prognostic marker in colorectal cancer. Clin Epigenetics. 2018;10:69.PubMedPubMedCentralCrossRef
40.
go back to reference Lou X, Deng W, Shuai L, Chen Y, Xu M, Xu J, et al. RAI2 acts as a tumor suppressor with functional significance in gastric cancer. Aging. 2023;15(21):11831–44.PubMedPubMedCentralCrossRef Lou X, Deng W, Shuai L, Chen Y, Xu M, Xu J, et al. RAI2 acts as a tumor suppressor with functional significance in gastric cancer. Aging. 2023;15(21):11831–44.PubMedPubMedCentralCrossRef
41.
go back to reference Sumei S, Xiangyun K, Fenrong C, Xueguang S, Sijun H, Bin B, et al. Hypermethylation of DHRS3 as a novel tumor suppressor involved in Tumor Growth and Prognosis in Gastric Cancer. Front Cell Dev Biol. 2021;9:624871.PubMedPubMedCentralCrossRef Sumei S, Xiangyun K, Fenrong C, Xueguang S, Sijun H, Bin B, et al. Hypermethylation of DHRS3 as a novel tumor suppressor involved in Tumor Growth and Prognosis in Gastric Cancer. Front Cell Dev Biol. 2021;9:624871.PubMedPubMedCentralCrossRef
42.
go back to reference Yao Y, Liu C, Wang B, Guan X, Fang L, Zhan F, et al. HOXB9 blocks cell cycle progression to inhibit pancreatic cancer cell proliferation through the DNMT1/RBL2/c-Myc axis. Cancer Lett. 2022;533:215595.PubMedCrossRef Yao Y, Liu C, Wang B, Guan X, Fang L, Zhan F, et al. HOXB9 blocks cell cycle progression to inhibit pancreatic cancer cell proliferation through the DNMT1/RBL2/c-Myc axis. Cancer Lett. 2022;533:215595.PubMedCrossRef
43.
go back to reference Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657.PubMedCrossRef Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657.PubMedCrossRef
44.
go back to reference Liang Y, Wang S, Liu J. Overexpression of tumor protein p53-regulated apoptosis-inducing protein 1 regulates proliferation and apoptosis of breast Cancer cells through the PI3K/Akt Pathway. J Breast Cancer. 2019;22(2):172–84.PubMedPubMedCentralCrossRef Liang Y, Wang S, Liu J. Overexpression of tumor protein p53-regulated apoptosis-inducing protein 1 regulates proliferation and apoptosis of breast Cancer cells through the PI3K/Akt Pathway. J Breast Cancer. 2019;22(2):172–84.PubMedPubMedCentralCrossRef
45.
go back to reference Cao R, Zhang Z, Tian C, Sheng W, Dong Q, Dong M. Down-regulation of MSMO1 promotes the development and progression of pancreatic cancer. J Cancer. 2022;13(10):3013–21.PubMedPubMedCentralCrossRef Cao R, Zhang Z, Tian C, Sheng W, Dong Q, Dong M. Down-regulation of MSMO1 promotes the development and progression of pancreatic cancer. J Cancer. 2022;13(10):3013–21.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, et al. PRKAR2B promotes prostate cancer metastasis by activating Wnt/beta-catenin and inducing epithelial-mesenchymal transition. J Cell Biochem. 2018;119(9):7319–27.PubMedCrossRef Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, et al. PRKAR2B promotes prostate cancer metastasis by activating Wnt/beta-catenin and inducing epithelial-mesenchymal transition. J Cell Biochem. 2018;119(9):7319–27.PubMedCrossRef
48.
go back to reference Xia L, Sun J, Xie S, Chi C, Zhu Y, Pan J, et al. PRKAR2B-HIF-1alpha loop promotes aerobic glycolysis and tumour growth in prostate cancer. Cell Prolif. 2020;53(11):e12918.PubMedPubMedCentralCrossRef Xia L, Sun J, Xie S, Chi C, Zhu Y, Pan J, et al. PRKAR2B-HIF-1alpha loop promotes aerobic glycolysis and tumour growth in prostate cancer. Cell Prolif. 2020;53(11):e12918.PubMedPubMedCentralCrossRef
49.
go back to reference Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, et al. 4E-binding protein 1: a key molecular funnel factor in human cancer with clinical implications. Cancer Res. 2007;67(16):7551–5.PubMedCrossRef Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, et al. 4E-binding protein 1: a key molecular funnel factor in human cancer with clinical implications. Cancer Res. 2007;67(16):7551–5.PubMedCrossRef
50.
go back to reference Karlsson E, Perez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res. 2013;15(5):R96.PubMedPubMedCentralCrossRef Karlsson E, Perez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res. 2013;15(5):R96.PubMedPubMedCentralCrossRef
51.
go back to reference Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, et al. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res. 2018;10:1553–63.PubMedPubMedCentralCrossRef Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, et al. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res. 2018;10:1553–63.PubMedPubMedCentralCrossRef
52.
go back to reference Papaspyridonos M, Matei I, Huang Y, do Rosario Andre M, Brazier-Mitouart H, Waite JC, et al. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat Commun. 2015;6:6840.PubMedCrossRef Papaspyridonos M, Matei I, Huang Y, do Rosario Andre M, Brazier-Mitouart H, Waite JC, et al. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat Commun. 2015;6:6840.PubMedCrossRef
53.
go back to reference Ling MT, Wang X, Zhang X, Wong YC. The multiple roles of Id-1 in cancer progression. Differentiation. 2006;74(9–10):481–7.PubMedCrossRef Ling MT, Wang X, Zhang X, Wong YC. The multiple roles of Id-1 in cancer progression. Differentiation. 2006;74(9–10):481–7.PubMedCrossRef
54.
go back to reference Kisonaite M, Wang X, Hyvonen M. Structure of Gremlin-1 and analysis of its interaction with BMP-2. Biochem J. 2016;473(11):1593–604.PubMedCrossRef Kisonaite M, Wang X, Hyvonen M. Structure of Gremlin-1 and analysis of its interaction with BMP-2. Biochem J. 2016;473(11):1593–604.PubMedCrossRef
55.
go back to reference Church RH, Krishnakumar A, Urbanek A, Geschwindner S, Meneely J, Bianchi A, et al. Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J. 2015;466(1):55–68.PubMedCrossRef Church RH, Krishnakumar A, Urbanek A, Geschwindner S, Meneely J, Bianchi A, et al. Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J. 2015;466(1):55–68.PubMedCrossRef
56.
go back to reference Nolan K, Kattamuri C, Rankin SA, Read RJ, Zorn AM, Thompson TB. Structure of Gremlin-2 in Complex with GDF5 gives insight into DAN-Family-mediated BMP antagonism. Cell Rep. 2016;16(8):2077–86.PubMedPubMedCentralCrossRef Nolan K, Kattamuri C, Rankin SA, Read RJ, Zorn AM, Thompson TB. Structure of Gremlin-2 in Complex with GDF5 gives insight into DAN-Family-mediated BMP antagonism. Cell Rep. 2016;16(8):2077–86.PubMedPubMedCentralCrossRef
57.
go back to reference Vinals F, Reiriz J, Ambrosio S, Bartrons R, Rosa JL, Ventura F. BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J. 2004;23(17):3527–37.PubMedPubMedCentralCrossRef Vinals F, Reiriz J, Ambrosio S, Bartrons R, Rosa JL, Ventura F. BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J. 2004;23(17):3527–37.PubMedPubMedCentralCrossRef
58.
go back to reference Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277(7):4883–91.PubMedCrossRef Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277(7):4883–91.PubMedCrossRef
59.
go back to reference Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem. 1999;274(28):19838–45.PubMedCrossRef Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem. 1999;274(28):19838–45.PubMedCrossRef
60.
go back to reference Shaw A, Toth BB, Arianti R, Csomos I, Poliska S, Vamos A, et al. BMP7 increases UCP1-dependent and independent thermogenesis with a unique gene expression program in human neck area derived adipocytes. Pharmaceuticals (Basel). 2021;14(11). Shaw A, Toth BB, Arianti R, Csomos I, Poliska S, Vamos A, et al. BMP7 increases UCP1-dependent and independent thermogenesis with a unique gene expression program in human neck area derived adipocytes. Pharmaceuticals (Basel). 2021;14(11).
61.
go back to reference de Winter TJJ, Nusse R. Running against the Wnt: How Wnt/beta-Catenin suppresses adipogenesis. Front Cell Dev Biol. 2021;9:627429. de Winter TJJ, Nusse R. Running against the Wnt: How Wnt/beta-Catenin suppresses adipogenesis. Front Cell Dev Biol. 2021;9:627429.
62.
go back to reference Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282(19):14515–24.PubMedCrossRef Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282(19):14515–24.PubMedCrossRef
64.
go back to reference Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB, et al. Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G129–37.PubMedCrossRef Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB, et al. Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G129–37.PubMedCrossRef
65.
go back to reference Prossomariti A, Piazzi G, Alquati C, Ricciardiello L. Are Wnt/beta-Catenin and PI3K/AKT/mTORC1 distinct pathways in Colorectal Cancer? Cell Mol Gastroenterol Hepatol. 2020;10(3):491–506.PubMedPubMedCentralCrossRef Prossomariti A, Piazzi G, Alquati C, Ricciardiello L. Are Wnt/beta-Catenin and PI3K/AKT/mTORC1 distinct pathways in Colorectal Cancer? Cell Mol Gastroenterol Hepatol. 2020;10(3):491–506.PubMedPubMedCentralCrossRef
66.
go back to reference Zeng H, Lu B, Zamponi R, Yang Z, Wetzel K, Loureiro J, et al. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of wnt receptor FZD level. Proc Natl Acad Sci U S A. 2018;115(44):E10362–9.PubMedPubMedCentralCrossRef Zeng H, Lu B, Zamponi R, Yang Z, Wetzel K, Loureiro J, et al. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of wnt receptor FZD level. Proc Natl Acad Sci U S A. 2018;115(44):E10362–9.PubMedPubMedCentralCrossRef
Metadata
Title
Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer
Authors
Jiwoo Jung
Na Hui Kim
Jayeon Park
Dayeon Lim
Minji Kwon
World Gil
Suyeon Jung
Minjeong Go
Chaeeon Kim
Ye Hwang Cheong
Mee-Hyun Lee
Hee Sun Park
Yong-Bin Eom
Sin-Aye Park
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2024
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-024-01935-1
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now