Skip to main content
Top

12-04-2025 | Bladder Cancer | Urologic Oncology

Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review

Authors: Xiangxiang Yang, Rui Yang, MD, Xiuheng Liu, MD, Zhiyuan Chen, MD, Qingyuan Zheng, MD

Published in: Annals of Surgical Oncology

Login to get access

Abstract

Background

Bladder cancer is one of the top ten cancers globally, with its incidence steadily rising in China. Early detection and prognosis risk assessment play a crucial role in guiding subsequent treatment decisions for bladder cancer. However, traditional diagnostic methods such as bladder endoscopy, imaging, or pathology examinations heavily rely on the clinical expertise and experience of clinicians, exhibiting subjectivity and poor reproducibility.

Materials and Methods

With the rise of artificial intelligence, novel approaches, particularly those employing deep learning technology, have shown significant advancements in clinical tasks related to bladder cancer, including tumor detection, molecular subtyping identification, tumor staging and grading, prognosis prediction, and recurrence assessment.

Results

Artificial intelligence, with its robust data mining capabilities, enhances diagnostic efficiency and reproducibility when assisting clinicians in decision-making, thereby reducing the risks of misdiagnosis and underdiagnosis. This not only helps alleviate the current challenges of talent shortages and uneven distribution of medical resources but also fosters the development of precision medicine.

Conclusions

This study provides a comprehensive review of the latest research advances and prospects of artificial intelligence technology in the precise diagnosis and treatment of bladder cancer.
Literature
1.
2.
go back to reference Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63.PubMedCrossRef Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63.PubMedCrossRef
3.
go back to reference Soukup V, Čapoun O, Cohen D, et al. Prognostic performance and reproducibility of the 1973 and 2004/2016 world health organization grading classification systems in non-muscle-invasive bladder cancer: a European association of urology non-muscle invasive bladder cancer guidelines panel systematic review. Eur Urol. 2017;72(5):801–13.PubMedCrossRef Soukup V, Čapoun O, Cohen D, et al. Prognostic performance and reproducibility of the 1973 and 2004/2016 world health organization grading classification systems in non-muscle-invasive bladder cancer: a European association of urology non-muscle invasive bladder cancer guidelines panel systematic review. Eur Urol. 2017;72(5):801–13.PubMedCrossRef
4.
go back to reference Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in Situ). Eur Urol. 2022;81(1):75–94.PubMedCrossRef Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in Situ). Eur Urol. 2022;81(1):75–94.PubMedCrossRef
5.
go back to reference Linton KD, Rosario DJ, Thomas F, et al. Disease specific mortality in patients with low risk bladder cancer and the impact of cystoscopic surveillance. J Urol. 2013;189(3):828–33.PubMedCrossRef Linton KD, Rosario DJ, Thomas F, et al. Disease specific mortality in patients with low risk bladder cancer and the impact of cystoscopic surveillance. J Urol. 2013;189(3):828–33.PubMedCrossRef
6.
go back to reference Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–465.PubMedCrossRef Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–465.PubMedCrossRef
7.
go back to reference Witjes JA, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol. 2021;79(1):82–104.PubMedCrossRef Witjes JA, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol. 2021;79(1):82–104.PubMedCrossRef
8.
go back to reference Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404–23.PubMedCrossRef Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404–23.PubMedCrossRef
9.
10.
go back to reference Zhang J, Gerst S, Lefkowitz RA, et al. Imaging of bladder cancer. Radiol Clin North Am. 2007;45(1):183–205.PubMedCrossRef Zhang J, Gerst S, Lefkowitz RA, et al. Imaging of bladder cancer. Radiol Clin North Am. 2007;45(1):183–205.PubMedCrossRef
11.
go back to reference Helenius M, Brekkan E, Dahlman P, et al. Bladder cancer detection in patients with gross haematuria: computed tomography urography with enhancement-triggered scan versus flexible cystoscopy. Scand J Urol. 2015;49(5):377–81.PubMedCrossRef Helenius M, Brekkan E, Dahlman P, et al. Bladder cancer detection in patients with gross haematuria: computed tomography urography with enhancement-triggered scan versus flexible cystoscopy. Scand J Urol. 2015;49(5):377–81.PubMedCrossRef
12.
go back to reference Elshetry ASF, El-Fawakry RM, Hamed EM, et al. Diagnostic accuracy and discriminative power of biparametric versus multiparametric MRI in predicting muscle-invasive bladder cancer. Eur J Radiol. 2022;151:110282.PubMedCrossRef Elshetry ASF, El-Fawakry RM, Hamed EM, et al. Diagnostic accuracy and discriminative power of biparametric versus multiparametric MRI in predicting muscle-invasive bladder cancer. Eur J Radiol. 2022;151:110282.PubMedCrossRef
13.
go back to reference Caglic I, Panebianco V, Vargas HA, et al. MRI of bladder cancer: local and nodal staging. J Magn Reson Imaging. 2020;52(3):649–67.PubMedCrossRef Caglic I, Panebianco V, Vargas HA, et al. MRI of bladder cancer: local and nodal staging. J Magn Reson Imaging. 2020;52(3):649–67.PubMedCrossRef
14.
go back to reference Cipollari S, Carnicelli G, Bicchetti M, et al. Utilization of imaging for staging in bladder cancer: is there a role for MRI or PET-computed tomography? Curr Opin Urol. 2020;30(3):377–86.PubMedCrossRef Cipollari S, Carnicelli G, Bicchetti M, et al. Utilization of imaging for staging in bladder cancer: is there a role for MRI or PET-computed tomography? Curr Opin Urol. 2020;30(3):377–86.PubMedCrossRef
15.
go back to reference Hensley PJ, Panebianco V, Pietzak E, et al. Contemporary staging for muscle-invasive bladder cancer: accuracy and limitations. Eur Urol Oncol. 2022;5(4):403–11.PubMedCrossRef Hensley PJ, Panebianco V, Pietzak E, et al. Contemporary staging for muscle-invasive bladder cancer: accuracy and limitations. Eur Urol Oncol. 2022;5(4):403–11.PubMedCrossRef
16.
go back to reference Cina SJ, Epstein JI, Endrizzi JM, et al. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol. 2001;32(6):630–7.PubMedCrossRef Cina SJ, Epstein JI, Endrizzi JM, et al. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol. 2001;32(6):630–7.PubMedCrossRef
17.
go back to reference Brausi M, Collette L, Kurth K, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol. 2002;41(5):523–31.PubMedCrossRef Brausi M, Collette L, Kurth K, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol. 2002;41(5):523–31.PubMedCrossRef
18.
go back to reference Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. 2008;102(9):1111–4.PubMedCrossRef Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. 2008;102(9):1111–4.PubMedCrossRef
19.
go back to reference Süer E, Özcan C, Baltacı S, et al. Time between first and second transurethral resection of bladder tumors in patients with high-grade T1 tumors: is it a risk factor for residual tumor detection? Urol Int. 2013;91(2):182–6.PubMedCrossRef Süer E, Özcan C, Baltacı S, et al. Time between first and second transurethral resection of bladder tumors in patients with high-grade T1 tumors: is it a risk factor for residual tumor detection? Urol Int. 2013;91(2):182–6.PubMedCrossRef
20.
go back to reference Nese N, Gupta R, Bui MH, et al. Carcinoma in situ of the urinary bladder: review of clinicopathologic characteristics with an emphasis on aspects related to molecular diagnostic techniques and prognosis. J Natl Compr Canc Netw. 2009;7(1):48–57.PubMedCrossRef Nese N, Gupta R, Bui MH, et al. Carcinoma in situ of the urinary bladder: review of clinicopathologic characteristics with an emphasis on aspects related to molecular diagnostic techniques and prognosis. J Natl Compr Canc Netw. 2009;7(1):48–57.PubMedCrossRef
21.
go back to reference Whitmore WF Jr, Bush IM, Esquivel E. Tetracycline ultraviolet fluorescence in bladder carcinoma. Cancer. 1964;17(12):1528–32.PubMedCrossRef Whitmore WF Jr, Bush IM, Esquivel E. Tetracycline ultraviolet fluorescence in bladder carcinoma. Cancer. 1964;17(12):1528–32.PubMedCrossRef
22.
go back to reference Bryan RT, Billingham LJ, Wallace DM. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 2008;101(6):702–5.PubMedCrossRef Bryan RT, Billingham LJ, Wallace DM. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 2008;101(6):702–5.PubMedCrossRef
23.
go back to reference Drejer D, Moltke AL, Nielsen AM, et al. DaBlaCa-11: photodynamic diagnosis in flexible cystoscopy-A randomized study with focus on recurrence. Urology. 2020;137:91–6.PubMedCrossRef Drejer D, Moltke AL, Nielsen AM, et al. DaBlaCa-11: photodynamic diagnosis in flexible cystoscopy-A randomized study with focus on recurrence. Urology. 2020;137:91–6.PubMedCrossRef
24.
go back to reference Underwood JC. More than meets the eye: the changing face of histopathology. Histopathology. 2017;70(1):4–9.PubMedCrossRef Underwood JC. More than meets the eye: the changing face of histopathology. Histopathology. 2017;70(1):4–9.PubMedCrossRef
27.
go back to reference Laurie MA, Zhou SR, Islam MT, et al. Bladder cancer and artificial intelligence: emerging applications. Urol Clin North Am. 2024;51(1):63–75.PubMedCrossRef Laurie MA, Zhou SR, Islam MT, et al. Bladder cancer and artificial intelligence: emerging applications. Urol Clin North Am. 2024;51(1):63–75.PubMedCrossRef
28.
go back to reference Pinar U, Pradere B, Roupret M. Artificial intelligence in bladder cancer prognosis: a pathway for personalized medicine. Curr Opin Urol. 2021;31(4):404–8.PubMedCrossRef Pinar U, Pradere B, Roupret M. Artificial intelligence in bladder cancer prognosis: a pathway for personalized medicine. Curr Opin Urol. 2021;31(4):404–8.PubMedCrossRef
29.
go back to reference Chen S, Jiang L, Zheng X, et al. Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer. Cancer Sci. 2021;112(7):2905–14.PubMedPubMedCentralCrossRef Chen S, Jiang L, Zheng X, et al. Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer. Cancer Sci. 2021;112(7):2905–14.PubMedPubMedCentralCrossRef
30.
go back to reference Pan J, Hong G, Zeng H, et al. An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer. J Transl Med. 2023;21(1):42.PubMedPubMedCentralCrossRef Pan J, Hong G, Zeng H, et al. An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer. J Transl Med. 2023;21(1):42.PubMedPubMedCentralCrossRef
31.
go back to reference Wu S, Chen X, Pan J, et al. An artificial intelligence system for the detection of bladder cancer via cystoscopy: a multicenter diagnostic study. J Natl Cancer Inst. 2022;114(2):220–7.PubMedCrossRef Wu S, Chen X, Pan J, et al. An artificial intelligence system for the detection of bladder cancer via cystoscopy: a multicenter diagnostic study. J Natl Cancer Inst. 2022;114(2):220–7.PubMedCrossRef
32.
go back to reference Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24(4):360–70.PubMedCrossRef Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24(4):360–70.PubMedCrossRef
33.
go back to reference Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.PubMedPubMedCentral Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.PubMedPubMedCentral
34.
go back to reference Watt J, Borhani R, Katsaggelos AK. Machine learning refined: foundations, algorithms, and applications, F, 2016. Watt J, Borhani R, Katsaggelos AK. Machine learning refined: foundations, algorithms, and applications, F, 2016.
35.
go back to reference James GM, Witten DM, Hastie TJ, et al. An introduction to statistical learning. Springer Texts in Statistics, 2013. James GM, Witten DM, Hastie TJ, et al. An introduction to statistical learning. Springer Texts in Statistics, 2013.
36.
go back to reference LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef
37.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef
38.
go back to reference Cybenko GV. Approximation by superpositions of a sigmoidal function. Math Control Signal Sys. 1989;2:303–14.CrossRef Cybenko GV. Approximation by superpositions of a sigmoidal function. Math Control Signal Sys. 1989;2:303–14.CrossRef
39.
go back to reference Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun (Lond). 2020;40(4):154–66.PubMedCrossRef Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun (Lond). 2020;40(4):154–66.PubMedCrossRef
40.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2014;63:139–44.CrossRef Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2014;63:139–44.CrossRef
41.
go back to reference Ian Goodfellow Y B a A C. Deep learning [J]. Ian Goodfellow Y B a A C. Deep learning [J].
42.
go back to reference Srivastava N, Hinton GE, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton GE, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
44.
go back to reference Li H, Bhatt M, Qu Z, et al. Deep learning in ultrasound elastography imaging: a review. Med Phys. 2022;49(9):5993–6018.PubMedCrossRef Li H, Bhatt M, Qu Z, et al. Deep learning in ultrasound elastography imaging: a review. Med Phys. 2022;49(9):5993–6018.PubMedCrossRef
45.
go back to reference Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36(4):257–72.PubMedCrossRef Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36(4):257–72.PubMedCrossRef
46.
go back to reference Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–54.PubMedCrossRef Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–54.PubMedCrossRef
47.
go back to reference Jocham D, Witjes F, Wagner S, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005;174(3):862–6.PubMedCrossRef Jocham D, Witjes F, Wagner S, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005;174(3):862–6.PubMedCrossRef
48.
go back to reference Kausch I, Sommerauer M, Montorsi F, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57(4):595–606.PubMedCrossRef Kausch I, Sommerauer M, Montorsi F, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57(4):595–606.PubMedCrossRef
50.
go back to reference Ikeda A, Nosato H, Kochi Y, et al. Support system of cystoscopic diagnosis for bladder cancer based on artificial intelligence. J Endourol. 2020;34(3):352–8.PubMedPubMedCentralCrossRef Ikeda A, Nosato H, Kochi Y, et al. Support system of cystoscopic diagnosis for bladder cancer based on artificial intelligence. J Endourol. 2020;34(3):352–8.PubMedPubMedCentralCrossRef
51.
go back to reference Lorencin I, ć N A đ e, panjol J Š, et al. Artificial intelligence in medicine. Lorencin I, ć N A đ e, panjol J Š, et al. Artificial intelligence in medicine.
52.
go back to reference Yang D, Yang R, Chen Z, Wang L, Weng X, Liu X. A deep learning network‐Assisted bladder tumour recognition under cystoscopy based on Caffe deep learning framework and EasyDL platform. Int J Med Robot Comput Assist Surg. 2020;17(1):1–8. https://doi.org/10.1002/rcs.2169.CrossRef Yang D, Yang R, Chen Z, Wang L, Weng X, Liu X. A deep learning network‐Assisted bladder tumour recognition under cystoscopy based on Caffe deep learning framework and EasyDL platform. Int J Med Robot Comput Assist Surg. 2020;17(1):1–8. https://​doi.​org/​10.​1002/​rcs.​2169.CrossRef
54.
go back to reference Ali N, Bolenz C, Todenhöfer T, et al. Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors. Sci Rep. 2021;11(1):11629.PubMedPubMedCentralCrossRef Ali N, Bolenz C, Todenhöfer T, et al. Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors. Sci Rep. 2021;11(1):11629.PubMedPubMedCentralCrossRef
55.
go back to reference McIntire PJ, Khan R, Hussain H, et al. Negative predictive value and sensitivity of urine cytology prior to implementation of the Paris system for reporting urinary cytology. Cancer Cytopathol. 2019;127(2):125–31.PubMedCrossRef McIntire PJ, Khan R, Hussain H, et al. Negative predictive value and sensitivity of urine cytology prior to implementation of the Paris system for reporting urinary cytology. Cancer Cytopathol. 2019;127(2):125–31.PubMedCrossRef
56.
go back to reference Sanghvi AB, Allen EZ, Callenberg KM, et al. Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol. 2019;127(10):658–66.PubMedCrossRef Sanghvi AB, Allen EZ, Callenberg KM, et al. Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol. 2019;127(10):658–66.PubMedCrossRef
57.
go back to reference Nojima S, Terayama K, Shimoura S, et al. A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathol. 2021;129(12):984–95.PubMedCrossRef Nojima S, Terayama K, Shimoura S, et al. A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathol. 2021;129(12):984–95.PubMedCrossRef
58.
go back to reference Park SB, Kim JK, Lee HJ, et al. Hematuria: portal venous phase multi detector row CT of the bladder–a prospective study. Radiology. 2007;245(3):798–805.PubMedCrossRef Park SB, Kim JK, Lee HJ, et al. Hematuria: portal venous phase multi detector row CT of the bladder–a prospective study. Radiology. 2007;245(3):798–805.PubMedCrossRef
60.
go back to reference Dolz J, Xu X, Rony J, et al. Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med Phys. 2018;45(12):5482–93.PubMedCrossRef Dolz J, Xu X, Rony J, et al. Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med Phys. 2018;45(12):5482–93.PubMedCrossRef
61.
go back to reference Li R, Chen H, Gong G, et al. Bladder wall segmentation in MRI images via deep learning and anatomical constraints. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1629–32.PubMed Li R, Chen H, Gong G, et al. Bladder wall segmentation in MRI images via deep learning and anatomical constraints. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1629–32.PubMed
62.
63.
go back to reference Xu X, Zhang X, Tian Q, et al. Quantitative identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric MRI radiomics analysis. J Magn Reson Imaging. 2019;49(5):1489–98.PubMedCrossRef Xu X, Zhang X, Tian Q, et al. Quantitative identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric MRI radiomics analysis. J Magn Reson Imaging. 2019;49(5):1489–98.PubMedCrossRef
64.
go back to reference Li J, Qiu Z, Cao K, et al. Predicting muscle invasion in bladder cancer based on MRI: a comparison of radiomics, and single-task and multi-task deep learning. Comput Methods Programs Biomed. 2023;233:107466.PubMedCrossRef Li J, Qiu Z, Cao K, et al. Predicting muscle invasion in bladder cancer based on MRI: a comparison of radiomics, and single-task and multi-task deep learning. Comput Methods Programs Biomed. 2023;233:107466.PubMedCrossRef
65.
go back to reference Yin PN, Kc K, Wei S, et al. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches. BMC Med Inform Decis Mak. 2020;20(1):162.PubMedPubMedCentralCrossRef Yin PN, Kc K, Wei S, et al. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches. BMC Med Inform Decis Mak. 2020;20(1):162.PubMedPubMedCentralCrossRef
66.
go back to reference Compérat EM, Burger M, Gontero P, et al. Grading of urothelial carcinoma and the new “world health organisation classification of tumours of the urinary system and male genital organs 2016.” Eur Urol Focus. 2019;5(3):457–66.PubMedCrossRef Compérat EM, Burger M, Gontero P, et al. Grading of urothelial carcinoma and the new “world health organisation classification of tumours of the urinary system and male genital organs 2016.” Eur Urol Focus. 2019;5(3):457–66.PubMedCrossRef
67.
go back to reference Song H, Yang S, Yu B, et al. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Cancer Imaging. 2023;23(1):89.PubMedPubMedCentralCrossRef Song H, Yang S, Yu B, et al. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Cancer Imaging. 2023;23(1):89.PubMedPubMedCentralCrossRef
68.
go back to reference Jansen I, Lucas M, Bosschieter J, et al. Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am J Pathol. 2020;190(7):1483–90.PubMedCrossRef Jansen I, Lucas M, Bosschieter J, et al. Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am J Pathol. 2020;190(7):1483–90.PubMedCrossRef
69.
go back to reference Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur Radiol. 2019;29(11):6182–90.PubMedCrossRef Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur Radiol. 2019;29(11):6182–90.PubMedCrossRef
70.
go back to reference Nakauma-González JA, Rijnders M, van Riet J, et al. Comprehensive molecular characterization reveals genomic and transcriptomic subtypes of metastatic urothelial carcinoma. Eur Urol. 2022;81(4):331–6.PubMedCrossRef Nakauma-González JA, Rijnders M, van Riet J, et al. Comprehensive molecular characterization reveals genomic and transcriptomic subtypes of metastatic urothelial carcinoma. Eur Urol. 2022;81(4):331–6.PubMedCrossRef
71.
72.
73.
go back to reference Woerl AC, Eckstein M, Geiger J, et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur Urol. 2020;78(2):256–64.PubMedCrossRef Woerl AC, Eckstein M, Geiger J, et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur Urol. 2020;78(2):256–64.PubMedCrossRef
74.
go back to reference Kluth LA, Black PC, Bochner BH, et al. Prognostic and prediction tools in bladder cancer: a comprehensive review of the literature. Eur Urol. 2015;68(2):238–53.PubMedCrossRef Kluth LA, Black PC, Bochner BH, et al. Prognostic and prediction tools in bladder cancer: a comprehensive review of the literature. Eur Urol. 2015;68(2):238–53.PubMedCrossRef
75.
go back to reference Zargar-Shoshtari K, Zargar H, Lotan Y, et al. A multi-institutional analysis of outcomes of patients with clinically node positive urothelial bladder cancer treated with induction chemotherapy and radical cystectomy. J Urol. 2016;195(1):53–9.PubMedCrossRef Zargar-Shoshtari K, Zargar H, Lotan Y, et al. A multi-institutional analysis of outcomes of patients with clinically node positive urothelial bladder cancer treated with induction chemotherapy and radical cystectomy. J Urol. 2016;195(1):53–9.PubMedCrossRef
76.
go back to reference McKibben MJ, Woods ME. Preoperative imaging for staging bladder cancer. Curr Urol Rep. 2015;16(4):22.PubMedCrossRef McKibben MJ, Woods ME. Preoperative imaging for staging bladder cancer. Curr Urol Rep. 2015;16(4):22.PubMedCrossRef
77.
go back to reference Baltaci S, Resorlu B, Yagci C, et al. Computerized tomography for detecting perivesical infiltration and lymph node metastasis in invasive bladder carcinoma. Urol Int. 2008;81(4):399–402.PubMedCrossRef Baltaci S, Resorlu B, Yagci C, et al. Computerized tomography for detecting perivesical infiltration and lymph node metastasis in invasive bladder carcinoma. Urol Int. 2008;81(4):399–402.PubMedCrossRef
78.
go back to reference Daneshmand S, Ahmadi H, Huynh LN, et al. Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology. 2012;80(6):1313–8.PubMedCrossRef Daneshmand S, Ahmadi H, Huynh LN, et al. Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology. 2012;80(6):1313–8.PubMedCrossRef
79.
go back to reference Goodfellow H, Viney Z, Hughes P, et al. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114(3):389–95.PubMedCrossRef Goodfellow H, Viney Z, Hughes P, et al. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114(3):389–95.PubMedCrossRef
80.
go back to reference Lodde M, Lacombe L, Friede J, et al. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010;106(5):658–63.PubMedCrossRef Lodde M, Lacombe L, Friede J, et al. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010;106(5):658–63.PubMedCrossRef
81.
go back to reference Wu S, Zheng J, Li Y, et al. A radiomics nomogram for the preoperative prediction of lymph node metastasis in bladder cancer. Clin Cancer Res. 2017;23(22):6904–11.PubMedCrossRef Wu S, Zheng J, Li Y, et al. A radiomics nomogram for the preoperative prediction of lymph node metastasis in bladder cancer. Clin Cancer Res. 2017;23(22):6904–11.PubMedCrossRef
82.
go back to reference Bhambhvani HP, Zamora A, Shkolyar E, et al. Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer. Urol Oncol. 2020;39:193 e7-193 e12.PubMedCrossRef Bhambhvani HP, Zamora A, Shkolyar E, et al. Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer. Urol Oncol. 2020;39:193 e7-193 e12.PubMedCrossRef
83.
go back to reference Wang G, Lam KM, Deng Z, et al. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput Biol Med. 2015;63:124–32.PubMedCrossRef Wang G, Lam KM, Deng Z, et al. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput Biol Med. 2015;63:124–32.PubMedCrossRef
84.
go back to reference Gavriel CG, Dimitriou N, Brieu N, et al. Assessment of immunological features in muscle-invasive bladder cancer prognosis using ensemble learning. Cancers. 2021;13(7):1624.PubMedPubMedCentralCrossRef Gavriel CG, Dimitriou N, Brieu N, et al. Assessment of immunological features in muscle-invasive bladder cancer prognosis using ensemble learning. Cancers. 2021;13(7):1624.PubMedPubMedCentralCrossRef
85.
go back to reference Hastie T J, Tibshirani R, Friedman J H. The elements of statistical learning: data mining, inference, and prediction, 2nd Edition; proceedings of the Springer Series in Statistics, F, 2001. Hastie T J, Tibshirani R, Friedman J H. The elements of statistical learning: data mining, inference, and prediction, 2nd Edition; proceedings of the Springer Series in Statistics, F, 2001.
86.
go back to reference Sun D, Hadjiiski L, Gormley J, et al. Survival prediction of patients with bladder cancer after cystectomy based on clinical, radiomics, and deep-learning descriptors. Cancers. 2023;15(17):4372.PubMedPubMedCentralCrossRef Sun D, Hadjiiski L, Gormley J, et al. Survival prediction of patients with bladder cancer after cystectomy based on clinical, radiomics, and deep-learning descriptors. Cancers. 2023;15(17):4372.PubMedPubMedCentralCrossRef
87.
go back to reference Soukup V, Čapoun O, Cohen D, et al. Risk stratification tools and prognostic models in non-muscle-invasive bladder cancer: a critical assessment from the European Association of urology non-muscle-invasive bladder cancer guidelines panel. Eur Urol Focus. 2020;6(3):479–89.PubMedCrossRef Soukup V, Čapoun O, Cohen D, et al. Risk stratification tools and prognostic models in non-muscle-invasive bladder cancer: a critical assessment from the European Association of urology non-muscle-invasive bladder cancer guidelines panel. Eur Urol Focus. 2020;6(3):479–89.PubMedCrossRef
88.
go back to reference Xu X, Wang H, Du P, et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors. J Magn Reson Imaging. 2019;50(6):1893–904.PubMedPubMedCentralCrossRef Xu X, Wang H, Du P, et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors. J Magn Reson Imaging. 2019;50(6):1893–904.PubMedPubMedCentralCrossRef
89.
go back to reference Hasnain Z, Mason J, Gill KS, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS ONE. 2019;14(2):e0210976.PubMedPubMedCentralCrossRef Hasnain Z, Mason J, Gill KS, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS ONE. 2019;14(2):e0210976.PubMedPubMedCentralCrossRef
90.
go back to reference Lucas M, Jansen I, van Leeuwen TG, et al. Deep learning-based recurrence prediction in patients with non-muscle-invasive bladder cancer. Eur Urol Focus. 2022;8(1):165–72.PubMedCrossRef Lucas M, Jansen I, van Leeuwen TG, et al. Deep learning-based recurrence prediction in patients with non-muscle-invasive bladder cancer. Eur Urol Focus. 2022;8(1):165–72.PubMedCrossRef
91.
92.
93.
go back to reference Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67.PubMedPubMedCentralCrossRef Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67.PubMedPubMedCentralCrossRef
94.
go back to reference Loeffler CML, Ortiz Bruechle N, Jung M, et al. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur Urol Focus. 2022;8(2):472–9.PubMedCrossRef Loeffler CML, Ortiz Bruechle N, Jung M, et al. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur Urol Focus. 2022;8(2):472–9.PubMedCrossRef
95.
go back to reference Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.PubMedPubMedCentralCrossRef Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.PubMedPubMedCentralCrossRef
96.
go back to reference Dolz J, Gopinath K, Yuan J, et al. HyperDense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging. 2019;38(5):1116–26.PubMedCrossRef Dolz J, Gopinath K, Yuan J, et al. HyperDense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging. 2019;38(5):1116–26.PubMedCrossRef
97.
98.
go back to reference Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: a broad overview. Crit Rev Oncol Hematol. 2020;155:103109.PubMedCrossRef Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: a broad overview. Crit Rev Oncol Hematol. 2020;155:103109.PubMedCrossRef
99.
go back to reference Linscott JA, Miyagi H, Murthy PB, et al. From detection to cure–Emerging roles for urinary tumor DNA (utDNA) in bladder cancer. Curr Oncol Rep. 2024;26(8):945–58.PubMedCrossRef Linscott JA, Miyagi H, Murthy PB, et al. From detection to cure–Emerging roles for urinary tumor DNA (utDNA) in bladder cancer. Curr Oncol Rep. 2024;26(8):945–58.PubMedCrossRef
100.
go back to reference Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152–65.PubMedPubMedCentralCrossRef Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152–65.PubMedPubMedCentralCrossRef
Metadata
Title
Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review
Authors
Xiangxiang Yang
Rui Yang, MD
Xiuheng Liu, MD
Zhiyuan Chen, MD
Qingyuan Zheng, MD
Publication date
12-04-2025
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-025-17228-6
SPONSORED

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by:
  • Viatris
Developed by: Springer Healthcare
Watch now
Video