Skip to main content
Top

18-12-2024 | Bladder Cancer | Review

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer

Authors: Ting Zhao, Jian He, Licui Zhang, Hongyang Li, Qinghong Duan

Published in: Abdominal Radiology

Login to get access

Abstract

Objective

To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images.

Methods

A retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves.

Results

Among the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models.

Conclusion

The CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.
Literature
1.
go back to reference Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017;71(1):96–108.CrossRefPubMed Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017;71(1):96–108.CrossRefPubMed
2.
go back to reference Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022. 400(10364): 1712–1721.CrossRefPubMed Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022. 400(10364): 1712–1721.CrossRefPubMed
3.
go back to reference Ham WS, Park JS, Jang WS, Kim J. Nephron-Sparing Approaches in Upper Tract Urothelial Carcinoma: Current and Future Strategies. Biomedicines. 2022. 10(9): 2223.CrossRefPubMedPubMedCentral Ham WS, Park JS, Jang WS, Kim J. Nephron-Sparing Approaches in Upper Tract Urothelial Carcinoma: Current and Future Strategies. Biomedicines. 2022. 10(9): 2223.CrossRefPubMedPubMedCentral
4.
go back to reference Musat MG, Kwon CS, Masters E, Sikirica S, Pijush DB, Forsythe A. Treatment Outcomes of High-Risk Non-Muscle Invasive Bladder Cancer (HR-NMIBC) in Real-World Evidence (RWE) Studies: Systematic Literature Review (SLR). Clinicoecon Outcomes Res. 2022. 14: 35–48.CrossRefPubMedPubMedCentral Musat MG, Kwon CS, Masters E, Sikirica S, Pijush DB, Forsythe A. Treatment Outcomes of High-Risk Non-Muscle Invasive Bladder Cancer (HR-NMIBC) in Real-World Evidence (RWE) Studies: Systematic Literature Review (SLR). Clinicoecon Outcomes Res. 2022. 14: 35–48.CrossRefPubMedPubMedCentral
5.
go back to reference Klaassen Z, Kamat AM, Kassouf W, et al. Treatment Strategy for Newly Diagnosed T1 High-grade Bladder Urothelial Carcinoma: New Insights and Updated Recommendations. Eur Urol. 2018. 74(5): 597–608.CrossRefPubMed Klaassen Z, Kamat AM, Kassouf W, et al. Treatment Strategy for Newly Diagnosed T1 High-grade Bladder Urothelial Carcinoma: New Insights and Updated Recommendations. Eur Urol. 2018. 74(5): 597–608.CrossRefPubMed
6.
go back to reference Flaig TW, Spiess PE, Abern M, et al. NCCN Guidelines® Insights: Bladder Cancer, Version 2.2022. J Natl Compr Canc Netw. 2022. 20(8): 866–878.CrossRefPubMed Flaig TW, Spiess PE, Abern M, et al. NCCN Guidelines® Insights: Bladder Cancer, Version 2.2022. J Natl Compr Canc Netw. 2022. 20(8): 866–878.CrossRefPubMed
7.
go back to reference Ferro M, Di Lorenzo G, Buonerba C, et al. Predictors of Residual T1 High Grade on Re-Transurethral Resection in a Large Multi-Institutional Cohort of Patients with Primary T1 High-Grade/Grade 3 Bladder Cancer. J Cancer. 2018. 9(22): 4250–4254.CrossRefPubMedPubMedCentral Ferro M, Di Lorenzo G, Buonerba C, et al. Predictors of Residual T1 High Grade on Re-Transurethral Resection in a Large Multi-Institutional Cohort of Patients with Primary T1 High-Grade/Grade 3 Bladder Cancer. J Cancer. 2018. 9(22): 4250–4254.CrossRefPubMedPubMedCentral
8.
go back to reference Ping Z, Zhan X, Chen T, et al. Survival Outcome of Partial Cystectomy versus Transurethral Bladder Tumor Resection in T1 High-Grade Bladder Cancer Patients: A Propensity Score Matching Study. J Oncol. 2022. 2022: 3016725. Ping Z, Zhan X, Chen T, et al. Survival Outcome of Partial Cystectomy versus Transurethral Bladder Tumor Resection in T1 High-Grade Bladder Cancer Patients: A Propensity Score Matching Study. J Oncol. 2022. 2022: 3016725.
9.
go back to reference Hamad J, McCloskey H, Milowsky MI, Royce T, Smith A. Bladder preservation in muscle-invasive bladder cancer: a comprehensive review. Int Braz J Urol. 2020. 46(2): 169–184.CrossRefPubMedPubMedCentral Hamad J, McCloskey H, Milowsky MI, Royce T, Smith A. Bladder preservation in muscle-invasive bladder cancer: a comprehensive review. Int Braz J Urol. 2020. 46(2): 169–184.CrossRefPubMedPubMedCentral
10.
go back to reference Deng Z, Dong W, Xiong S, et al. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer. Front Oncol. 2023. 13: 1166245.CrossRefPubMedPubMedCentral Deng Z, Dong W, Xiong S, et al. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer. Front Oncol. 2023. 13: 1166245.CrossRefPubMedPubMedCentral
11.
go back to reference Alfred Witjes J, Max Bruins H, Carrión A, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. Eur Urol. 2024. 85(1): 17–31.CrossRefPubMed Alfred Witjes J, Max Bruins H, Carrión A, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. Eur Urol. 2024. 85(1): 17–31.CrossRefPubMed
12.
go back to reference Liu Z, Wang S, Dong D, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019. 9(5): 1303–1322.CrossRefPubMedPubMedCentral Liu Z, Wang S, Dong D, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019. 9(5): 1303–1322.CrossRefPubMedPubMedCentral
13.
go back to reference Rahimpour M, Boellaard R, Jentjens S, Deckers W, Goffin K, Koole M. A multi-label CNN model for the automatic detection and segmentation of gliomas using [(18)F]FET PET imaging. Eur J Nucl Med Mol Imaging. 2023. 50(8): 2441–2452.CrossRefPubMed Rahimpour M, Boellaard R, Jentjens S, Deckers W, Goffin K, Koole M. A multi-label CNN model for the automatic detection and segmentation of gliomas using [(18)F]FET PET imaging. Eur J Nucl Med Mol Imaging. 2023. 50(8): 2441–2452.CrossRefPubMed
14.
go back to reference Tang X, Wang S, An C, Du P, Yang Y. Preoperative High Neutrophil-to-Lymphocyte Ratio Is Associated with High-grade Bladder Cancer. Anticancer Res. 2017. 37(8): 4659–4663.PubMed Tang X, Wang S, An C, Du P, Yang Y. Preoperative High Neutrophil-to-Lymphocyte Ratio Is Associated with High-grade Bladder Cancer. Anticancer Res. 2017. 37(8): 4659–4663.PubMed
15.
go back to reference Li DX, Wang XM, Tang Y, et al. Prognostic value of preoperative neutrophil-to-lymphocyte ratio in histological variants of non-muscle-invasive bladder cancer. Investig Clin Urol. 2021. 62(6): 641–649.CrossRefPubMedPubMedCentral Li DX, Wang XM, Tang Y, et al. Prognostic value of preoperative neutrophil-to-lymphocyte ratio in histological variants of non-muscle-invasive bladder cancer. Investig Clin Urol. 2021. 62(6): 641–649.CrossRefPubMedPubMedCentral
16.
go back to reference Jubber I, Ong S, Bukavina L, et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur Urol. 2023. 84(2): 176–190.CrossRefPubMed Jubber I, Ong S, Bukavina L, et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur Urol. 2023. 84(2): 176–190.CrossRefPubMed
17.
go back to reference Zeng H, Yang C, Zhang H, et al. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification. Comput Intell Neurosci. 2019. 2019: 3761203. Zeng H, Yang C, Zhang H, et al. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification. Comput Intell Neurosci. 2019. 2019: 3761203.
18.
go back to reference Dong X, Dan X, Yawen A, et al. Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Thorac Cancer. 2020. 11(9): 2650–2659.CrossRefPubMedPubMedCentral Dong X, Dan X, Yawen A, et al. Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Thorac Cancer. 2020. 11(9): 2650–2659.CrossRefPubMedPubMedCentral
19.
go back to reference Xu X, Wang H, Guo Y, et al. Study Progress of Noninvasive Imaging and Radiomics for Decoding the Phenotypes and Recurrence Risk of Bladder Cancer. Front Oncol. 2021. 11: 704039.CrossRefPubMedPubMedCentral Xu X, Wang H, Guo Y, et al. Study Progress of Noninvasive Imaging and Radiomics for Decoding the Phenotypes and Recurrence Risk of Bladder Cancer. Front Oncol. 2021. 11: 704039.CrossRefPubMedPubMedCentral
20.
go back to reference Lopez-Beltran A, Cookson MS, Guercio BJ, Cheng L. Advances in diagnosis and treatment of bladder cancer. BMJ. 2024. 384: e076743.CrossRefPubMed Lopez-Beltran A, Cookson MS, Guercio BJ, Cheng L. Advances in diagnosis and treatment of bladder cancer. BMJ. 2024. 384: e076743.CrossRefPubMed
21.
go back to reference Hansel DE, Amin MB, Comperat E, et al. A contemporary update on pathology standards for bladder cancer: transurethral resection and radical cystectomy specimens. Eur Urol. 2013. 63(2): 321–32.CrossRefPubMed Hansel DE, Amin MB, Comperat E, et al. A contemporary update on pathology standards for bladder cancer: transurethral resection and radical cystectomy specimens. Eur Urol. 2013. 63(2): 321–32.CrossRefPubMed
22.
go back to reference Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur Radiol. 2019. 29(11): 6182–6190.CrossRefPubMed Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur Radiol. 2019. 29(11): 6182–6190.CrossRefPubMed
23.
go back to reference Song H, Yang S, Yu B, et al. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Cancer Imaging. 2023. 23(1): 89.CrossRefPubMedPubMedCentral Song H, Yang S, Yu B, et al. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Cancer Imaging. 2023. 23(1): 89.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Yang Y, Zou X, Wang Y, Ma X. Application of deep learning as a noninvasive tool to differentiate muscle-invasive bladder cancer and non-muscle-invasive bladder cancer with CT. Eur J Radiol. 2021. 139: 109666.CrossRefPubMed Yang Y, Zou X, Wang Y, Ma X. Application of deep learning as a noninvasive tool to differentiate muscle-invasive bladder cancer and non-muscle-invasive bladder cancer with CT. Eur J Radiol. 2021. 139: 109666.CrossRefPubMed
26.
go back to reference Zhang G, Wu Z, Xu L, et al. Deep Learning on Enhanced CT Images Can Predict the Muscular Invasiveness of Bladder Cancer. Front Oncol. 2021. 11: 654685.CrossRefPubMedPubMedCentral Zhang G, Wu Z, Xu L, et al. Deep Learning on Enhanced CT Images Can Predict the Muscular Invasiveness of Bladder Cancer. Front Oncol. 2021. 11: 654685.CrossRefPubMedPubMedCentral
27.
go back to reference Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics. 2005. 21(13): 3001–8.CrossRefPubMed Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics. 2005. 21(13): 3001–8.CrossRefPubMed
29.
go back to reference Li J, Liu S, Hu Y, Zhu L, Mao Y, Liu J. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. J Med Internet Res. 2022. 24(8): e38082.CrossRefPubMedPubMedCentral Li J, Liu S, Hu Y, Zhu L, Mao Y, Liu J. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. J Med Internet Res. 2022. 24(8): e38082.CrossRefPubMedPubMedCentral
31.
go back to reference Guo L, Shi P, Chen L, Chen C, Ding W. Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation. Information Fusion. 2023. 92: 479–497.CrossRef Guo L, Shi P, Chen L, Chen C, Ding W. Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation. Information Fusion. 2023. 92: 479–497.CrossRef
32.
go back to reference Gross M, Huber S, Arora S, et al. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics. Eur Radiol. 2024. 34(8): 5056–5065.CrossRefPubMedPubMedCentral Gross M, Huber S, Arora S, et al. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics. Eur Radiol. 2024. 34(8): 5056–5065.CrossRefPubMedPubMedCentral
Metadata
Title
A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer
Authors
Ting Zhao
Jian He
Licui Zhang
Hongyang Li
Qinghong Duan
Publication date
18-12-2024
Publisher
Springer US
Published in
Abdominal Radiology
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-024-04748-0

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video