Skip to main content
Top
Published in: The Cerebellum 1/2024

Open Access 21-01-2023 | Bilateral Vestibulopathy | RESEARCH

Catch-Up Saccades in Vestibular Hypofunction: A Contribution of the Cerebellum?

Authors: Ruben Hermann, Camille Robert, Vincent Lagadec, Mathieu Dupre, Denis Pelisson, Caroline Froment Tilikete

Published in: The Cerebellum | Issue 1/2024

Login to get access

Abstract

Long-term deficits of the vestibulo-ocular reflex (VOR) elicited by head rotation can be partially compensated by catch-up saccades (CuS). These saccades are initially visually guided, but their latency can greatly decrease resulting in short latency CuS (SL-CuS). It is still unclear what triggers these CuS and what are the underlying neural circuits. In this study, we aimed at evaluating the impact of cerebellar pathology on CuS by comparing their characteristics between two groups of patients with bilateral vestibular hypofunction, with or without additional cerebellar dysfunction. We recruited 12 patients with both bilateral vestibular hypofunction and cerebellar dysfunction (BVH-CD group) and 12 patients with isolated bilateral vestibular hypofunction (BVH group). Both groups were matched for age and residual VOR gain. Subjects underwent video head impulse test recording of the horizontal semicircular canals responses as well as recording of visually guided saccades in the step, gap, and overlap paradigms. Latency and gain of the different saccades were calculated. The mean age for BVH-CD and BVH was, respectively, 67.8 and 67.2 years, and the mean residual VOR gain was, respectively, 0.24 and 0.26. The mean latency of the first catch-up saccade was significantly longer for the BVH-CD group than that for the BVH group (204 ms vs 145 ms, p < 0.05). There was no significant difference in the latency of visually guided saccades between the two groups, for none of the three paradigms. The gain of covert saccades tended to be lower in the BVH-CD group than in BVH group (t test; p = 0.06). The mean gain of the 12° or 20° visually guided saccades were not different in both groups. Our results suggest that the cerebellum plays a role in the generation of compensatory SL-CuS observed in BVH patients.
Literature
1.
2.
go back to reference Manzari L, Burgess AM, MacDougall HG, Curthoys IS. Vestibular function after vestibular neuritis. Int J Audiol. 2013;52(10):713–8.CrossRefPubMed Manzari L, Burgess AM, MacDougall HG, Curthoys IS. Vestibular function after vestibular neuritis. Int J Audiol. 2013;52(10):713–8.CrossRefPubMed
3.
go back to reference Hermann R, Pelisson D, Dumas O, Urquizar C, Truy E, Tilikete C. Are covert saccade functionally relevant in vestibular hypofunction? Cerebellum Lond Engl. 2017;17(3):300.CrossRef Hermann R, Pelisson D, Dumas O, Urquizar C, Truy E, Tilikete C. Are covert saccade functionally relevant in vestibular hypofunction? Cerebellum Lond Engl. 2017;17(3):300.CrossRef
4.
go back to reference Batuecas-Caletrio A, Santacruz-Ruiz S, Muñoz-Herrera A, Perez-Fernandez N. The vestibulo-ocular reflex and subjective balance after vestibular schwannoma surgery. Laryngoscope. 2014;124(6):1431–5.CrossRefPubMed Batuecas-Caletrio A, Santacruz-Ruiz S, Muñoz-Herrera A, Perez-Fernandez N. The vestibulo-ocular reflex and subjective balance after vestibular schwannoma surgery. Laryngoscope. 2014;124(6):1431–5.CrossRefPubMed
5.
go back to reference Tian J, Crane BT, Demer JL. Vestibular catch-up saccades in labyrinthine deficiency. Exp Brain Res. 2000;131(4):448–57.CrossRefPubMed Tian J, Crane BT, Demer JL. Vestibular catch-up saccades in labyrinthine deficiency. Exp Brain Res. 2000;131(4):448–57.CrossRefPubMed
6.
go back to reference Fischer B, Ramsperger E. Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res. 1984;57(1):191–5.CrossRefPubMed Fischer B, Ramsperger E. Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res. 1984;57(1):191–5.CrossRefPubMed
7.
go back to reference Colagiorgio P, Versino M, Colnaghi S, Quaglieri S, Manfrin M, Zamaro E, et al. New insights into vestibular-saccade interaction based on covert corrective saccades in patients with unilateral vestibular deficits. J Neurophysiol. 2017;117(6):2324–38.CrossRefPubMedPubMedCentral Colagiorgio P, Versino M, Colnaghi S, Quaglieri S, Manfrin M, Zamaro E, et al. New insights into vestibular-saccade interaction based on covert corrective saccades in patients with unilateral vestibular deficits. J Neurophysiol. 2017;117(6):2324–38.CrossRefPubMedPubMedCentral
8.
go back to reference Van Nechel C, Bostan A, Duquesne U, Hautefort C, Toupet M. Visual input is the main trigger and parametric determinant for catch-up saccades during video head impulse test in bilateral vestibular loss. Front Neurol. 2018;9:1138.CrossRefPubMed Van Nechel C, Bostan A, Duquesne U, Hautefort C, Toupet M. Visual input is the main trigger and parametric determinant for catch-up saccades during video head impulse test in bilateral vestibular loss. Front Neurol. 2018;9:1138.CrossRefPubMed
9.
go back to reference Kasai T, Zee DS. Eye-head coordination in labyrinthine-defective human beings. Brain Res. 1978;144(1):123–41.CrossRefPubMed Kasai T, Zee DS. Eye-head coordination in labyrinthine-defective human beings. Brain Res. 1978;144(1):123–41.CrossRefPubMed
10.
go back to reference Black RA, Halmagyi GM, Thurtell MJ, Todd MJ, Curthoys IS. The active head-impulse test in unilateral peripheral vestibulopathy. Arch Neurol. 2005;62(2):290–3.CrossRefPubMed Black RA, Halmagyi GM, Thurtell MJ, Todd MJ, Curthoys IS. The active head-impulse test in unilateral peripheral vestibulopathy. Arch Neurol. 2005;62(2):290–3.CrossRefPubMed
11.
go back to reference Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum Lond Engl. 2012;11(2):457–87.CrossRef Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum Lond Engl. 2012;11(2):457–87.CrossRef
12.
go back to reference Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80(4):1911–31.CrossRefPubMed Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80(4):1911–31.CrossRefPubMed
13.
go back to reference Piu P, Pretegiani E, Rosini F, Serchi V, Zaino D, Chiantini T, et al. The cerebellum improves the precision of antisaccades by a latency-duration trade-off. Prog Brain Res. 2019;249:125–39.CrossRefPubMed Piu P, Pretegiani E, Rosini F, Serchi V, Zaino D, Chiantini T, et al. The cerebellum improves the precision of antisaccades by a latency-duration trade-off. Prog Brain Res. 2019;249:125–39.CrossRefPubMed
14.
go back to reference Pélisson D, Alahyane N, Panouillères M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34(8):1103–20.CrossRefPubMed Pélisson D, Alahyane N, Panouillères M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34(8):1103–20.CrossRefPubMed
15.
go back to reference Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Bárány Society. J Vestib Res Equilib Orientat. 2017;27(4):177–89.CrossRef Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Bárány Society. J Vestib Res Equilib Orientat. 2017;27(4):177–89.CrossRef
17.
go back to reference Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci Off J Soc Neurosci. 1999;19(24):10931–9.CrossRef Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci Off J Soc Neurosci. 1999;19(24):10931–9.CrossRef
18.
go back to reference Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum Lond Engl. 2010;9(4):548–55.CrossRef Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum Lond Engl. 2010;9(4):548–55.CrossRef
19.
go back to reference Colnaghi S, Ramat S, D’Angelo E, Cortese A, Beltrami G, Moglia A, et al. θ-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. Cerebellum Lond Engl. 2011;10(4):711–9.CrossRef Colnaghi S, Ramat S, D’Angelo E, Cortese A, Beltrami G, Moglia A, et al. θ-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. Cerebellum Lond Engl. 2011;10(4):711–9.CrossRef
20.
go back to reference Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.CrossRefPubMed Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.CrossRefPubMed
21.
go back to reference Zee DS, Yamazaki A, Butler PH, Gucer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.CrossRefPubMed Zee DS, Yamazaki A, Butler PH, Gucer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.CrossRefPubMed
22.
go back to reference Dupré M, Hermann R, Froment TC. Update on cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Cerebellum Lond Engl. 2021;20(5):687–700.CrossRef Dupré M, Hermann R, Froment TC. Update on cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Cerebellum Lond Engl. 2021;20(5):687–700.CrossRef
23.
go back to reference Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci. 1981;4:273–99.CrossRefPubMed Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci. 1981;4:273–99.CrossRefPubMed
24.
go back to reference Lisberger SG, Miles FA, Zee DS. Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. J Neurophysiol. 1984;52(6):1140–53.CrossRefPubMed Lisberger SG, Miles FA, Zee DS. Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. J Neurophysiol. 1984;52(6):1140–53.CrossRefPubMed
25.
go back to reference Szmulewicz DJ, Merchant SN, Halmagyi GM. Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome: a histopathologic case report. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2011;32(8):e63-65.CrossRef Szmulewicz DJ, Merchant SN, Halmagyi GM. Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome: a histopathologic case report. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2011;32(8):e63-65.CrossRef
26.
go back to reference Tzvi E, Loens S, Donchin O. Mini-review: the role of the cerebellum in visuomotor adaptation. Cerebellum Lond Engl. 2022;21(2):306–13.CrossRef Tzvi E, Loens S, Donchin O. Mini-review: the role of the cerebellum in visuomotor adaptation. Cerebellum Lond Engl. 2022;21(2):306–13.CrossRef
27.
go back to reference Matiñó-Soler E, Rey-Martinez J, Trinidad-Ruiz G, Batuecas-Caletrio A, Pérez FN. A new method to improve the imbalance in chronic unilateral vestibular loss: the organization of refixation saccades. Acta Otolaryngol (Stockh). 2016;136(9):894–900.CrossRefPubMed Matiñó-Soler E, Rey-Martinez J, Trinidad-Ruiz G, Batuecas-Caletrio A, Pérez FN. A new method to improve the imbalance in chronic unilateral vestibular loss: the organization of refixation saccades. Acta Otolaryngol (Stockh). 2016;136(9):894–900.CrossRefPubMed
Metadata
Title
Catch-Up Saccades in Vestibular Hypofunction: A Contribution of the Cerebellum?
Authors
Ruben Hermann
Camille Robert
Vincent Lagadec
Mathieu Dupre
Denis Pelisson
Caroline Froment Tilikete
Publication date
21-01-2023
Publisher
Springer US
Published in
The Cerebellum / Issue 1/2024
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-023-01512-w

Other articles of this Issue 1/2024

The Cerebellum 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine