Skip to main content
Top
Published in: Cardiovascular Toxicology 6/2024

04-05-2024 | Research

Betaine Protects Mice from Cardiotoxicity Triggered by Sodium Arsenite Through Antioxidative and Anti-inflammatory Pathways

Authors: Saeedeh Shariati, Maryam Shirani, Reza Azadnasab, Layasadat Khorsandi, Mohammad Javad Khodayar

Published in: Cardiovascular Toxicology | Issue 6/2024

Login to get access

Abstract

NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.
Literature
1.
go back to reference Moon, K., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and cardiovascular disease: An updated systematic review. Current Atherosclerosis Reports, 14, 542–555.PubMedPubMedCentralCrossRef Moon, K., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and cardiovascular disease: An updated systematic review. Current Atherosclerosis Reports, 14, 542–555.PubMedPubMedCentralCrossRef
2.
go back to reference Jiang, X., & Yan, M. (2021). Surgical treatment for improved 1-year survival in patients with primary cardiac sarcoma. Anatolian Journal of Cardiology, 25, 796.PubMedPubMedCentralCrossRef Jiang, X., & Yan, M. (2021). Surgical treatment for improved 1-year survival in patients with primary cardiac sarcoma. Anatolian Journal of Cardiology, 25, 796.PubMedPubMedCentralCrossRef
3.
go back to reference Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L., & Zhu, R. (2021). Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 12, 2614.PubMedPubMedCentralCrossRef Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L., & Zhu, R. (2021). Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 12, 2614.PubMedPubMedCentralCrossRef
4.
go back to reference Xiaolong, J., Jianhang, G., Jingyuan, T., Ke, M., & Yanqi, L. (2023). Research progress on degradation methods and product properties of plant polysaccharides. Journal of Light Industry, 38, 1. Xiaolong, J., Jianhang, G., Jingyuan, T., Ke, M., & Yanqi, L. (2023). Research progress on degradation methods and product properties of plant polysaccharides. Journal of Light Industry, 38, 1.
5.
go back to reference Mumford, J. L., Wu, K., Xia, Y., Kwok, R., Yang, Z., Foster, J., & Sanders, W. E., Jr. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environmental Health Perspectives, 115, 690–694.PubMedPubMedCentralCrossRef Mumford, J. L., Wu, K., Xia, Y., Kwok, R., Yang, Z., Foster, J., & Sanders, W. E., Jr. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environmental Health Perspectives, 115, 690–694.PubMedPubMedCentralCrossRef
6.
go back to reference Alissa, E. M., & Ferns, G. A. (2011). Heavy metal poisoning and cardiovascular disease. Journal of Toxicology, 2011, 1.CrossRef Alissa, E. M., & Ferns, G. A. (2011). Heavy metal poisoning and cardiovascular disease. Journal of Toxicology, 2011, 1.CrossRef
7.
go back to reference Mathews, V., Paul, M., Abhilash, M., Manju, A., Abhilash, S., & Nair, R. H. (2013). Myocardial toxicity of acute promyelocytic leukaemia drug-arsenic trioxide. European Review in Medicine and Pharmacological Science, 17, 34–38. Mathews, V., Paul, M., Abhilash, M., Manju, A., Abhilash, S., & Nair, R. H. (2013). Myocardial toxicity of acute promyelocytic leukaemia drug-arsenic trioxide. European Review in Medicine and Pharmacological Science, 17, 34–38.
8.
go back to reference Zhou, L., Liu, Y., Sun, H., Li, H., Zhang, Z., & Hao, P. (2022). Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sensors and Actuators B: Chemical, 369, 132315.CrossRef Zhou, L., Liu, Y., Sun, H., Li, H., Zhang, Z., & Hao, P. (2022). Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sensors and Actuators B: Chemical, 369, 132315.CrossRef
9.
go back to reference Fu, Q., Chen, R., Ding, Y., Xu, S., Huang, C., He, B., Jiang, T., Zeng, B., Bao, M., & Li, S. (2023). Sodium intake and the risk of various types of cardiovascular diseases: A Mendelian randomization study. Frontiers in Nutrition, 10, 1.CrossRef Fu, Q., Chen, R., Ding, Y., Xu, S., Huang, C., He, B., Jiang, T., Zeng, B., Bao, M., & Li, S. (2023). Sodium intake and the risk of various types of cardiovascular diseases: A Mendelian randomization study. Frontiers in Nutrition, 10, 1.CrossRef
10.
go back to reference Yang, W., Ding, N., Luo, R., Zhang, Q., Li, Z., Zhao, F., Zhang, S., Zhang, X., Zhou, T., & Wang, H. (2023). Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury. Bioactive Materials, 27, 1–14.PubMedPubMedCentralCrossRef Yang, W., Ding, N., Luo, R., Zhang, Q., Li, Z., Zhao, F., Zhang, S., Zhang, X., Zhou, T., & Wang, H. (2023). Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury. Bioactive Materials, 27, 1–14.PubMedPubMedCentralCrossRef
11.
go back to reference Yu, Y., Wang, L., Ni, S., Li, D., Liu, J., Chu, H. Y., Zhang, N., Sun, M., Li, N., & Ren, Q. (2022). Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nature Communications, 13, 4241.PubMedPubMedCentralCrossRef Yu, Y., Wang, L., Ni, S., Li, D., Liu, J., Chu, H. Y., Zhang, N., Sun, M., Li, N., & Ren, Q. (2022). Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nature Communications, 13, 4241.PubMedPubMedCentralCrossRef
12.
go back to reference Samanta, J., Mondal, A., Saha, S., Chakraborty, S., & Sengupta, A. (2020). Oleic acid protects from arsenic-induced cardiac hypertrophy via AMPK/FoxO/NFATc3 pathway. Cardiovascular Toxicology, 20, 261–280.PubMedCrossRef Samanta, J., Mondal, A., Saha, S., Chakraborty, S., & Sengupta, A. (2020). Oleic acid protects from arsenic-induced cardiac hypertrophy via AMPK/FoxO/NFATc3 pathway. Cardiovascular Toxicology, 20, 261–280.PubMedCrossRef
13.
go back to reference Klaassen, C. D., & Amdur, M. O. (2013). Casarett and Doull’s toxicology: The basic science of poisons. McGraw-Hill. Klaassen, C. D., & Amdur, M. O. (2013). Casarett and Doull’s toxicology: The basic science of poisons. McGraw-Hill.
14.
go back to reference Moon, K. A., Guallar, E., Umans, J. G., Devereux, R. B., Best, L. G., Francesconi, K. A., Goessler, W., Pollak, J., Silbergeld, E. K., & Howard, B. V. (2013). Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: A prospective cohort study. Annals of Internal Medicine, 159, 649–659.PubMedPubMedCentral Moon, K. A., Guallar, E., Umans, J. G., Devereux, R. B., Best, L. G., Francesconi, K. A., Goessler, W., Pollak, J., Silbergeld, E. K., & Howard, B. V. (2013). Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: A prospective cohort study. Annals of Internal Medicine, 159, 649–659.PubMedPubMedCentral
15.
go back to reference Alamolhodaei, N. S., Shirani, K., & Karimi, G. (2015). Arsenic cardiotoxicity: An overview. Environmental Toxicology and Pharmacology, 40, 1005–1014.PubMedCrossRef Alamolhodaei, N. S., Shirani, K., & Karimi, G. (2015). Arsenic cardiotoxicity: An overview. Environmental Toxicology and Pharmacology, 40, 1005–1014.PubMedCrossRef
16.
go back to reference Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95–107.PubMedCrossRef Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95–107.PubMedCrossRef
17.
go back to reference Kuzu, M., Kandemir, F. M., Yıldırım, S., Çağlayan, C., & Küçükler, S. (2021). Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environmental Science and Pollution Research, 28, 10818–10831.PubMedCrossRef Kuzu, M., Kandemir, F. M., Yıldırım, S., Çağlayan, C., & Küçükler, S. (2021). Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environmental Science and Pollution Research, 28, 10818–10831.PubMedCrossRef
18.
go back to reference De Zwart, F., Slow, S., Payne, R., Lever, M., George, P., Gerrard, J., & Chambers, S. (2003). Glycine betaine and glycine betaine analogues in common foods. Food Chemistry, 83, 197–204.CrossRef De Zwart, F., Slow, S., Payne, R., Lever, M., George, P., Gerrard, J., & Chambers, S. (2003). Glycine betaine and glycine betaine analogues in common foods. Food Chemistry, 83, 197–204.CrossRef
19.
go back to reference Sakamoto, A., Nishimura, Y., Ono, H., & Sakura, N. (2002). Betaine and homocysteine concentrations in foods. Pediatrics International, 44, 409–413.PubMedCrossRef Sakamoto, A., Nishimura, Y., Ono, H., & Sakura, N. (2002). Betaine and homocysteine concentrations in foods. Pediatrics International, 44, 409–413.PubMedCrossRef
20.
go back to reference Craig, S. A. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539–549.PubMedCrossRef Craig, S. A. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539–549.PubMedCrossRef
21.
go back to reference Alirezaei, M., Jelodar, G., Niknam, P., Ghayemi, Z., & Nazifi, S. (2011). Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. Journal of Physiology and Biochemistry, 67, 605–612.PubMedCrossRef Alirezaei, M., Jelodar, G., Niknam, P., Ghayemi, Z., & Nazifi, S. (2011). Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. Journal of Physiology and Biochemistry, 67, 605–612.PubMedCrossRef
22.
go back to reference Al-Hafyan, S., Asoodeh, A., Baghshani, H., & Salari, L. E. (2023). Ameliorative potential of betaine against arsenite-induced hepatotoxicity and nephrotoxicity. Comparative Clinical Pathology, 1, 1–8. Al-Hafyan, S., Asoodeh, A., Baghshani, H., & Salari, L. E. (2023). Ameliorative potential of betaine against arsenite-induced hepatotoxicity and nephrotoxicity. Comparative Clinical Pathology, 1, 1–8.
23.
go back to reference Jung, Y. S., Kim, S. J., Kwon, D. Y., Ahn, C. W., Kim, Y. S., Choi, D. W., & Kim, Y. C. (2013). Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food and Chemical Toxicology, 62, 292–298.PubMedCrossRef Jung, Y. S., Kim, S. J., Kwon, D. Y., Ahn, C. W., Kim, Y. S., Choi, D. W., & Kim, Y. C. (2013). Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food and Chemical Toxicology, 62, 292–298.PubMedCrossRef
24.
go back to reference Day, C. R., & Kempson, S. A. (2016). Betaine chemistry, roles, and potential use in liver disease. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860, 1098–1106.PubMedCrossRef Day, C. R., & Kempson, S. A. (2016). Betaine chemistry, roles, and potential use in liver disease. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860, 1098–1106.PubMedCrossRef
25.
go back to reference Murillo-Fuentes, M. L., Artillo, R., Ubeda, N., Varela-Moreiras, G., Murillo, M. L., & Carreras, O. (2005). Hepatic S-adenosylmethionine after maternal alcohol exposure on offspring rats. Addiction Biology, 10, 139–144.PubMedCrossRef Murillo-Fuentes, M. L., Artillo, R., Ubeda, N., Varela-Moreiras, G., Murillo, M. L., & Carreras, O. (2005). Hepatic S-adenosylmethionine after maternal alcohol exposure on offspring rats. Addiction Biology, 10, 139–144.PubMedCrossRef
26.
go back to reference van der Veen, S., Hain, T., Wouters, J. A., Hossain, H., de Vos, W. M., Abee, T., Chakraborty, T., & Wells-Bennik, M. H. (2007). The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology, 153, 3593–3607.PubMedCrossRef van der Veen, S., Hain, T., Wouters, J. A., Hossain, H., de Vos, W. M., Abee, T., Chakraborty, T., & Wells-Bennik, M. H. (2007). The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology, 153, 3593–3607.PubMedCrossRef
27.
go back to reference Burg, M. B. (1995). Molecular basis of osmotic regulation. American Journal of Physiology-Renal Physiology, 268, F983–F996.CrossRef Burg, M. B. (1995). Molecular basis of osmotic regulation. American Journal of Physiology-Renal Physiology, 268, F983–F996.CrossRef
28.
go back to reference Qiu, H., Chen, X., Luo, Z., Zhao, L., Zhang, T., Yang, N., Long, X., Xie, H., Liu, J., & Xu, W. (2018). Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury. Experimental and Therapeutic Medicine, 16, 2851–2858.PubMedPubMedCentral Qiu, H., Chen, X., Luo, Z., Zhao, L., Zhang, T., Yang, N., Long, X., Xie, H., Liu, J., & Xu, W. (2018). Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury. Experimental and Therapeutic Medicine, 16, 2851–2858.PubMedPubMedCentral
29.
go back to reference Bao, M.-H., Luo, H.-Q., Chen, L.-H., Tang, L., Ma, K.-F., Xiang, J., Dong, L.-P., Zeng, J., Li, G.-Y., & Li, J.-M. (2016). Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(−/−) mice. Scientific Reports, 6, 34161.PubMedPubMedCentralCrossRef Bao, M.-H., Luo, H.-Q., Chen, L.-H., Tang, L., Ma, K.-F., Xiang, J., Dong, L.-P., Zeng, J., Li, G.-Y., & Li, J.-M. (2016). Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(−/−) mice. Scientific Reports, 6, 34161.PubMedPubMedCentralCrossRef
30.
go back to reference Zhou, Y., Sun, X., Yang, G., Ding, N., Pan, X., Zhong, A., Guo, T., Peng, Z., & Chai, X. (2023). Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart & Lung, 62, 175–179.CrossRef Zhou, Y., Sun, X., Yang, G., Ding, N., Pan, X., Zhong, A., Guo, T., Peng, Z., & Chai, X. (2023). Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart & Lung, 62, 175–179.CrossRef
31.
go back to reference Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., & Li, J. (2023). lncRNA and circRNA expression profiles in the hippocampus of Aβ 25–35-induced AD mice treated with tripterygium glycoside. Experimental and Therapeutic Medicine, 26, 1–14.CrossRef Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., & Li, J. (2023). lncRNA and circRNA expression profiles in the hippocampus of Aβ 25–35-induced AD mice treated with tripterygium glycoside. Experimental and Therapeutic Medicine, 26, 1–14.CrossRef
32.
go back to reference Feng, S., Liu, W., Deng, S., Song, G., Zhou, J., Zheng, Z., & Song, Z. (2022). An atopic dermatitis-like mouse model by alternate epicutaneous application of dinitrofluorobenzene and an extract of dermatophagoides farinae. Frontiers in Medicine, 9, 843230.PubMedPubMedCentralCrossRef Feng, S., Liu, W., Deng, S., Song, G., Zhou, J., Zheng, Z., & Song, Z. (2022). An atopic dermatitis-like mouse model by alternate epicutaneous application of dinitrofluorobenzene and an extract of dermatophagoides farinae. Frontiers in Medicine, 9, 843230.PubMedPubMedCentralCrossRef
33.
go back to reference Sternbach, S., & McDonough, J. (2023). Betaine as a neuroprotective therapy in multiple sclerosis (Chapter 24). In C. R. Martin, V. B. Patel, & V. R. Preedy (Eds.), Treatments, nutraceuticals, supplements, and herbal medicine in neurological disorders (pp. 443–452). Academic Press.CrossRef Sternbach, S., & McDonough, J. (2023). Betaine as a neuroprotective therapy in multiple sclerosis (Chapter 24). In C. R. Martin, V. B. Patel, & V. R. Preedy (Eds.), Treatments, nutraceuticals, supplements, and herbal medicine in neurological disorders (pp. 443–452). Academic Press.CrossRef
34.
go back to reference Ashtary-Larky, D., Bagheri, R., Ghanavati, M., Asbaghi, O., Tinsley, G. M., Mombaini, D., Kooti, W., Kashkooli, S., & Wong, A. (2022). Effects of betaine supplementation on cardiovascular markers: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 62, 6516–6533.PubMedCrossRef Ashtary-Larky, D., Bagheri, R., Ghanavati, M., Asbaghi, O., Tinsley, G. M., Mombaini, D., Kooti, W., Kashkooli, S., & Wong, A. (2022). Effects of betaine supplementation on cardiovascular markers: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 62, 6516–6533.PubMedCrossRef
35.
go back to reference Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in inflammation: Mechanistic aspects and applications. Frontiers in Immunology, 9, 1070.PubMedPubMedCentralCrossRef Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in inflammation: Mechanistic aspects and applications. Frontiers in Immunology, 9, 1070.PubMedPubMedCentralCrossRef
36.
go back to reference Ganesan, B., Buddhan, S., Anandan, R., Sivakumar, R., & AnbinEzhilan, R. (2010). Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Molecular Biology Reports, 37, 1319–1327.PubMedCrossRef Ganesan, B., Buddhan, S., Anandan, R., Sivakumar, R., & AnbinEzhilan, R. (2010). Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Molecular Biology Reports, 37, 1319–1327.PubMedCrossRef
37.
go back to reference Wu, M.-M., Chiou, H.-Y., Hsueh, Y.-M., Hong, C.-T., Su, C.-L., Chang, S.-F., Huang, W.-L., Wang, H.-T., Wang, Y.-H., Hsieh, Y.-C., & Chen, C.-J. (2006). Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicology and Applied Pharmacology, 216, 168–175.PubMedCrossRef Wu, M.-M., Chiou, H.-Y., Hsueh, Y.-M., Hong, C.-T., Su, C.-L., Chang, S.-F., Huang, W.-L., Wang, H.-T., Wang, Y.-H., Hsieh, Y.-C., & Chen, C.-J. (2006). Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicology and Applied Pharmacology, 216, 168–175.PubMedCrossRef
38.
go back to reference Khodayar, M. J., Kalantari, H., Khorsandi, L., Rashno, M., & Zeidooni, L. (2018). Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomedicine & Pharmacotherapy, 103, 1436–1445.CrossRef Khodayar, M. J., Kalantari, H., Khorsandi, L., Rashno, M., & Zeidooni, L. (2018). Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomedicine & Pharmacotherapy, 103, 1436–1445.CrossRef
39.
go back to reference Dutta, S., Saha, S., Mahalanobish, S., Sadhukhan, P., & Sil, P. C. (2018). Melatonin attenuates arsenic induced nephropathy via the regulation of oxidative stress and inflammatory signaling cascades in mice. Food and Chemical Toxicology, 118, 303–316.PubMedCrossRef Dutta, S., Saha, S., Mahalanobish, S., Sadhukhan, P., & Sil, P. C. (2018). Melatonin attenuates arsenic induced nephropathy via the regulation of oxidative stress and inflammatory signaling cascades in mice. Food and Chemical Toxicology, 118, 303–316.PubMedCrossRef
40.
go back to reference Ogihara, N., & Haley-Vicente, D. (2002). Protein target discovery and characterization-DS modeling and discovery studio streamline target discovery. Genetic Engineering News, 22, 77. Ogihara, N., & Haley-Vicente, D. (2002). Protein target discovery and characterization-DS modeling and discovery studio streamline target discovery. Genetic Engineering News, 22, 77.
41.
go back to reference Tissue, E. (1959). Sulfhydryl groups. Archives in Biochemistry and Biophysics, 82, 70–77.CrossRef Tissue, E. (1959). Sulfhydryl groups. Archives in Biochemistry and Biophysics, 82, 70–77.CrossRef
42.
go back to reference Fossati, P., Prencipe, L., & Berti, G. (1980). Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical Chemistry, 26, 227–231.PubMedCrossRef Fossati, P., Prencipe, L., & Berti, G. (1980). Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical Chemistry, 26, 227–231.PubMedCrossRef
43.
go back to reference Shangari, N., & O’Brien, P. J. (2006). Catalase activity assays. Current Protocols in Toxicology, 27, 1–16.CrossRef Shangari, N., & O’Brien, P. J. (2006). Catalase activity assays. Current Protocols in Toxicology, 27, 1–16.CrossRef
44.
45.
go back to reference Yousuf, R., Verma, P. K., Sharma, P., Sood, S., Aït-Kaddour, A., & Bhat, Z. F. (2023). Ameliorative potential of quercetin and catechin against sodium arsenite and mancozeb-induced oxidative renal damage in Wistar rats. Journal of Trace Elements and Minerals, 1, 100079.CrossRef Yousuf, R., Verma, P. K., Sharma, P., Sood, S., Aït-Kaddour, A., & Bhat, Z. F. (2023). Ameliorative potential of quercetin and catechin against sodium arsenite and mancozeb-induced oxidative renal damage in Wistar rats. Journal of Trace Elements and Minerals, 1, 100079.CrossRef
46.
go back to reference Sevim, Ç., Doğan, E., & Comakli, S. (2020). Cardiovascular disease and toxic metals. Current Opinion in Toxicology, 19, 88–92.CrossRef Sevim, Ç., Doğan, E., & Comakli, S. (2020). Cardiovascular disease and toxic metals. Current Opinion in Toxicology, 19, 88–92.CrossRef
47.
go back to reference Bjørklund, G., Oliinyk, P., Lysiuk, R., Rahaman, M. S., Antonyak, H., Lozynska, I., Lenchyk, L., & Peana, M. (2020). Arsenic intoxication: General aspects and chelating agents. Archives of Toxicology, 94, 1879–1897.PubMedPubMedCentralCrossRef Bjørklund, G., Oliinyk, P., Lysiuk, R., Rahaman, M. S., Antonyak, H., Lozynska, I., Lenchyk, L., & Peana, M. (2020). Arsenic intoxication: General aspects and chelating agents. Archives of Toxicology, 94, 1879–1897.PubMedPubMedCentralCrossRef
48.
go back to reference Hauptman, M., & Woolf, A. D. (2022). British anti-lewisite (dimercaprol) (Chapter 34). In A. D. Woolf (Ed.), History of modern clinical toxicology (pp. 243–254). Academic Press.CrossRef Hauptman, M., & Woolf, A. D. (2022). British anti-lewisite (dimercaprol) (Chapter 34). In A. D. Woolf (Ed.), History of modern clinical toxicology (pp. 243–254). Academic Press.CrossRef
49.
go back to reference Bhattacharya, S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharmaceutical Biology, 55, 349–354.PubMedCrossRef Bhattacharya, S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharmaceutical Biology, 55, 349–354.PubMedCrossRef
50.
go back to reference Yu, X., Wang, Z., Shu, Z., Li, Z., Ning, Y., Yun, K., Bai, H., Liu, R., & Liu, W. (2017). Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl flavonoids protect against arsenic trioxide-induced cardiotoxicity. Biomedicine & Pharmacotherapy, 88, 1–10.CrossRef Yu, X., Wang, Z., Shu, Z., Li, Z., Ning, Y., Yun, K., Bai, H., Liu, R., & Liu, W. (2017). Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl flavonoids protect against arsenic trioxide-induced cardiotoxicity. Biomedicine & Pharmacotherapy, 88, 1–10.CrossRef
51.
go back to reference Hosseinzadeh, A., Houshmand, G., Goudarzi, M., Sezavar, S. H., Mehrzadi, S., Mansouri, E., & Kalantar, M. (2019). Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats. Life Sciences, 217, 91–100.PubMedCrossRef Hosseinzadeh, A., Houshmand, G., Goudarzi, M., Sezavar, S. H., Mehrzadi, S., Mansouri, E., & Kalantar, M. (2019). Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats. Life Sciences, 217, 91–100.PubMedCrossRef
52.
go back to reference Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic-induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology, 82, 137–149.PubMedCrossRef Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic-induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology, 82, 137–149.PubMedCrossRef
54.
go back to reference Shi, H., Shi, X., & Liu, K. J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Molecular and Cellular Biochemistry, 255, 67–78.PubMedCrossRef Shi, H., Shi, X., & Liu, K. J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Molecular and Cellular Biochemistry, 255, 67–78.PubMedCrossRef
55.
go back to reference Roth, R., & JH, L.J. (2019). Casarett & Doull’s toxicology: The basic science of poisons. McGraw-Hill Education. Roth, R., & JH, L.J. (2019). Casarett & Doull’s toxicology: The basic science of poisons. McGraw-Hill Education.
56.
go back to reference Gamble, M. V., Liu, X., Ahsan, H., Pilsner, J. R., Ilievski, V., Slavkovich, V., Parvez, F., Levy, D., Factor-Litvak, P., & Graziano, J. H. (2005). Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Perspectives, 113, 1683–1688.PubMedPubMedCentralCrossRef Gamble, M. V., Liu, X., Ahsan, H., Pilsner, J. R., Ilievski, V., Slavkovich, V., Parvez, F., Levy, D., Factor-Litvak, P., & Graziano, J. H. (2005). Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Perspectives, 113, 1683–1688.PubMedPubMedCentralCrossRef
57.
go back to reference Catena, C., Colussi, G., Url-Michitsch, M., Nait, F., & Sechi, L. A. (2015). Subclinical carotid artery disease and plasma homocysteine levels in patients with hypertension. Journal of the American Society of Hypertension, 9, 167–175.PubMedCrossRef Catena, C., Colussi, G., Url-Michitsch, M., Nait, F., & Sechi, L. A. (2015). Subclinical carotid artery disease and plasma homocysteine levels in patients with hypertension. Journal of the American Society of Hypertension, 9, 167–175.PubMedCrossRef
58.
go back to reference Ganguly, P., & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14, 1–10.CrossRef Ganguly, P., & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14, 1–10.CrossRef
59.
go back to reference Kolling, J., Scherer, E. B., Da Cunha, A. A., Da Cunha, M. J., & Wyse, A. T. (2011). Homocysteine induces oxidative–nitrative stress in heart of rats: Prevention by folic acid. Cardiovascular Toxicology, 11, 67–73.PubMedCrossRef Kolling, J., Scherer, E. B., Da Cunha, A. A., Da Cunha, M. J., & Wyse, A. T. (2011). Homocysteine induces oxidative–nitrative stress in heart of rats: Prevention by folic acid. Cardiovascular Toxicology, 11, 67–73.PubMedCrossRef
60.
go back to reference Catena, C., Colussi, G., Nait, F., Capobianco, F., & Sechi, L. A. (2015). Elevated homocysteine levels are associated with the metabolic syndrome and cardiovascular events in hypertensive patients. American Journal of Hypertension, 28, 943–950.PubMedCrossRef Catena, C., Colussi, G., Nait, F., Capobianco, F., & Sechi, L. A. (2015). Elevated homocysteine levels are associated with the metabolic syndrome and cardiovascular events in hypertensive patients. American Journal of Hypertension, 28, 943–950.PubMedCrossRef
61.
go back to reference Hoffmann, L., Brauers, G., Gehrmann, T., Häussinger, D., Mayatepek, E., Schliess, F., & Schwahn, B. C. (2013). Osmotic regulation of hepatic betaine metabolism. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304, 835–846.CrossRef Hoffmann, L., Brauers, G., Gehrmann, T., Häussinger, D., Mayatepek, E., Schliess, F., & Schwahn, B. C. (2013). Osmotic regulation of hepatic betaine metabolism. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304, 835–846.CrossRef
62.
go back to reference Navik, U., Sheth, V. G., Kabeer, S. W., & Tikoo, K. (2019). Dietary supplementation of methyl donor l-methionine alters epigenetic modification in type 2 diabetes. Molecular Nutrition & Food Research, 63, 1801401.CrossRef Navik, U., Sheth, V. G., Kabeer, S. W., & Tikoo, K. (2019). Dietary supplementation of methyl donor l-methionine alters epigenetic modification in type 2 diabetes. Molecular Nutrition & Food Research, 63, 1801401.CrossRef
63.
go back to reference Go, E. K., Jung, K. J., Kim, J. M., Lim, H., Lim, H. K., Yu, B. P., & Chung, H. Y. (2007). Betaine modulates age-related NF-κB by thiol-enhancing action. Biological and Pharmaceutical Bulletin, 30, 2244–2249.PubMedCrossRef Go, E. K., Jung, K. J., Kim, J. M., Lim, H., Lim, H. K., Yu, B. P., & Chung, H. Y. (2007). Betaine modulates age-related NF-κB by thiol-enhancing action. Biological and Pharmaceutical Bulletin, 30, 2244–2249.PubMedCrossRef
64.
go back to reference Hasanzadeh-Moghadam, M., Khadem-Ansari, M. H., Farjah, G. H., & Rasmi, Y. (2018). Hepatoprotective effects of betaine on liver damages followed by myocardial infarction. Veterinary Research Forum: An International Quarterly Journal, 9, 129–135.PubMed Hasanzadeh-Moghadam, M., Khadem-Ansari, M. H., Farjah, G. H., & Rasmi, Y. (2018). Hepatoprotective effects of betaine on liver damages followed by myocardial infarction. Veterinary Research Forum: An International Quarterly Journal, 9, 129–135.PubMed
65.
go back to reference Ganesan, B., Buddhan, S., Jeyakumar, R., & Anandan, R. (2009). Protective effect of betaine on changes in the levels of membrane-bound ATPase activity and mineral status in experimentally induced myocardial infarction in Wistar rats. Biological Trace Element Research, 131, 278–290.PubMedCrossRef Ganesan, B., Buddhan, S., Jeyakumar, R., & Anandan, R. (2009). Protective effect of betaine on changes in the levels of membrane-bound ATPase activity and mineral status in experimentally induced myocardial infarction in Wistar rats. Biological Trace Element Research, 131, 278–290.PubMedCrossRef
66.
go back to reference Barchowsky, A., Dudek, E. J., Treadwell, M. D., & Wetterhahn, K. E. (1996). Arsenic induces oxidant stress and NF-kB activation in cultured aortic endothelial cells. Free Radical Biology and Medicine, 21, 783–790.PubMedCrossRef Barchowsky, A., Dudek, E. J., Treadwell, M. D., & Wetterhahn, K. E. (1996). Arsenic induces oxidant stress and NF-kB activation in cultured aortic endothelial cells. Free Radical Biology and Medicine, 21, 783–790.PubMedCrossRef
67.
go back to reference Balakumar, P., & Kaur, J. (2009). Arsenic exposure and cardiovascular disorders: An overview. Cardiovascular Toxicology, 9, 169–176.PubMedCrossRef Balakumar, P., & Kaur, J. (2009). Arsenic exposure and cardiovascular disorders: An overview. Cardiovascular Toxicology, 9, 169–176.PubMedCrossRef
68.
go back to reference Patel, D., Yadav, P., Singh, S. K., Tanwar, S. S., Sehrawat, A., Khurana, A., Bhatti, J. S., & Navik, U. (2024). Betaine alleviates doxorubicin-induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO− 1/NLRP3 and TGF-β expression. Journal of Biochemical and Molecular Toxicology, 38, e23559.PubMedCrossRef Patel, D., Yadav, P., Singh, S. K., Tanwar, S. S., Sehrawat, A., Khurana, A., Bhatti, J. S., & Navik, U. (2024). Betaine alleviates doxorubicin-induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO− 1/NLRP3 and TGF-β expression. Journal of Biochemical and Molecular Toxicology, 38, e23559.PubMedCrossRef
69.
go back to reference Jiang, Y.-P., Yang, J.-M., Ye, R.-J., Liu, N., Zhang, W.-J., Ma, L., Zheng, P., Niu, J.-G., Liu, P., & Yu, J.-Q. (2019). Protective effects of betaine on diabetic induced disruption of the male mice blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Biomedicine & Pharmacotherapy, 120, 109474.CrossRef Jiang, Y.-P., Yang, J.-M., Ye, R.-J., Liu, N., Zhang, W.-J., Ma, L., Zheng, P., Niu, J.-G., Liu, P., & Yu, J.-Q. (2019). Protective effects of betaine on diabetic induced disruption of the male mice blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Biomedicine & Pharmacotherapy, 120, 109474.CrossRef
70.
go back to reference Go, E. K., Jung, K. J., Kim, J. Y., Yu, B. P., & Chung, H. Y. (2005). Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-κB via nuclear factor-inducing kinase/IκB kinase and mitogen-activated protein kinases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60, 1252–1264.PubMedCrossRef Go, E. K., Jung, K. J., Kim, J. Y., Yu, B. P., & Chung, H. Y. (2005). Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-κB via nuclear factor-inducing kinase/IκB kinase and mitogen-activated protein kinases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60, 1252–1264.PubMedCrossRef
71.
go back to reference Khodayar, M., Kalantari, H., Khorsandi, L., Rashno, M., & Zeidooni, L. (2020). Upregulation of Nrf2-related cytoprotective genes expression by acetaminophen-induced acute hepatotoxicity in mice and the protective role of betaine. Human & Experimental Toxicology, 39, 948–959.CrossRef Khodayar, M., Kalantari, H., Khorsandi, L., Rashno, M., & Zeidooni, L. (2020). Upregulation of Nrf2-related cytoprotective genes expression by acetaminophen-induced acute hepatotoxicity in mice and the protective role of betaine. Human & Experimental Toxicology, 39, 948–959.CrossRef
72.
go back to reference Urschel, K., & Cicha, I. (2015). TNF-α in the cardiovascular system: From physiology to therapy. International Journal of Interferon, Cytokine and Mediator Research, 7, 9–25. Urschel, K., & Cicha, I. (2015). TNF-α in the cardiovascular system: From physiology to therapy. International Journal of Interferon, Cytokine and Mediator Research, 7, 9–25.
73.
go back to reference Gutierrez, S. H., Kuri, M. R., & del Castillo, E. R. (2008). Cardiac role of the transcription factor NF-κB. Cardiovascular & Haematological Disorders-Drug Targets, 8, 153–160.CrossRef Gutierrez, S. H., Kuri, M. R., & del Castillo, E. R. (2008). Cardiac role of the transcription factor NF-κB. Cardiovascular & Haematological Disorders-Drug Targets, 8, 153–160.CrossRef
74.
go back to reference Berthonneche, C., Sulpice, T., Boucher, F., Gouraud, L., De Leiris, J., O’connor, S., Herbert, J.-M., & Janiak, P. (2004). New insights into the pathological role of TNF-α in early cardiac dysfunction and subsequent heart failure after infarction in rats. American Journal of Physiology-Heart and Circulatory Physiology, 287, 340–350.CrossRef Berthonneche, C., Sulpice, T., Boucher, F., Gouraud, L., De Leiris, J., O’connor, S., Herbert, J.-M., & Janiak, P. (2004). New insights into the pathological role of TNF-α in early cardiac dysfunction and subsequent heart failure after infarction in rats. American Journal of Physiology-Heart and Circulatory Physiology, 287, 340–350.CrossRef
75.
go back to reference Lau, A., Whitman, S. A., Jaramillo, M. C., & Zhang, D. D. (2013). Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. Journal of biochemical and molecular toxicology, 27, 99–105.PubMedCrossRef Lau, A., Whitman, S. A., Jaramillo, M. C., & Zhang, D. D. (2013). Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. Journal of biochemical and molecular toxicology, 27, 99–105.PubMedCrossRef
76.
go back to reference Zhang, Y., Wei, Z., Liu, W., Wang, J., He, X., Huang, H., Zhang, J., & Yang, Z. (2017). Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget, 8, 3773.PubMedCrossRef Zhang, Y., Wei, Z., Liu, W., Wang, J., He, X., Huang, H., Zhang, J., & Yang, Z. (2017). Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget, 8, 3773.PubMedCrossRef
77.
go back to reference Nikravesh, M., Mahdavinia, M., Neisi, N., Khorsandi, L., & Khodayar, M. J. (2023). Citicoline ameliorates arsenic-induced hepatotoxicity and diabetes in mice by overexpression of VAMP2, PPAR-γ, As3MT, and SIRT3. Pesticide Biochemistry and Physiology, 192, 105391.PubMedCrossRef Nikravesh, M., Mahdavinia, M., Neisi, N., Khorsandi, L., & Khodayar, M. J. (2023). Citicoline ameliorates arsenic-induced hepatotoxicity and diabetes in mice by overexpression of VAMP2, PPAR-γ, As3MT, and SIRT3. Pesticide Biochemistry and Physiology, 192, 105391.PubMedCrossRef
Metadata
Title
Betaine Protects Mice from Cardiotoxicity Triggered by Sodium Arsenite Through Antioxidative and Anti-inflammatory Pathways
Authors
Saeedeh Shariati
Maryam Shirani
Reza Azadnasab
Layasadat Khorsandi
Mohammad Javad Khodayar
Publication date
04-05-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 6/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09864-3

Other articles of this Issue 6/2024

Cardiovascular Toxicology 6/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine