Skip to main content
Top

07-12-2024 | Atrial Fibrillation | Original Article

Maintenance mechanism of paroxysmal atrial fibrillation from the activation occurring within the pulmonary vein: analysis using non-contact mapping

Authors: Hiroshige Yamabe, Toshiya Soejima, Yurie Fukami, Kazuki Haraguchi, Taichi Okonogi, Keisuke Hirai, Ryota Fukuoka, Kyoko Umeji, Yoshiya Orita, Hisashi Koga, Tomohiro Kawasaki

Published in: Heart and Vessels

Login to get access

Abstract

It is unclear how pulmonary veins (PVs) maintain paroxysmal atrial fibrillation (AF). To clarify the PV’s arrhythmogenic role, we examined PV activation sequences during paroxysmal AF. Left superior PV (LSPV) endocardial non-contact mapping was performed after a right PV isolation in 13 paroxysmal AF patients. Activation sequences within the LSPV before and during left-sided PVs ablation were analyzed, and those in complex fractionated atrial electrogram (CFAE) areas were compared with those in non-CFAE areas. CFAEs were observed in the LSPV’s proximal half (area; 8.8 ± 3.2cm2) occupying 19.9 ± 6.0% of LSPV. The number of pivoting activations, wave breaks, and fusions over CFAE areas were significantly higher than those over non-CFE areas (25.5 ± 9.3 vs. 4.5 ± 4.8 times/s, p < 0.0001; 9.1 ± 5.3 vs. 1.4 ± 1.8 times/s, p < 0.0001; 13.0 ± 4.6 vs. 5.4 ± 4.4 times/s, p < 0.0001). The conduction velocities in CFAE areas were significantly slower than in non-CFAE areas (0.6 ± 0.2 vs. 1.7 ± 0.8 m/s, p < 0.001). After delivery of ablation lesions around the left-sided PVs (13.2 ± 7.4 applications), the PV activation became organized with a loss of CFAE areas, and the frequency of the LSPV’s pivoting activation, wave break, and fusion significantly decreased compared to that pre-ablation (7.3 ± 10.9 vs. 30.0 ± 11.6 times/s, p < 0.001; 2.1 ± 5.3 vs. 10.5 ± 6.2 times/s, p < 0.002; 6.0 ± 6.6 vs. 18.4 ± 8.2 times/s, p < 0.001). Subsequently, AF terminated before the left-sided PV isolation in all patients. In conclusion, high-frequency random reentry associated with pivoting activation, wave break, and fusion within the LSPV, observed mostly over CFAE areas, maintained AF. Linear ablation lesions around the PV suppressed random reentry, resulting in the loss of CFAEs and AF termination.
Literature
1.
go back to reference Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666CrossRefPubMed Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666CrossRefPubMed
2.
go back to reference Haïssaguerre M, Sanders P, Hocini M, Jaïs P, Clémenty J (2004) Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis. J Am Coll Cardiol 43:2290–2292CrossRefPubMed Haïssaguerre M, Sanders P, Hocini M, Jaïs P, Clémenty J (2004) Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis. J Am Coll Cardiol 43:2290–2292CrossRefPubMed
3.
go back to reference Oral H, Knight BP, Tada H, Ozaydin M, Chugh A, Hassan S, Scharf C, Lai SW, Greenstein R, Pelosi F Jr, Strickberger SA, Morady F (2002) Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105:1077–1081CrossRefPubMed Oral H, Knight BP, Tada H, Ozaydin M, Chugh A, Hassan S, Scharf C, Lai SW, Greenstein R, Pelosi F Jr, Strickberger SA, Morady F (2002) Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105:1077–1081CrossRefPubMed
4.
go back to reference Yano M, Egami Y, Kawanami S, Sugae H, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Matsunaga-Lee Y, Nishino M, Tanouchi J (2022) Acute myocardial injury after radiofrequency catheter ablation: impact on pulmonary vein reconnection and relevant factors. Heart Vessels 37:812–820CrossRefPubMed Yano M, Egami Y, Kawanami S, Sugae H, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Matsunaga-Lee Y, Nishino M, Tanouchi J (2022) Acute myocardial injury after radiofrequency catheter ablation: impact on pulmonary vein reconnection and relevant factors. Heart Vessels 37:812–820CrossRefPubMed
5.
go back to reference Aoyama D, Miyazaki S, Amaya N, Tama N, Hasegawa K, Nomura R, Tsuji T, Nakano A, Uzui H, Tada H (2024) Treatment with catheter ablation for patients with arrhythmia-induced cardiomyopathy caused by atrial fibrillation promises a good prognosis. Heart Vessels 39:240–251CrossRefPubMed Aoyama D, Miyazaki S, Amaya N, Tama N, Hasegawa K, Nomura R, Tsuji T, Nakano A, Uzui H, Tada H (2024) Treatment with catheter ablation for patients with arrhythmia-induced cardiomyopathy caused by atrial fibrillation promises a good prognosis. Heart Vessels 39:240–251CrossRefPubMed
6.
go back to reference Kuck KH, Hoffmann BA, Ernst S, Wegscheider K, Treszl A, Metzner A, Eckardt L, Lewalter T, Breithardt G, Willems S (2016) Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation-German atrial fibrillation competence network 1 trial. Circ Arrhythm Electrophysiol 9:e003337CrossRefPubMed Kuck KH, Hoffmann BA, Ernst S, Wegscheider K, Treszl A, Metzner A, Eckardt L, Lewalter T, Breithardt G, Willems S (2016) Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation-German atrial fibrillation competence network 1 trial. Circ Arrhythm Electrophysiol 9:e003337CrossRefPubMed
7.
go back to reference Mujović N, Marinković M, Lenarczyk R, Tilz R, Potpara TS (2017) Catheter ablation of atrial fibrillation: an overview for clinicians. Adv Ther 34:1897–1917CrossRefPubMedPubMedCentral Mujović N, Marinković M, Lenarczyk R, Tilz R, Potpara TS (2017) Catheter ablation of atrial fibrillation: an overview for clinicians. Adv Ther 34:1897–1917CrossRefPubMedPubMedCentral
8.
go back to reference Scherr D, Dalal D, Cheema A, Cheng A, Henrikson CA, Spragg D, Marine JE, Berger RD, Calkins H, Dong J (2007) Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm 4:1013–1020CrossRefPubMed Scherr D, Dalal D, Cheema A, Cheng A, Henrikson CA, Spragg D, Marine JE, Berger RD, Calkins H, Dong J (2007) Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm 4:1013–1020CrossRefPubMed
9.
go back to reference Chen J, Off MK, Solheim E, Hoff PI, Schuster P, Ohm OJ (2009) Spatial relationships between the pulmonary veins and sites of complex fractionated atrial electrograms during atrial fibrillation. Pacing Clin Electrophysiol 32:S190-193CrossRefPubMed Chen J, Off MK, Solheim E, Hoff PI, Schuster P, Ohm OJ (2009) Spatial relationships between the pulmonary veins and sites of complex fractionated atrial electrograms during atrial fibrillation. Pacing Clin Electrophysiol 32:S190-193CrossRefPubMed
10.
go back to reference Yamabe H, Morihisa K, Tanaka Y, Uemura T, Enomoto K, Kawano H, Ogawa H (2009) Mechanisms of the maintenance of atrial fibrillation: role of the complex fractionated atrial electrogram region assessed by noncontact mapping. Heart Rhythm 6:1120–1128CrossRefPubMed Yamabe H, Morihisa K, Tanaka Y, Uemura T, Enomoto K, Kawano H, Ogawa H (2009) Mechanisms of the maintenance of atrial fibrillation: role of the complex fractionated atrial electrogram region assessed by noncontact mapping. Heart Rhythm 6:1120–1128CrossRefPubMed
11.
go back to reference Yamabe H, Morihisa K, Koyama J, Enomoto K, Kanazawa H, Ogawa H (2011) Analysis of the mechanisms initiating random wave propagation at the onset of atrial fibrillation using noncontact mapping: role of complex fractionated electrogram region. Heart Rhythm 8:1228–1236CrossRefPubMed Yamabe H, Morihisa K, Koyama J, Enomoto K, Kanazawa H, Ogawa H (2011) Analysis of the mechanisms initiating random wave propagation at the onset of atrial fibrillation using noncontact mapping: role of complex fractionated electrogram region. Heart Rhythm 8:1228–1236CrossRefPubMed
12.
go back to reference Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol 43:2044–2053CrossRefPubMed Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol 43:2044–2053CrossRefPubMed
13.
go back to reference Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67:200–220CrossRefPubMed Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67:200–220CrossRefPubMed
14.
go back to reference Allessie MA, Lammers WJEP, Bonke FIM, Hollen SJ (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grune & Stratton, Orlando, FL, pp 265–275 Allessie MA, Lammers WJEP, Bonke FIM, Hollen SJ (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grune & Stratton, Orlando, FL, pp 265–275
15.
go back to reference Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14:776–780CrossRefPubMed Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14:776–780CrossRefPubMed
16.
go back to reference Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, Pandit S, Vikstrom KL, Ploutz-Snyder R, Talkachou A, Atienza F, Guiraudon G, Jalife J, Berenfeld O (2006) Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113:626–633CrossRefPubMed Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, Pandit S, Vikstrom KL, Ploutz-Snyder R, Talkachou A, Atienza F, Guiraudon G, Jalife J, Berenfeld O (2006) Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113:626–633CrossRefPubMed
17.
go back to reference Yamabe H, Kanazawa H, Ito M, Kaneko S, Ogawa H (2016) Prevalence and mechanism of rotor activation identified during atrial fibrillation by noncontact mapping: lack of evidence for a role in the maintenance of atrial fibrillation. Heart Rhythm 13:2323–2330CrossRefPubMed Yamabe H, Kanazawa H, Ito M, Kaneko S, Ogawa H (2016) Prevalence and mechanism of rotor activation identified during atrial fibrillation by noncontact mapping: lack of evidence for a role in the maintenance of atrial fibrillation. Heart Rhythm 13:2323–2330CrossRefPubMed
18.
go back to reference Jaïs P, Hocini M, Macle L, Choi KJ, Deisenhofer I, Weerasooriya R, Shah DC, Garrigue S, Raybaud F, Scavee C, Le Metayer P, Clémenty J, Haïssaguerre M (2002) Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation 106:2479–2485CrossRefPubMed Jaïs P, Hocini M, Macle L, Choi KJ, Deisenhofer I, Weerasooriya R, Shah DC, Garrigue S, Raybaud F, Scavee C, Le Metayer P, Clémenty J, Haïssaguerre M (2002) Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation 106:2479–2485CrossRefPubMed
19.
go back to reference Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, Vaz D, Olgin JE (2003) Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107:1816–1821CrossRefPubMedPubMedCentral Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, Vaz D, Olgin JE (2003) Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107:1816–1821CrossRefPubMedPubMedCentral
20.
go back to reference Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jaïs P, Janse MJ, Haïssaguerre M, De Bakker JM (2002) Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105:2442–2448CrossRefPubMed Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jaïs P, Janse MJ, Haïssaguerre M, De Bakker JM (2002) Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105:2442–2448CrossRefPubMed
21.
go back to reference Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325CrossRefPubMed Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325CrossRefPubMed
22.
go back to reference Byrd GD, Prasad SM, Ripplinger CM, Cassilly TR, Schuessler RB, Boineau JP, Damiano RJ Jr (2005) Importance of geometry and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. Circulation 112(9 Suppl):I7-13PubMed Byrd GD, Prasad SM, Ripplinger CM, Cassilly TR, Schuessler RB, Boineau JP, Damiano RJ Jr (2005) Importance of geometry and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. Circulation 112(9 Suppl):I7-13PubMed
23.
go back to reference Lee AM, Aziz A, Didesch J, Clark KL, Schuessler RB, Damiano RJ Jr (2013) Importance of atrial surface area and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. J Thorac Cardiovasc Surg 146:593–598CrossRefPubMed Lee AM, Aziz A, Didesch J, Clark KL, Schuessler RB, Damiano RJ Jr (2013) Importance of atrial surface area and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. J Thorac Cardiovasc Surg 146:593–598CrossRefPubMed
24.
go back to reference Valderrábano M, Kim YH, Yashima M, Wu TJ, Karagueuzian HS, Chen PS (2000) Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol 36:2000–2008CrossRefPubMed Valderrábano M, Kim YH, Yashima M, Wu TJ, Karagueuzian HS, Chen PS (2000) Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol 36:2000–2008CrossRefPubMed
25.
26.
go back to reference Roux JF, Gojraty S, Bala R, Liu CF, Dixit S, Hutchinson MD, Garcia F, Lin D, Callans DJ, Riley M, Marchlinski F, Gerstenfeld EP (2009) Effect of pulmonary vein isolation on the distribution of complex fractionated electrograms in humans. Heart Rhythm 6:156–160CrossRefPubMed Roux JF, Gojraty S, Bala R, Liu CF, Dixit S, Hutchinson MD, Garcia F, Lin D, Callans DJ, Riley M, Marchlinski F, Gerstenfeld EP (2009) Effect of pulmonary vein isolation on the distribution of complex fractionated electrograms in humans. Heart Rhythm 6:156–160CrossRefPubMed
27.
go back to reference Matsuo S, Yamane T, Date T, Tokutake K, Hioki M, Narui R, Ito K, Tanigawa S, Yamashita S, Tokuda M, Inada K, Arase S, Yagi H, Sugimoto K, Yoshimura M (2012) Substrate modification by pulmonary vein isolation and left atrial linear ablation in patients with persistent atrial fibrillation: its impact on complex-fractionated atrial electrograms. J Cardiovasc Electrophysiol 23:962–970CrossRefPubMed Matsuo S, Yamane T, Date T, Tokutake K, Hioki M, Narui R, Ito K, Tanigawa S, Yamashita S, Tokuda M, Inada K, Arase S, Yagi H, Sugimoto K, Yoshimura M (2012) Substrate modification by pulmonary vein isolation and left atrial linear ablation in patients with persistent atrial fibrillation: its impact on complex-fractionated atrial electrograms. J Cardiovasc Electrophysiol 23:962–970CrossRefPubMed
28.
go back to reference Konings KT, Smeets JL, Penn OC, Wellens HJ, Allessie MA (1997) Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation 95:1231–1241CrossRefPubMed Konings KT, Smeets JL, Penn OC, Wellens HJ, Allessie MA (1997) Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation 95:1231–1241CrossRefPubMed
Metadata
Title
Maintenance mechanism of paroxysmal atrial fibrillation from the activation occurring within the pulmonary vein: analysis using non-contact mapping
Authors
Hiroshige Yamabe
Toshiya Soejima
Yurie Fukami
Kazuki Haraguchi
Taichi Okonogi
Keisuke Hirai
Ryota Fukuoka
Kyoko Umeji
Yoshiya Orita
Hisashi Koga
Tomohiro Kawasaki
Publication date
07-12-2024
Publisher
Springer Japan
Published in
Heart and Vessels
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-024-02502-6

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases