Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

ATP6V1C1, associated with the tumor microenvironment and mTORC1 signaling pathway, is a potential diagnostic, prognostic, and therapeutic biomarker for hepatocellular carcinoma

Authors: Yuhao Pan, Hao Chen, Chenhui Lv, Wei He, Yongpeng Xu, Qijia Xuan

Published in: Discover Oncology | Issue 1/2024

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is a global health challenge with high mortality. ATP6V1C1, one of the subunit genes of vacuolar adenosine triphosphatase (V-ATPase), is a potential oncogene. However, its role in HCC remains unclear.

Materials and methods

Differential analysis of mRNA and microRNA (miRNA), combined with machine learning, identified ATP6V1C1 as a potential biomarker for HCC. The expression and prognostic role of ATP6V1C1 in HCC were evaluated. Additionally, we explored the distribution of ATP6V1C1 in HCC tumor microenvironment (TME) at single-cell and spatial transcriptome levels. Furthermore, the association between ATP6V1C1 and malignant biological features, TME characteristics, and therapy response in HCC was investigated. Finally, in vitro experiments validated the effects of ATP6V1C1 on the malignant phenotype of HCC.

Results

ATP6V1C1 had higher expression in HCC tissues compared to paired normal tissues. Upregulated ATP6V1C1 was associated with poor HCC prognosis. ATP6V1C1 was primarily expressed in malignant cells and the tumor region in HCC TME. A positive correlation was observed between ATP6V1C1 expression and the activation of cancer-related pathways. The high ATP6V1C1 expression group exhibited increased pro-tumorigenic immune infiltration, inhibited anti-tumor immune activity, and high tumor proliferation rate. HCC patients of low ATP6V1C1 expression group had more clinical response to anti-tumor therapies. Knockdown of ATP6V1C1 impaired the proliferation, migration, and invasion of HCC cells by downregulating the mTORC1 signaling pathway.

Conclusion

ATP6V1C1 multifacetedly contributes to the oncogenesis and progression of HCC and is a promising diagnostic and prognostic biomarker with predictive value on therapy response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cisneros-Garza LE, González-Huezo MS, Moctezuma-Velázquez C, Ladrón De Guevara-Cetina L, Vilatobá M, García-Juárez I, et al. The second Mexican consensus on hepatocellular carcinoma Part I: Epidemiology and diagnosis. Revista de Gastroenterología de México. 2022;87(2):216–34. Cisneros-Garza LE, González-Huezo MS, Moctezuma-Velázquez C, Ladrón De Guevara-Cetina L, Vilatobá M, García-Juárez I, et al. The second Mexican consensus on hepatocellular carcinoma Part I: Epidemiology and diagnosis. Revista de Gastroenterología de México. 2022;87(2):216–34.
2.
go back to reference Zhou J, Sun H, Wang Z, Cong W, Wang J, Zeng M, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 Edition). Liver Cancer. 2020;9(6):682–720. Zhou J, Sun H, Wang Z, Cong W, Wang J, Zeng M, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 Edition). Liver Cancer. 2020;9(6):682–720.
3.
go back to reference Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345–62.PubMedCrossRef Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345–62.PubMedCrossRef
4.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA A Cancer J Clin. 2023;73(1):17–48.CrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA A Cancer J Clin. 2023;73(1):17–48.CrossRef
5.
go back to reference McGuire C, Cotter K, Stransky L, Forgac M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta Bioenerg. 2016;1857(8):1213–8.CrossRef McGuire C, Cotter K, Stransky L, Forgac M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta Bioenerg. 2016;1857(8):1213–8.CrossRef
7.
go back to reference Cotter K, Stransky L, McGuire C, Forgac M. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 2015;40(10):611–22.PubMedPubMedCentralCrossRef Cotter K, Stransky L, McGuire C, Forgac M. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 2015;40(10):611–22.PubMedPubMedCentralCrossRef
8.
go back to reference Bodzęta A, Kahms M, Klingauf J. The presynaptic v-ATPase reversibly disassembles and thereby modulates exocytosis but is not part of the fusion machinery. Cell Rep. 2017;20(6):1348–59.PubMedCrossRef Bodzęta A, Kahms M, Klingauf J. The presynaptic v-ATPase reversibly disassembles and thereby modulates exocytosis but is not part of the fusion machinery. Cell Rep. 2017;20(6):1348–59.PubMedCrossRef
10.
go back to reference Zhao J, Benlekbir S, Rubinstein JL. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature. 2015;521(7551):241–5.PubMedCrossRef Zhao J, Benlekbir S, Rubinstein JL. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature. 2015;521(7551):241–5.PubMedCrossRef
11.
go back to reference Yao X, Chen H, Xu B, Lu J, Gu J, Chen F, et al. The ATPase subunit of ATP6V1C1 inhibits autophagy and enhances radiotherapy resistance in esophageal squamous cell carcinoma. Gene. 2021;768: 145261.PubMedCrossRef Yao X, Chen H, Xu B, Lu J, Gu J, Chen F, et al. The ATPase subunit of ATP6V1C1 inhibits autophagy and enhances radiotherapy resistance in esophageal squamous cell carcinoma. Gene. 2021;768: 145261.PubMedCrossRef
12.
go back to reference Feng S, Cai M, Liu P, Wei L, Wang J, Qi J, et al. Atp6v1c1 may regulate filament actin arrangement in breast cancer cells. PLoS ONE. 2014;9(1): e84833.PubMedPubMedCentralCrossRef Feng S, Cai M, Liu P, Wei L, Wang J, Qi J, et al. Atp6v1c1 may regulate filament actin arrangement in breast cancer cells. PLoS ONE. 2014;9(1): e84833.PubMedPubMedCentralCrossRef
13.
go back to reference Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 2019;18(1):147.PubMedPubMedCentralCrossRef Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 2019;18(1):147.PubMedPubMedCentralCrossRef
14.
go back to reference Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the pathogenesis of hepatocellular carcinoma: a review. Cancers. 2021;13(3):514.PubMedPubMedCentralCrossRef Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the pathogenesis of hepatocellular carcinoma: a review. Cancers. 2021;13(3):514.PubMedPubMedCentralCrossRef
15.
go back to reference Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.PubMedPubMedCentralCrossRef Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.PubMedPubMedCentralCrossRef
16.
go back to reference Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2022;50(D1):D222–30.PubMedCrossRef Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2022;50(D1):D222–30.PubMedCrossRef
18.
go back to reference Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, et al. HCCDB: a database of hepatocellular carcinoma expression atlas. Genom Proteom Bioinform. 2018;16(4):269–75.CrossRef Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, et al. HCCDB: a database of hepatocellular carcinoma expression atlas. Genom Proteom Bioinform. 2018;16(4):269–75.CrossRef
19.
go back to reference Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.PubMedCrossRef Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.PubMedCrossRef
20.
go back to reference Tran AN, Dussaq AM, Kennell T, Willey CD, Hjelmeland AB. HPAanalyze: an R package that facilitates the retrieval and analysis of the human protein atlas data. BMC Bioinform. 2019;20(1):463.CrossRef Tran AN, Dussaq AM, Kennell T, Willey CD, Hjelmeland AB. HPAanalyze: an R package that facilitates the retrieval and analysis of the human protein atlas data. BMC Bioinform. 2019;20(1):463.CrossRef
21.
go back to reference Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-1341.e23.CrossRef Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-1341.e23.CrossRef
22.
go back to reference Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. 2018;9(1):20.PubMedPubMedCentralCrossRef Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. 2018;9(1):20.PubMedPubMedCentralCrossRef
23.
go back to reference Liu Y, Zhang Y, Xie W, Zhao J, Dong Y, Xu C, et al. IMPACT: a web server for exploring immunotherapeutic predictive and cancer prognostic biomarkers. Clin Transl Med. 2023;13(9): e1354.PubMedPubMedCentralCrossRef Liu Y, Zhang Y, Xie W, Zhao J, Dong Y, Xu C, et al. IMPACT: a web server for exploring immunotherapeutic predictive and cancer prognostic biomarkers. Clin Transl Med. 2023;13(9): e1354.PubMedPubMedCentralCrossRef
25.
go back to reference Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39(6):845-865.e7.PubMedCrossRef Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39(6):845-865.e7.PubMedCrossRef
26.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:509–14.CrossRef Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:509–14.CrossRef
27.
go back to reference Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: a web server for resolving tumor immunophenotype profiling. Can Res. 2018;78(23):6575–80.CrossRef Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: a web server for resolving tumor immunophenotype profiling. Can Res. 2018;78(23):6575–80.CrossRef
28.
go back to reference Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.PubMedPubMedCentralCrossRef Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.PubMedPubMedCentralCrossRef
29.
go back to reference Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.PubMedCrossRef Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.PubMedCrossRef
30.
32.
go back to reference Pronina I, Gubenko M, Burdennyy A, Loginov V. 13P Hypermethylation of microRNA gene: potential in the diagnosis of lung cancer. Ann Oncol. 2022;33:S1388.CrossRef Pronina I, Gubenko M, Burdennyy A, Loginov V. 13P Hypermethylation of microRNA gene: potential in the diagnosis of lung cancer. Ann Oncol. 2022;33:S1388.CrossRef
33.
go back to reference Zhang A, Hu H. Independent validation of a novel noninvasive 4-microRNA diagnostic model for multicancer early detection. JCO. 2022;40(16):3065–3065.CrossRef Zhang A, Hu H. Independent validation of a novel noninvasive 4-microRNA diagnostic model for multicancer early detection. JCO. 2022;40(16):3065–3065.CrossRef
34.
go back to reference Tokumaru Y, Oshi M, Katsuta E, Murthy V, Matsuhashi N, Futamura M, et al. Low expression of microRNA-195 is a poor prognostic marker for ER-positive breast cancer patients. JCO. 2021;39(15): e12576.CrossRef Tokumaru Y, Oshi M, Katsuta E, Murthy V, Matsuhashi N, Futamura M, et al. Low expression of microRNA-195 is a poor prognostic marker for ER-positive breast cancer patients. JCO. 2021;39(15): e12576.CrossRef
35.
go back to reference Ulivi P, Pasini L, Petracci E, Urbini M, Felip E, Stella F, et al. 21P Circulating free and extracellular vesicles-derived microRNA as prognostic biomarkers in resected early-stage non-small cell lung cancer. Ann Oncol. 2022;33:S552–3.CrossRef Ulivi P, Pasini L, Petracci E, Urbini M, Felip E, Stella F, et al. 21P Circulating free and extracellular vesicles-derived microRNA as prognostic biomarkers in resected early-stage non-small cell lung cancer. Ann Oncol. 2022;33:S552–3.CrossRef
36.
go back to reference Matthews HK, Bertoli C, De Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef Matthews HK, Bertoli C, De Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef
39.
go back to reference Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36(16):2191–201.PubMedCrossRef Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36(16):2191–201.PubMedCrossRef
40.
go back to reference Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Sig Transduct Target Ther. 2021;6(1):307.CrossRef Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Sig Transduct Target Ther. 2021;6(1):307.CrossRef
41.
go back to reference Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Sig Transduct Target Ther. 2023;8(1):70.CrossRef Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Sig Transduct Target Ther. 2023;8(1):70.CrossRef
43.
go back to reference Dong P, Wang X, Liu L, Tang W, Ma L, Zeng W, et al. Dampened VEPH1 activates mTORC1 signaling by weakening the TSC1/TSC2 association in hepatocellular carcinoma. J Hepatol. 2020;73(6):1446–59.PubMedCrossRef Dong P, Wang X, Liu L, Tang W, Ma L, Zeng W, et al. Dampened VEPH1 activates mTORC1 signaling by weakening the TSC1/TSC2 association in hepatocellular carcinoma. J Hepatol. 2020;73(6):1446–59.PubMedCrossRef
44.
go back to reference Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Sig Transduct Target Ther. 2024;9(1):75.CrossRef Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Sig Transduct Target Ther. 2024;9(1):75.CrossRef
45.
go back to reference Liu F, Gai X, Wu Y, Zhang B, Wu X, Cheng R, et al. Oncogenic β-catenin stimulation of AKT2–CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci USA. 2022;119(39): e2202157119.PubMedPubMedCentralCrossRef Liu F, Gai X, Wu Y, Zhang B, Wu X, Cheng R, et al. Oncogenic β-catenin stimulation of AKT2–CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci USA. 2022;119(39): e2202157119.PubMedPubMedCentralCrossRef
46.
go back to reference Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, Tang Z, et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology. 2011;140(3):1063-1070.e8.PubMedCrossRef Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, Tang Z, et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology. 2011;140(3):1063-1070.e8.PubMedCrossRef
47.
go back to reference Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221: 107753.PubMedCrossRef Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221: 107753.PubMedCrossRef
48.
go back to reference Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol. 2024;21(5):337–53.PubMedCrossRef Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol. 2024;21(5):337–53.PubMedCrossRef
49.
go back to reference Sun L, Xu G, Liao W, Yang H, Xu H, Du S, et al. Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis. Oncotarget. 2017;8(24):39658–72.PubMedPubMedCentralCrossRef Sun L, Xu G, Liao W, Yang H, Xu H, Du S, et al. Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis. Oncotarget. 2017;8(24):39658–72.PubMedPubMedCentralCrossRef
50.
go back to reference Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol. 2024;21(2):147–64.PubMedCrossRef Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol. 2024;21(2):147–64.PubMedCrossRef
51.
go back to reference Ding L, Hayes MM, Photenhauer A, Eaton KA, Li Q, Ocadiz-Ruiz R, et al. Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Investig. 2016;126(8):2867–80.PubMedPubMedCentralCrossRef Ding L, Hayes MM, Photenhauer A, Eaton KA, Li Q, Ocadiz-Ruiz R, et al. Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Investig. 2016;126(8):2867–80.PubMedPubMedCentralCrossRef
52.
go back to reference Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 2018;49(3):504-514.e4.PubMedPubMedCentralCrossRef Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 2018;49(3):504-514.e4.PubMedPubMedCentralCrossRef
53.
go back to reference Zhang Q, Ma C, Duan Y, Heinrich B, Rosato U, Diggs LP, et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 2021;11(5):1248–67.PubMedCrossRef Zhang Q, Ma C, Duan Y, Heinrich B, Rosato U, Diggs LP, et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 2021;11(5):1248–67.PubMedCrossRef
54.
go back to reference Tauriello DVF, Sancho E, Batlle E. Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25–44.PubMedCrossRef Tauriello DVF, Sancho E, Batlle E. Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25–44.PubMedCrossRef
55.
go back to reference Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, et al. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol. 2024;21(4):294–311.PubMedCrossRef Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, et al. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol. 2024;21(4):294–311.PubMedCrossRef
56.
go back to reference Hoeflich KP, Herter S, Tien J, Wong L, Berry L, Chan J, et al. Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by brafv600e mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Can Res. 2009;69(7):3042–51.CrossRef Hoeflich KP, Herter S, Tien J, Wong L, Berry L, Chan J, et al. Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by brafv600e mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Can Res. 2009;69(7):3042–51.CrossRef
Metadata
Title
ATP6V1C1, associated with the tumor microenvironment and mTORC1 signaling pathway, is a potential diagnostic, prognostic, and therapeutic biomarker for hepatocellular carcinoma
Authors
Yuhao Pan
Hao Chen
Chenhui Lv
Wei He
Yongpeng Xu
Qijia Xuan
Publication date
01-12-2024
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2024
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-024-01578-w

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more