Skip to main content
Top
Published in:

17-06-2024 | Artificial Intelligence | Scientific Article

Automated weight-bearing foot measurements using an artificial intelligence–based software

Authors: Louis Lassalle, Nor-eddine Regnard, Jeanne Ventre, Vincent Marty, Lauryane Clovis, Zekun Zhang, Nicolas Nitche, Ali Guermazi, Jean-Denis Laredo

Published in: Skeletal Radiology | Issue 2/2025

Login to get access

Abstract

Objective

To assess the accuracy of an artificial intelligence (AI) software (BoneMetrics, Gleamer) in performing automated measurements on weight-bearing forefoot and lateral foot radiographs.

Methods

Consecutive forefoot and lateral foot radiographs were retrospectively collected from three imaging institutions. Two senior musculoskeletal radiologists independently annotated key points to measure the hallux valgus, first–second metatarsal, and first–fifth metatarsal angles on forefoot radiographs and the talus–first metatarsal, medial arch, and calcaneus inclination angles on lateral foot radiographs. The ground truth was defined as the mean of their measurements. Statistical analysis included mean absolute error (MAE), bias assessed with Bland–Altman analysis between the ground truth and AI prediction, and intraclass coefficient (ICC) between the manual ratings.

Results

Eighty forefoot radiographs were included (53 ± 17 years, 50 women), and 26 were excluded. Ninety-seven lateral foot radiographs were included (51 ± 20 years, 46 women), and 21 were excluded. MAE for the hallux valgus, first–second metatarsal, and first–fifth metatarsal angles on forefoot radiographs were respectively 1.2° (95% CI [1; 1.4], bias =  − 0.04°, ICC = 0.98), 0.7° (95% CI [0.6; 0.9], bias =  − 0.19°, ICC = 0.91) and 0.9° (95% CI [0.7; 1.1], bias = 0.44°, ICC = 0.96). MAE for the talus–first, medial arch, and calcaneal inclination angles on the lateral foot radiographs were respectively 3.9° (95% CI [3.4; 4.5], bias = 0.61° ICC = 0.88), 1.5° (95% CI [1.2; 1.8], bias =  − 0.18°, ICC = 0.95) and 1° (95% CI [0.8; 1.2], bias = 0.74°, ICC = 0.99). Bias and MAE between the ground truth and the AI prediction were low across all measurements. ICC between the two manual ratings was excellent, except for the talus–first metatarsal angle.

Conclusion

AI demonstrated potential for accurate and automated measurements on weight-bearing forefoot and lateral foot radiographs.
Literature
1.
go back to reference Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:1–9.CrossRef Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:1–9.CrossRef
2.
go back to reference Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995;76(1):45–9.CrossRefPubMed Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995;76(1):45–9.CrossRefPubMed
3.
go back to reference Resch S, Ryd L, Stenström A, Johnsson K, Reynisson K. Measuring hallux valgus: a comparison of conventional radiography and clinical parameters with regard to measurement accuracy. Foot Ankle Int. 1995;16(5):267–70.CrossRefPubMed Resch S, Ryd L, Stenström A, Johnsson K, Reynisson K. Measuring hallux valgus: a comparison of conventional radiography and clinical parameters with regard to measurement accuracy. Foot Ankle Int. 1995;16(5):267–70.CrossRefPubMed
4.
go back to reference Gupta P, Kingston KA, O’Malley M, Williams RJ, Ramkumar PN. Advancements in artificial intelligence for foot and ankle surgery: a systematic review. Foot Ankle Orthopaedics. 2023;8(1):24730114221151080.CrossRefPubMedPubMedCentral Gupta P, Kingston KA, O’Malley M, Williams RJ, Ramkumar PN. Advancements in artificial intelligence for foot and ankle surgery: a systematic review. Foot Ankle Orthopaedics. 2023;8(1):24730114221151080.CrossRefPubMedPubMedCentral
5.
go back to reference van Leeuwen KG, Schalekamp S, Rutten MJ, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol. 2021;31:3797–804.CrossRefPubMedPubMedCentral van Leeuwen KG, Schalekamp S, Rutten MJ, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol. 2021;31:3797–804.CrossRefPubMedPubMedCentral
6.
go back to reference Regnard NE, Lanseur B, Ventre J, et al. Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol. 2022;154:110447.CrossRefPubMed Regnard NE, Lanseur B, Ventre J, et al. Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol. 2022;154:110447.CrossRefPubMed
7.
go back to reference Canoni-Meynet L, Verdot P, Danner A, et al. Added value of an artificial intelligence solution for fracture detection in the radiologist’s daily trauma emergencies workflow. Diagn Interv Imaging. 2022;103:594–600.CrossRefPubMed Canoni-Meynet L, Verdot P, Danner A, et al. Added value of an artificial intelligence solution for fracture detection in the radiologist’s daily trauma emergencies workflow. Diagn Interv Imaging. 2022;103:594–600.CrossRefPubMed
8.
go back to reference Duron L, Ducarouge A, Gillibert A, et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology. 2021;300(1):120–9.CrossRefPubMed Duron L, Ducarouge A, Gillibert A, et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology. 2021;300(1):120–9.CrossRefPubMed
9.
go back to reference Guermazi A, Tannoury C, Kompel AJ, et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology. 2022;302(3):627–36.CrossRefPubMed Guermazi A, Tannoury C, Kompel AJ, et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology. 2022;302(3):627–36.CrossRefPubMed
10.
go back to reference Hayashi D, Kompel AJ, Ventre J, et al. Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skeletal Radiol. 2022;51(11):2129–39.CrossRefPubMed Hayashi D, Kompel AJ, Ventre J, et al. Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skeletal Radiol. 2022;51(11):2129–39.CrossRefPubMed
11.
go back to reference Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin BJ. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS ONE. 2019;14(7):e0220242.CrossRefPubMedPubMedCentral Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin BJ. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS ONE. 2019;14(7):e0220242.CrossRefPubMedPubMedCentral
12.
go back to reference Nguyen T, Hermann AL, Ventre J, Ducarouge A, Pourchot A, Marty V, Regnard NE, Guermazi A. High performance for bone age estimation with an artificial intelligence solution. Diagn Interv Imaging. 2023;104(7–8):330–6.CrossRefPubMed Nguyen T, Hermann AL, Ventre J, Ducarouge A, Pourchot A, Marty V, Regnard NE, Guermazi A. High performance for bone age estimation with an artificial intelligence solution. Diagn Interv Imaging. 2023;104(7–8):330–6.CrossRefPubMed
13.
go back to reference Jensen J, Graumann O, Overgaard S, Gerke O, Lundemann M, Haubro MH, Varnum C, Bak L, Rasmussen J, Olsen LB, Rasmussen BSB. A deep learning algorithm for radiographic measurements of the hip in adults—a reliability and agreement study. Diagnostics. 2022;12(11):2597.CrossRefPubMedPubMedCentral Jensen J, Graumann O, Overgaard S, Gerke O, Lundemann M, Haubro MH, Varnum C, Bak L, Rasmussen J, Olsen LB, Rasmussen BSB. A deep learning algorithm for radiographic measurements of the hip in adults—a reliability and agreement study. Diagnostics. 2022;12(11):2597.CrossRefPubMedPubMedCentral
14.
go back to reference Stotter C, Klestil T, Röder C, Reuter P, Chen K, Emprechtinger R, Hummer A, Salzlechner C, DiFranco M, Nehrer S. Deep learning for fully automated radiographic measurements of the pelvis and hip. Diagnostics. 2023;13(3):497.CrossRefPubMedPubMedCentral Stotter C, Klestil T, Röder C, Reuter P, Chen K, Emprechtinger R, Hummer A, Salzlechner C, DiFranco M, Nehrer S. Deep learning for fully automated radiographic measurements of the pelvis and hip. Diagnostics. 2023;13(3):497.CrossRefPubMedPubMedCentral
16.
go back to reference Pei Y, Yang W, Wei S, Cai R, Li J, Guo S. Automated measurement of hip–knee–ankle angle on the unilateral lower limb X-rays using deep learning. Phys Eng Sci Med. 2021;44:53–62.CrossRefPubMed Pei Y, Yang W, Wei S, Cai R, Li J, Guo S. Automated measurement of hip–knee–ankle angle on the unilateral lower limb X-rays using deep learning. Phys Eng Sci Med. 2021;44:53–62.CrossRefPubMed
17.
go back to reference Archer H, Reine S, Xia S, et al. Deep learning generated lower extremity radiographic measurements are adequate for quick assessment of knee angular alignment and leg length determination. Skeletal Radiol. 2023;53(5):923–33.CrossRefPubMed Archer H, Reine S, Xia S, et al. Deep learning generated lower extremity radiographic measurements are adequate for quick assessment of knee angular alignment and leg length determination. Skeletal Radiol. 2023;53(5):923–33.CrossRefPubMed
18.
go back to reference Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine J. 2019;28:3035–43.CrossRefPubMed Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine J. 2019;28:3035–43.CrossRefPubMed
19.
go back to reference Wu C, Meng G, Lian J, et al. A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis. Eur Radiol. 2022;32(9):5880–9.CrossRefPubMed Wu C, Meng G, Lian J, et al. A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis. Eur Radiol. 2022;32(9):5880–9.CrossRefPubMed
20.
go back to reference Yang CH, Chou KT, Chung MB, Chuang KS, Huang TC. Automatic detection of calcaneal-fifth metatarsal angle using radiograph: a computer-aided diagnosis of flat foot for military new recruits in Taiwan. PLoS ONE. 2015;10(6):e0131387.CrossRefPubMedPubMedCentral Yang CH, Chou KT, Chung MB, Chuang KS, Huang TC. Automatic detection of calcaneal-fifth metatarsal angle using radiograph: a computer-aided diagnosis of flat foot for military new recruits in Taiwan. PLoS ONE. 2015;10(6):e0131387.CrossRefPubMedPubMedCentral
22.
go back to reference Kao EF, Lu CY, Wang CY, Yeh WC, Hsia PK. Fully automated determination of arch angle on weight-bearing foot radiograph. Comput Methods Programs Biomed. 2018;154:79–88.CrossRefPubMed Kao EF, Lu CY, Wang CY, Yeh WC, Hsia PK. Fully automated determination of arch angle on weight-bearing foot radiograph. Comput Methods Programs Biomed. 2018;154:79–88.CrossRefPubMed
23.
go back to reference Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, Soyer P. Interobserver agreement issues in radiology. Diagn Interv Imaging. 2020;101(10):639–41.CrossRefPubMed Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, Soyer P. Interobserver agreement issues in radiology. Diagn Interv Imaging. 2020;101(10):639–41.CrossRefPubMed
24.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral
Metadata
Title
Automated weight-bearing foot measurements using an artificial intelligence–based software
Authors
Louis Lassalle
Nor-eddine Regnard
Jeanne Ventre
Vincent Marty
Lauryane Clovis
Zekun Zhang
Nicolas Nitche
Ali Guermazi
Jean-Denis Laredo
Publication date
17-06-2024
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 2/2025
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-024-04726-z